Bioinformatics (Shotgun Sequencing)

Marc Hellmuth

Lecture 2

DNA sequencing = determine the sequence of nucleotides in DNA.

Organism type	Organism	Genome Size (bp)
Virus	Porcine circovirus type 1	1,759
Virus	Pandoravirus salinus	$2,470,000$
Bacterium	Nasuia deltocephalinicola	112,091
Bacterium	Solibacter usitatus	$9,970,000$
Plant	Genlisea tuberosa	$61,000,000$
Plant	Paris japonica	$150,000,000,000$
Mammal	Mus musculus	$2,700,000,000$
Mammal	Homo sapiens	$3,200,000,000$
Fish	Tetraodon nigroviridis	$385,000,000$
Fish	Protopterus aethiopicus	$130,000,000,000$
Amoeboid	Polychaos dubium	$670,000,000,000$
		(Wikipedia)

Problem: Current methods allow to read strings of length up to 1100bp

DNA sequencing = determine the sequence of nucleotides in DNA.
One way to do this: Shotgun sequencing

Idea:

Break multiple copies of string (DNA) into shorter substrings

Example:

```
shotgunsequencing shotgunsequencing
shotgunsequencing
cing en encing equ gun ing ns otgu seq sequ sh
sho shot tg uenc un
```

Computing problem: Assemble string shotgunsequencing

For us: Find a shortest common superstring (SCS)

We will consider a GREEDY strategy and show that GREEDY produces a superstring of length at most $4 n$ where n is the length of shortest superstring.

Approximation vs. Heuristics

- Performance guarantee
- Better ratio usually indicates better heuristic
- Approximation provides a good starting point for local-optimization
- Approximation provides good estimation of the optimal solution, which is useful for branch-and-bound
$P=\left\{s_{1}, \ldots, s_{n}\right\}$ is a set of strings.
For $s, t \in P$ let v be longest string (overlap) such that $s=u v$,
$t=v w, u, w \neq \emptyset$.
$\mathrm{ov}(s, t)=|v|$.
IDEA: GREEDY takes in each step two strings s, t that have maximal overlap ov(s, t) and merges them to $\langle s t\rangle:=u v w$. Simple Example 1.

$$
\begin{aligned}
& s_{1}=\operatorname{ACCT}, s_{2}=C C T T, s_{3}=\text { TACC. } \\
& \operatorname{ov}\left(s_{1}, s_{2}\right)=3 \operatorname{ov}\left(s_{2}, s_{1}\right)=0 \\
& \operatorname{ov}\left(s_{1}, s_{3}\right)=1 \operatorname{ov}\left(s_{3}, s_{1}\right)=3 \\
& \operatorname{ov}\left(s_{2}, s_{3}\right)=1 \operatorname{ov}\left(s_{3}, s_{2}\right)=2 \\
& \text { 1. }\left\langle s_{1} s_{2}\right\rangle=\text { ACCTT } \\
& \text { 2. }\left\langle s_{3}\left\langle s_{1} s_{2}\right\rangle\right\rangle=\text { TACCTT }
\end{aligned}
$$

Example 2

$P^{\prime}=\{a l f$ ate half lethal alpha alfalfa\} not substring free.
$P=\{$ ate half lethal alpha alfalfa $\}$ substring free.
Trivial superstring $S(P)$ is atehalethalalphaalfalfa of length 25.

A shortest common superstring (SCS) $S^{*}(P)$ is A is lethalphalfalfate of length 17.

GREEDY:
largest overlaps from lethal to half to alfalfa producing lethalfalfa
Then, has 3 choices of single character overlap. One possible solution: lethalfalfalphate

Why does this work and how "good" is the GREEDY solution?
For this:

- Cyclic Strings and Cycle Covers
- Hamiltonian cycles in directed graphs
\Rightarrow blackboard

Overlap and Distance Graph (from Example 2)

All edges not shown have overlap 0 .
Note, the sum of the distance and overlap weights on an edge $\left(S_{i}, S_{j}\right)$ is the length of the string S_{i}.
Taken from: Avrim Blum, Tao Jiang, Ming Li, John Tromp, and Mihalis Yannakakis. 1994. Linear approximation of shortest superstrings. J. ACM 41, 4, 630-647.

Summary blackboard

$P=\left\{s_{1}, \ldots, s_{n}\right\}$ is a set of strings.
Find permutation $\Pi=\sigma_{1} \ldots \sigma_{k}$ minimizing

$$
|S(\Pi)|=\sum_{i=1}^{k-1} p\left(S_{\sigma_{i}}, S_{\sigma_{i+1}}\right)+\left|S_{\sigma_{k}}\right|
$$

is equivalent to find Π maximizing

$$
\sum_{i=1}^{k-1} \operatorname{ov}\left(S_{\sigma_{i}}, S_{\sigma_{i+1}}\right)
$$

Summary blackboard

$P=\left\{s_{1}, \ldots, s_{n}\right\}$ is a set of strings.
$C(P)=$ set of cyclic strings s.t. each $S \in P$ maps to at least one $\Phi \in C(P)$ is called cycle cover.
$C^{*}(P)$ denotes cycle cover of minimum length and OPT $(\mathrm{S})=S^{*}(P)$ denotes SCS for P.
Lemma
$\left\|C^{*}(P)\right\| \leq\left|S^{*}(P)\right|$.

Summary blackboard

$P=\left\{s_{1}, \ldots, s_{n}\right\}$ is a set of strings.
Associate each string $S \in P$ with exactly one $\Phi \in C^{*}(P)$ that S maps to and denote with $P_{\Phi} \subseteq P$ the set of strings associated with Φ.

For $\Phi \in C^{*}(P)$ let $L_{\phi}=\sigma_{1} \ldots \sigma_{t}$ be indices of strings in P_{Φ} in order of starting positions in Φ.

For a cyclic shift L_{ϕ}^{\prime} of L_{Φ} with σ_{i} as last index in that ordering we call $S_{\sigma_{i}}$ final string.
Lemma
If $S_{\sigma_{i}}$ is final string of L_{Φ}^{\prime}, then
$\left|S\left(L_{\Phi}^{\prime}\right)\right|=|\Phi|+\operatorname{ov}\left(\left(S_{\sigma_{i}}, S_{\sigma_{i+1}}\right) \leq|\Phi|+\left|S_{\sigma_{i}}\right|\right.$ where $t+1$ is taken to be 1 .

Summary blackboard

Algorithm ConcatCycle

1. Find minimum length cycle cover $C^{*}(P)$ of P and associate each string $S \in P$ with exactly one $\Phi \in C^{*}(P)$ that S maps to
2. For every cyclic string $\Phi \in C^{*}(P)$ form ordered list L_{Φ} and create $S\left(L_{\Phi}\right)$. Let P^{\prime} be set of superstrings obtained in this step.
3. Concatenate the strings in P^{\prime} in any order to obtain superstring H.
Let P_{f} be the set of final strings of the strings contained in P^{\prime}
Lemma
$|H| \leq\left|\left|C^{*}\right|\right|+\sum_{s \in P_{f}}|S|$

Summary blackboard

Theorem (GCD Theorem)

If string S has two periods of length p and q and $|S| \geq p+q$, then S has a period of length $\operatorname{gcd}(p, q)$.

Lemma (Overlap Lemma)
Let $\Phi, \Phi^{\prime} \in C^{*}(P)$ and α, α^{\prime} be any two strings that map to Φ, resp., Φ^{\prime}. Then, ov $\left(\alpha, \alpha^{\prime}\right) \leq|\Phi|+\left|\Phi^{\prime}\right|$

Theorem
Let H be the superstring for string set P obtained by Algorithm ConcatCycle. Then, $|H| \leq 4\left|S^{*}(P)\right|$.

Summary blackboard

Algorithm MGreedy

```
    INPUT: P and T=\emptyset
```

1. WHILE $P \neq \emptyset$ DO

Choose $s, t \in P$ (not nec. distinct) with maximum ov(s, t) /*breaking ties arbitrarily*/
IF $s \neq t$ THEN $P \leftarrow P \backslash\{s, t\} \cup\langle s, t\rangle$
ELSE $P \leftarrow P \backslash\{s\}$ and $T \leftarrow T \cup\{s\}$
2. OUTPUT: Concatenation of strings in T.

Algorithm MGreedy can be considered as method that stepwisely takes edges from the overlap graph ($V=P, E=P \times P, \operatorname{ov}()$,$) with$ maximum weight and thus creates/joins paths and connects them to cycles. Thus, we get a cycle cover (with possibly none min. weight)

Theorem

The cycle cover obtained by Algorithm MGreedy is optimal. MGreedy runs in $O\left(|P|^{3}\right)$ time

Summary blackboard

The cycle cover obtained by Algorithm MGreedy is optimal. proof-sketch:
Let N be optimal having max.nr. of edges in common with M Need to show $N=M$.
Let e be an edge with max.overlap in $M \Delta N$
Ties are broken in the same way.
1st case: $e \in N \backslash M \Rightarrow$ MGreedy has not chosen e, and thus has taken another edge f that dominates e. Note $f \notin N$ (since each vertex contained in exactly von cycle)
$\Rightarrow f \in M \backslash N$ contradicting our choice of e.
2nd case: $e \in M \backslash N$. Let $e=(k, j)$. Thus $(k, I),(i, j) \in N \backslash M$ and by coice of e : $\mathrm{ov}(k, j) \geq \max \{\mathrm{ov}(k, l), \mathrm{ov}(i, j)\} \Rightarrow \mathrm{ov}(k, j)+\mathrm{ov}(i, l) \geq \mathrm{ov}(i, j)+\mathrm{ov}(k, l) . \Rightarrow$ Replacing in N the edges $(k, I),(i, j)$ by $(k, j),(i, I)$ yield assigmnet N^{\prime} that has more edges in common with M and not less overlap, contradicting our choice of N.

Conjecture: The Greedy Algorithm has approximation factor 2. The best know approximation ratio is $2 \frac{11}{23} \simeq 2.48$ (Mucha, 2013)

The problems in practice:

- Repeated regions. Repeats are difficult to separate and often cause the fragment assembly program to assemble reads that come from different locations
- Base-calling errors or sequencing errors. The limitation in current sequencing technology results in varying quality of the sequence data between reads and within each read.
- Contamination.
- Unknown orientation. It is not known from which strand each fragment originates. This increases the complexity of the assembly task. Hence, a read may represent one strand or the reverse complement sequence on the other strand.
- Incomplete coverage. Coverage varies in different target sequence locations due to the nature of random sampling. The coverage has theoretically a certain probability to be zero depending on the average sampling coverage of the target genome.

