Bioinformatics

(Intro Graphs)

Marc Hellmuth

Graphs and some (Basic-)Properties

- simple (un-)directed graphs $G=(V, E)$
- degree $\operatorname{deg}(v)$

Theorem
For any graph $G=(V, E)$ holds: $\sum_{v \in V} \operatorname{deg}(v)=2|E|$.
Theorem
Every graph contains an even number of vertices with odd degree.

Graphs and some (Basic-)Properties

- \simeq isomorphism
- (induced) subgraph
- complete graphs K_{n}

Graphs and some (Basic-)Properties

- walk, trail, path, cycle
- connectedness

Graphs and some (Basic-)Properties

- forests and trees

Theorem

Let $G=(V, E)$ be an undirected graph. G is a tree if and only if for any two vertices $u, v \in V$ there is exactly on path connecting them.

Theorem

Let $G=(V, E)$ be an undirected connected graph.
G is a tree if and only if $|E|=|V|-1$.
Corollary
Let $G=(V, E)$ be a connected undirected graph.
Then $|E| \geq|V|-1$ and G has a spanning tree.

Graphs and some (Basic-)Properties

- distances

Lemma (Subpaths)

Any connected subgraph of a shortest path is a shortest path.
Lemma (Triangle Inequality)
Let $G=(V, E)$ be an undirected graph. For all $u, v, z \in V$ holds that

$$
d(u, v) \leq d(u, z)+d(z, v)
$$

Breadth-first search - BFS (G, s)

1: INPUT: Adjacencylist of a graph $G=(V, E)$, source vertex s
2: for all $v \in V$ do
3: $\quad \delta[v]=\infty, \operatorname{pred}[v]=\mathrm{NIL}$
end for
5: $\delta[s]=0$, enqueue (Q, s)
while $Q \neq \emptyset$ do
7: u=dequeue(Q)
8: \quad for all $v \in \operatorname{adj}(u)$ do
9: \quad if $\delta[v]=\infty$ then
10: $\quad \delta[v]=\delta[u]+1$
11: $\quad \operatorname{pred}[v]=u$
12: enqueue(Q, v)
13: end if
14: end for
15: end while
16: OUTPUT: Arrays δ, pred;

Breadth-first search - BFS (G, s)

Theorem

$\operatorname{BFS}(G, s)$ runs in time $O(|V|+|E|)$.
Theorem
After termination of BFS (G, s) we have $\delta(v)=d_{G}(s, v)$ for all $v \in V$

Graphs and Colorings

- (proper) coloring
- k-coloring and chromatic number $\chi(G)$

Theorem
For all graphs G holds: $\chi(G) \leq 1+\Delta(G)$.

Graphs and Colorings

- bipartite graphs

Lemma
A graph G is bipartite if and only if G is 2-colorable.
Theorem
A graph G is bipartite if and only if G does not contain odd cycles.

