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DNA sequencing = determine the sequence of nucleotides in DNA.

Organism type Organism Genome Size (bp)

Virus Porcine circovirus type 1 1,759

Virus Pandoravirus salinus 2,470,000

Bacterium Nasuia deltocephalinicola 112,091

Bacterium Solibacter usitatus 9,970,000

Plant Genlisea tuberosa 61,000,000

Plant Paris japonica 150,000,000,000

Mammal Mus musculus 2,700,000,000

Mammal Homo sapiens 3,200,000,000

Fish Tetraodon nigroviridis 385,000,000

Fish Protopterus aethiopicus 130,000,000,000

Amoeboid Polychaos dubium 670,000,000,000

(Wikipedia)

Problem: Current methods allow to read strings of length up to 1100bp
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DNA sequencing = determine the sequence of nucleotides in DNA.

One way to do this: Shotgun sequencing

Idea:

Break multiple copies of string (DNA) into shorter substrings

Example:

shotgunsequencing shotgunsequencing

shotgunsequencing

cing en encing equ gun ing ns otgu seq sequ sh

sho shot tg uenc un

Computing problem: Assemble string shotgunsequencing

For us: Find a shortest common superstring (SCS)
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We will consider a GREEDY strategy and show that GREEDY

produces a superstring of length at most 4n where n is the length

of shortest superstring.

Approximation vs. Heuristics

• Performance guarantee

• Better ratio usually indicates better heuristic

• Approximation provides a good starting point for

local-optimization

• Approximation provides good estimation of the optimal

solution, which is useful for branch-and-bound
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P = {s1, . . . ,sn} is a set of strings.

For s, t ∈ P let v be longest string (overlap) such that s = uv ,

t = vw , u,w 6= /0.

ov(s, t) = |v |.

IDEA: GREEDY takes in each step two strings s, t that have

maximal overlap ov(s, t) and merges them to 〈st〉 := uvw .

Simple Example 1.

s1 =ACCT, s2 =CCTT, s3 =TACC.

ov(s1,s2) = 3 ov(s2,s1) = 0

ov(s1,s3) = 1 ov(s3,s1) = 3

ov(s2,s3) = 1 ov(s3,s2) = 2

1. 〈s1s2〉=ACCTT
2. 〈s3〈s1s2〉〉=TACCTT
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Example 2

P ′ = {alf ate half lethal alpha alfalfa} not

substring free.

P = { ate half lethal alpha alfalfa} substring free.

Trivial superstring S(P) is atehalethalalphaalfalfa of

length 25.

A shortest common superstring (SCS) S∗(P) is A is

lethalphalfalfate of length 17.

GREEDY:

largest overlaps from lethal to half to alfalfa producing

lethalfalfa

Then, has 3 choices of single character overlap. One possible

solution: lethalfalfalphate
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Why does this work and how “good” is the GREEDY solution?

For this:

• Cyclic Strings and Cycle Covers

• Hamiltonian cycles in directed graphs

⇒ blackboard
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Overlap and Distance Graph (from Example 2)

All edges not shown have overlap 0.

Note, the sum of the distance and overlap weights on an edge

(Si ,Sj) is the length of the string Si .

Taken from: Avrim Blum, Tao Jiang, Ming Li, John Tromp, and Mihalis Yannakakis.

1994. Linear approximation of shortest superstrings. J. ACM 41, 4, 630-647.
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Summary blackboard

P = {s1, . . . ,sn} is a set of strings.

Find permutation Π= σ1 . . .σk minimizing

|S(Π)|=
k−1

∑
i=1

p(Sσi
,Sσi+1

)+ |Sσk
|

is equivalent to find Π maximizing

k−1

∑
i=1

ov(Sσi
,Sσi+1

)
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Summary blackboard

P = {s1, . . . ,sn} is a set of strings.

C(P) = set of cyclic strings s.t. each S ∈ P maps to at least one

Φ ∈ C(P) is called cycle cover.

C∗(P) denotes cycle cover of minimum length and

OPT(S) = S∗(P) denotes SCS for P.

Lemma
||C∗(P)|| ≤ |S∗(P)|.
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Summary blackboard

P = {s1, . . . ,sn} is a set of strings.

Associate each string S ∈ P with exactly one Φ ∈ C∗(P) that S

maps to and denote with PΦ ⊆ P the set of strings associated with

Φ.

For Φ ∈ C∗(P) let Lφ = σ1 . . .σt be indices of strings in PΦ in order

of starting positions in Φ.

For a cyclic shift L′
Φ

of LΦ with σi as last index in that ordering we

call Sσi
final string.

Lemma
If Sσi

is final string of L′
Φ

, then

|S(L′
Φ
)|= |Φ|+ov((Sσi

,Sσi+1
)≤ |Φ|+ |Sσi

| where t +1 is taken to

be 1.
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Summary blackboard

Algorithm ConcatCycle

1. Find minimum length cycle cover C∗(P) of P and associate

each string S ∈ P with exactly one Φ ∈ C∗(P) that S maps to

2. For every cyclic string Φ ∈ C∗(P) form ordered list LΦ and

create S(LΦ). Let P ′ be set of superstrings obtained in this

step.

3. Concatenate the strings in P ′ in any order to obtain

superstring H.

Let Pf be the set of final strings of the strings contained in P ′

Lemma
|H| ≤ ||C∗||+∑S∈Pf

|S|
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Summary blackboard

Theorem (GCD Theorem)

If string S has two periods of length p and q and |S| ≥ p+q, then

S has a period of length gcd(p,q).

Lemma (Overlap Lemma)

Let Φ,Φ′ ∈ C∗(P) and α ,α ′ be any two strings that map to Φ,

resp., Φ′. Then, ov(α ,α ′)≤ |Φ|+ |Φ′|

Theorem
Let H be the superstring for string set P obtained by Algorithm

ConcatCycle. Then, |H| ≤ 4|S∗(P)|.
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Summary blackboard

Algorithm MGreedy

INPUT: P and T = /0

1. WHILE P 6= /0 DO

Choose s, t ∈ P (not nec. distinct) with maximum ov(s, t)
/*breaking ties arbitrarily*/

IF s 6= t THEN P← P \{s, t}∪〈s, t〉
ELSE P← P \{s} and T ← T ∪{s}

2. OUTPUT: Concatenation of strings in T .

Algorithm MGreedy can be considered as method that stepwisely

takes edges from the overlap graph (V = P,E = P×P,ov(,)) with

maximum weight and thus creates/joins paths and connects them

to cycles. Thus, we get a cycle cover (with possibly none min.

weight)

Theorem
The cycle cover obtained by Algorithm MGreedy is optimal.

MGreedy runs in O(|P|3) time
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Summary blackboard

The cycle cover obtained by Algorithm MGreedy is optimal.

proof-sketch:

Let N be optimal having max.nr. of edges in common with M

Need to show N = M.

Let e be an edge with max.overlap in M∆N

Ties are broken in the same way.

1st case: e ∈ N \M ⇒ MGreedy has not chosen e, and thus has taken another

edge f that dominates e. Note f /∈ N (since each vertex contained in exactly von

cycle)

⇒ f ∈M \N contradicting our choice of e.

2nd case: e ∈M \N. Let e = (k , j). Thus (k , l),(i, j) ∈ N \M and by coice of e:

ov(k , j)≥max{ov(k , l),ov(i, j)} ⇒ ov(k , j)+ov(i, l)≥ ov(i, j)+ov(k , l). ⇒

Replacing in N the edges (k , l),(i, j) by (k , j),(i, l) yield assigmnet N ′ that has

more edges in common with M and not less overlap, contradicting our choice of

N.



DNA sequencing Factor-Of-4 Approximation

Conjecture: The Greedy Algorithm has approximation factor 2.

The best know approximation ratio is 211
23
≃ 2.48 (Mucha, 2013)

The problems in practice:

• Repeated regions. Repeats are difficult to separate and often cause the

fragment assembly program to assemble reads that come from different

locations

• Base-calling errors or sequencing errors. The limitation in current

sequencing technology results in varying quality of the sequence data

between reads and within each read.

• Contamination.

• Unknown orientation. It is not known from which strand each fragment

originates. This increases the complexity of the assembly task. Hence, a

read may represent one strand or the reverse complement sequence on the

other strand.

• Incomplete coverage. Coverage varies in different target sequence

locations due to the nature of random sampling. The coverage has

theoretically a certain probability to be zero depending on the average

sampling coverage of the target genome.
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