

Marc Hellmuth

- simple (un-)directed graphs G = (V, E)
- degree deg(v)

Theorem

For any graph G = (V, E) holds: $\sum_{v \in V} deg(v) = 2|E|$.

Theorem

Every graph contains an even number of vertices with odd degree.

- $\bullet \simeq \text{isomorphism}$
- (induced) subgraph
- complete graphs K_n

- walk, trail, path, cycle
- connectedness

· forests and trees

Theorem

Let G = (V, E) be an undirected graph. G is a tree if and only if for any two vertices $u, v \in V$ there is exactly on path connecting them.

Theorem

Let G = (V, E) be an undirected connected graph. G is a tree if and only if |E| = |V| - 1.

Corollary

Let G = (V, E) be a connected undirected graph. Then $|E| \ge |V| - 1$ and G has a spanning tree.

distances

Lemma (Subpaths)

Any connected subgraph of a shortest path is a shortest path.

Lemma (Triangle Inequality)

Let G = (V, E) be an undirected graph. For all $u, v, z \in V$ holds that

$$d(u,v) \leq d(u,z) + d(z,v)$$

Breadth-first search - BFS (G, s)

- 1: **INPUT:** Adjacencylist of a graph G = (V, E), source vertex s
- 2: for all $v \in V$ do

3:
$$δ[ν] = ∞$$
, pred $[ν] =$ NIL

- 4: end for
- 5: $\delta[s] = 0$, enqueue(Q,s)
- 6: while $Q \neq \emptyset$ do
- 7: u=dequeue(Q)
- 8: for all $v \in \operatorname{adj}(u)$ do
- 9: if $\delta[v] = \infty$ then
- 10: $\delta[v] = \delta[u] + 1$
- 11: pred[v] = u
- 12: enqueue(Q,v)
- 13: end if
- 14: end for
- 15: end while
- 16: **OUTPUT:** Arrays δ , pred;

Breadth-first search - BFS (G, s)

Theorem

BFS (G, s) runs in time O(|V| + |E|).

Theorem

After termination of BFS (G, s) we have $\delta(v) = d_G(s, v)$ for all $v \in V$

Graphs and Colorings

- · (proper) coloring
- k-coloring and chromatic number $\chi(G)$

Theorem

For all graphs G holds: $\chi(G) \leq 1 + \Delta(G)$.

Graphs and Colorings

bipartite graphs

Lemma A graph G is bipartite if and only if G is 2-colorable.

Theorem

A graph G is bipartite if and only if G does not contain odd cycles.