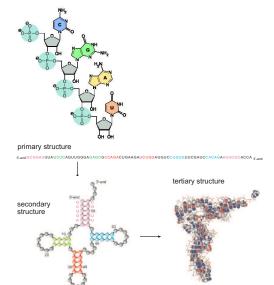
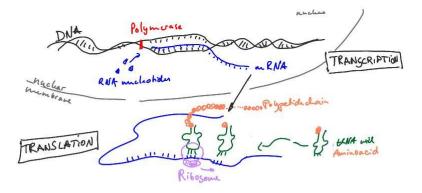
Find Structure of RNA's

Comparison of RNA Structure


Marc Hellmuth

Find Structure of RNA's

Comparison of RNA Structure


What is RNA (Ribonucleic acid)?

- single-stranded polymer
- polymer made of nucleotides+backbone
- guanine (G), adenine (A), uracil (U), cytosine (C)
- alternating sugar (ribose) and phospat groups (related to phosphoric acid) nucleotides are attached to sugar
- the nucleotides of polymer can bind (A-U, C-G, G-U), i.e., unlike DNA it is more often found in nature as a single-strand folded unto itself, rather than a paired double-strand.

Comparison of RNA Structure

Protein Synthesis - well-known mRNA

ind Structure of RNA's

RNA function

Comparison of RNA Structure

coding RNA

mRNA: convey genetic information from DNA to the ribosome

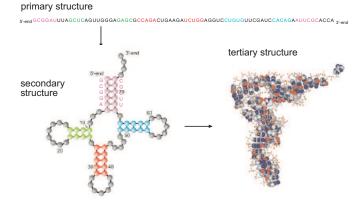
many RNAs do not code for protein (about 97% are non-protein- coding in eukaryotes)

non-coding RNA

- tRNA: linking codons to aminoacids
- rRNA (ribosomalRNA): part of of the ribosome, essential for protein synthesis
- * snRNA (Small nuclear RNA, \sim 150 nt) : splicing and other functions
- miRNA (microRNA, 21-22 nt): regulation of gene expression

• ...

RNA can even act as genome (virus)


RNA - WORLD - HYPOTHESIS: self-replicating RNA molecules are precursors to all current life on Earth.

ind Structure of RNA's

RNA Structure

Comparison of RNA Structure

Function is determined by structure.

ind Structure of RNA's

Comparison of RNA Structure

Base Pairing Rules \mathbb{B}

- Watson-Crick base pairings
 - Adenin (A) Uracil (U)
 - Cytosin (C) Guanin (G)
- wobble base pairings
 - Guanin (G) Uracil (U)

Comparison of RNA Structure

RNA Structure

In what follows: $\mathbb{A} = \{A, C, G, U\}$

A primary structure (of length *n*) is a sequence $s = s_1 \dots s_n \in \mathbb{A}^n$.

A secondary structure Sec is a collection of ordered pairs (i,j), where $1 \le i < j \le n$, s.t. the following properties hold:

- 1. If $(i,j), (k,l) \in Sec$, then it is not the case that i < k < j < l.
- 2. If $(i,j), (k,l) \in Sec$ and $i \in (k,l)$ implies that i = k and j = l.
- 3. If $(i,j) \in Sec$, then $j > i + \theta$, where θ is a fixed integer and usually taken to be 3.

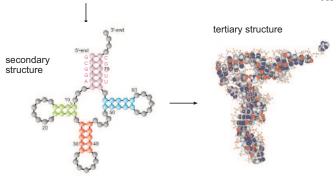
A secondary structure Sec for a given sequence $s = s_1 \dots s_n \in \mathbb{A}^n$ is a secondary structure fullfilling in addition

4. If $(i,j) \in Sec$, then $s_i s_j \in \mathbb{B} = \{AU, UA, GC, CG, GU, UG\}$.

If item 4. is fullfilled, then we say that the sequence $s \in \mathbb{A}^n$ realizes Sec.

A **tertiary structure** is basically the 3D structure, i.e., refers to locations of the atoms in three-dimensional space.

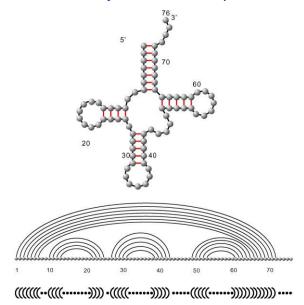
ind Structure of RNA's


Comparison of RNA Structure

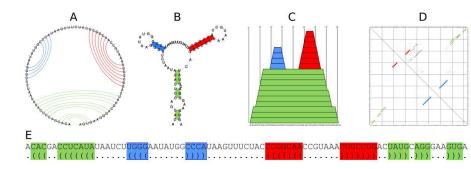
RNA Structure

$$s = s_1 \dots s_n \in C_n = \{A, C, G, U\}^n$$

primary structure


5-end GCGGAUUUAGCUCAGUUGGGGGGGGGGCGCAGACUGAAGAUCUGGAGGUCCUGUGUUCGAUCCACAGAAUUCGCACCA 3-end

Find Structure of RNA's


Comparison of RNA Structure

RNA Secondary Structure Representation

Comparison of RNA Structure

RNA Secondary Structure Representation

- A Circular Plot
- B "Squiggle" Plot
- C Mountain Plot
- D Dot Plot
- E Bracket Notation

Comparison of RNA Structure

RNA Secondary Structure Prediction

RNA folding: hierarchical process in which secondary structure is broadly considered as sufficient approximation assessing the most relevant characteristics of an RNA molecule

Prediction w.r.t. what? We need some optimization criterion. e.g.

- Number of Basepairs
- Min. Free Energy
- Mutual Information Content

Set of all feasible second structures S(x) of an RNA sequence x is called *folding space*. Structure prediction means to select the "most-likely" structure from elements of S(x).

Comparison of RNA Structure

Counting Secondary Structures

Theorem

Let S(n) denote the number of secondary structures of size n and $\theta = 1$. Then S(0) = 0, S(1) = 1 and for $n \ge 1$,

$$S(n+1) = S(n) + S(n-1) + \sum_{k=2}^{n-1} S(k-1)S(n-k)$$

and

$$S(n) \geq 2^{n-2}$$
.

Theorem

Let S(n,k) denote the number of secondary structures of size n that contain exactly k basepairs ($\theta = 1$). Set S(n,0) = 1 for all n and S(n,k) = 0 for $k \ge \frac{n}{2}$. Then for $n \ge 2$,

$$S(n+1,k+1) = S(n,k+1) + \sum_{j=1}^{n-1} \left[\sum_{i=0}^{k} S(j-1,i)S(n-j,k-i) \right].$$

Corollary

$$S(n) = \sum_{k=0}^{\lfloor n/2 \rfloor} S(n,k).$$

ind Structure of RNA's

Realizability

Comparison of RNA Structure

A sequence $s \in \mathbb{A}^n$ realizes or is compatible with a secondary structure S of length n if for any $(i, j) \in S$ it holds that $s_i, s_j \in \mathbb{B}$.

• dependency graph or shape graph $G(S_1, \ldots, S_k)$

QUESTION:

On what conditions is it possible to find *one* sequence, which is realizing *all* sec.str. S_1, \ldots, S_k of the same size?

equivalent to:

What properties have to be fulfilled in $G(S_1, \ldots, S_k)$, s.t. there exists a single sequence, which is realizing all S_1, \ldots, S_k ?

ind Structure of RNA's

Comparison of RNA Structure

Intersection Theorem

C(S) denotes the set of all sequences that realize Secondary Structure S.

Intersection Theorem [Reidys et al. 1995] For any two secondary structures S_1 and S_2 of same size holds: $C(S_1) \cap C(S_2) \neq \emptyset$.

Generalized Intersection Theorem [Flamm et al. 2001] $\bigcap_{i=1}^{k} C(S_i) \neq \emptyset \Leftrightarrow G(S_1, \dots, S_k)$ is bipartite.

RNA folding

Comparison of RNA Structure

Aim: For given sequence $s \in \mathbb{A}^n$ find "most-likely" or "optimal" structure. "optimal" := e.g. max. number of basepairs, min free energy, mutual information content (for more than one sequence) ...

Comparison of RNA Structure

Inferring Structure by Comparative Sequence Analysis

RNA sequence evolution is constrained by structure (\rightarrow function)

"homologous" RNA's = RNA's that share a "common" structure

There are exampled of different RNA's that have a common structure, but almost no sequence similarity (conserved structure)

(e.g. tRNA structure conserved across species)

Drastic changes in sequences can often be tolerated as long compensatory mutations maintain base pairings.

Inferring Structure by Comparative Sequence Analysis

The key idea is to identify the interactions (i.e., the Watson-Crick correlated positions that result from compensatory mutations) in a multiple alignment, e.g.:

seq1	G	С	С	U	U	С	G	G	G	С
seq2	G	Α	С	U	U	С	G	G	U	С
seq3	G	G	С	U	U	С	G	G	С	С

The amount of correlation of two columns of a multiple alignment can be computed as the mutual information content measure:

"if you tell me the identity of position *i*, how much do I learn about the identity of position *j* ?"

Inferring Structure by Comparative Sequence Analysis

A method used to locate covariant positions in a multiple sequence alignment is the mutual information content of two columns (=measure of the variables' mutual dependence).

 $f_i(X)$ is rel. frequency of base $X \in \{A, C, G, U\}$ in *i*-th column of \mathscr{A} .

 $f_{ij}(XY)$ is rel. frequency of simultaneously finding $X \in \{A, C, G, U\}$ in *i*-th column of \mathscr{A} and $Y \in \{A, C, G, U\}$ in *j*-th column of \mathscr{A}

If the base frequencies of any two columns *i* and *j* are independent of each other then,

$$\frac{f_{ij}(XY)}{f_i(X)f_j(Y)}\approx 1$$

If these frequencies are correlated, then this ratio will be greater than 1.

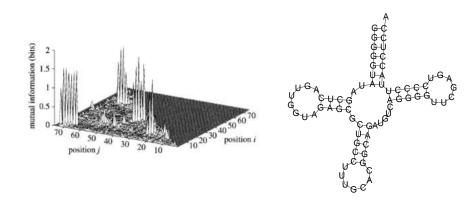
Comparison of RNA Structure

Inferring Structure by Comparative Sequence Analysis

Given alignment \mathscr{A} of RNA sequences. Mutual Information Score¹ is defined as

$$M_{i,j} = \sum_{XY} f_{ij}(XY) \log_2 \frac{f_{ij}(XY)}{f_i(X)f_j(Y)},$$

with: $f_i(X)$ is rel. frequency of base $X \in \{A, C, G, U\}$ in *i*-th column of \mathscr{A} and $f_{ij}(XY)$ is rel. frequency of simultaneously finding $X \in \{A, C, G, U\}$ in *i*-th column of \mathscr{A} and $Y \in \{A, C, G, U\}$ in *j*-th column of \mathscr{A}


*M*_{*i*,*j*} ∈ [0,2]

Intuitively, $M_{A,B}$ measures the information that *A* and *B* share: For example, if variables *A* and *B* are independent ($f(AB) = f(A)f(B) \Rightarrow \log(1) = 0$), then knowing *A* does not give any information about *B* and vice versa, so $M_{A,B} = 0$. At the other extreme, if *A* is a deterministic function of *B* (and vice versa) then all information conveyed by *A* is shared with *B*: knowing *A* determines the value of *B* and vice versa.

goes back to Shannon information theory and entropy

Comparison of RNA Structure

Inferring Structure by Comparative Sequence Analysis²

²Book: Biological Sequence Analysis, Durbin et al.

Find Structure of RNA's

Comparison of RNA Structure

Inferring Structure by Comparative Sequence Analysis

Exmpl.

	1	2	3	4	5	6
seq1	С	G	С	G	Α	U
seq2	С	G	G	С	С	G
seq3	С	G	С	G	G	С
seq4	С	G	G	С	U	Α

 $M_{3,4} = 1$ $M_{5,6} = 2$ $M_{1,2} = 0$ although in all cases there can be bp

Problems:

One need large datasets of highly diverse and homologous (how do I know this?) sequences.


Find Structure of RNA's

Comparison of RNA Structure

RNA folding - Maximize Number of Basepairs - Nussinov Algorithms

RNA folding: hierarchical process in which secondary structure is broadly considered as sufficient approximation assessing the most relevant characteristics of an RNA molecule. Directly compute structure for a given sequence.

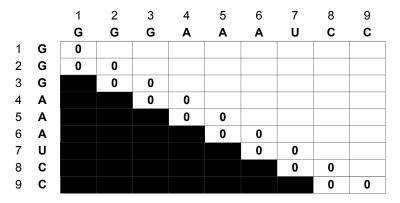
Observation: Best substructure [i, j] can be obtained from substructures of [i, j] - 4 cases:

Comparison of RNA Structure

Nussinov Algorithm - Basepair Maximization

1: INPUT:
$$s = s_1 \dots s_n \in \{A, C, G, U\}^n$$

2: for $i, j = 1, \dots, n$ do
3: $E_{i,i-1} = E_{i,i} = 0, \ \delta_{ij} = \begin{cases} 1 & , \text{ if } s_i s_j \in \mathbb{B} \\ 0 & , \text{ else} \end{cases}$
4: end for
5: for $L = 1, \dots, n-1$ do
6: for $i = 1, \dots, n-L$ do
7: $j = i + L$
8: $E_{i,j} = \max \begin{cases} E_{i+1,j} \\ E_{i,j-1} \\ E_{i+1,j-1} + \delta_{ij} \\ max_{i < k < j} \{E_{i,k} + E_{k+1,j}\} \end{cases}$
9: end for


10: end for

11: print "Max Nr Basepairs:" E1,n

Comparison of RNA Structure

Nussinov Algorithm - Basepair Maximization

Given: s = GGGAAAUCCInit: $E_{i,i-1} = 0$ and $E_{i,i} = 0$

U

С

С

Comparison of RNA Structure

Nussinov Algorithm - Basepair Maximization

$$E_{i,j} = \max \begin{cases} E_{i+1,j} \\ E_{i,j-1} \\ E_{i+1,j-1} + \delta_{ij} \\ \max_{1 < k < j} \{E_{i,k} + E_{k+1,j}\} \end{cases}$$

			-	•		•	•
		G	G	G	Α	Α	Α
1	G	0	0				
2	G	0	0	0			
3	G		0	0	0		
4	Α			0	0	0	
5	Α				0	0	0
6	Α					0	0
7	U						0
8	С						
9	С						

Comparison of RNA Structure

Nussinov Algorithm - Basepair Maximization

$$E_{i,j} = \max \begin{cases} E_{i+1,j} \\ E_{i,j-1} \\ E_{i+1,j-1} + \delta_{ij} \\ \max_{i < k < j} \{E_{i,k} + E_{k+1,j}\} \end{cases}$$

1	G
2	G
3	G
4	Α
5	Α
6	Α
7	U
8	С
9	С

	1	2	3	4	5	6	7	8	9
	G	G	G	Α	Α	Α	U	С	С
6	0	0	0						
6	0	0	0	0					
6		0	0	0	0				
1			0	0	0	0			
1				0	0	0	1		
1					0	0	1	1	
J						0	0	0	0
;							0	0	0
;								0	0

Comparison of RNA Structure

Nussinov Algorithm - Basepair Maximization

$$E_{4,7} = \max \begin{cases} E_{5,7} \\ E_{4,6} \\ E_{5,6} + \delta_{4,7} \\ \max_{4 < k < 7} \{E_{4,k} + E_{k+1,7}\} \end{cases}$$

1	G
2	G
3	G
4	Α
5	Α
6	Α
7	U
8	С
9	С

	1	2	3	4	5	6	7	8	9
	G	G	G	Α	Α	Α	U	С	С
3	0	0	0	0					
3	0	0	0	0	0				
3		0	0	0	0	0			
۹			0	0	0	0			
4				0	0	0	1		
7					0	0	1	1	
J						0	0	0	0
)							0	0	0
)								0	0

Comparison of RNA Structure

Nussinov Algorithm - Basepair Maximization

$$E_{4,7} = \max \begin{cases} E_{5,7} = 1 \\ E_{4,6} = 0 \\ E_{5,6} + \delta_{4,7} = 1 \\ \max_{4 < k < 7} \{E_{4,k} + E_{k+1,7}\} = 1 \end{cases}$$

G 1 2 G 3 G 4 Α 5 Α 6 Α 7 U 8 С 9 С

1	2	3	4	5	6	7	8	9
G	G	G	Α	Α	Α	U	С	С
0	0	0	0					
0	0	0	0	0				
	0	0	0	0	0			
		0	0	0	0	1		
			0	0	0	1		
				0	0	1	1	
					0	0	0	0
						0	0	0
							0	0

Comparison of RNA Structure

Nussinov Algorithm - Basepair Maximization

$$E_{i,j} = \max \begin{cases} E_{i+1,j} \\ E_{i,j-1} \\ E_{i+1,j-1} + \delta_{ij} \\ \max_{1 \le k \le j-1} \{E_{i,k} + E_{k+1,j}\} \end{cases}$$

1	G
2	G
3	G
4	Α
5	Α
6	Α
7	U
8	С
9	С

	1	2	3	4	5	6	7	8	9
	G	G	G	Α	Α	Α	U	С	С
ì	0	0	0	0	0	0	1	2	3
ì	0	0	0	0	0	0	1	2	3
ì		0	0	0	0	0	1	2	2
			0	0	0	0	1	1	1
				0	0	0	1	1	1
					0	0	1	1	1
						0	0	0	0
;							0	0	0
;								0	0

Comparison of RNA Structure

Traceback Nussinov Algorithm - Basepair Maximization

```
\begin{aligned} & \text{Traceback}(\text{matrix } E, i = 1, j = n) \\ & \text{if } i < j \text{ then} \\ & \text{if } E_{i,j} = E_{i+1,j} \text{ then} \\ & \text{Traceback}(E, i+1, j) \\ & \text{else if } E_{i,j} = E_{i,j-1} \text{ then} \\ & \text{Traceback}(E, i, j-1) \\ & \text{else if } E_{i,j} = E_{i+1,j-1} + \delta_{i,j} \text{ then} \\ & \text{print "basepair } (i,j)" \\ & \text{Traceback}(E, i+1, j-1) \\ & \text{else for } k = i+1, \dots, j-1 \text{ do} \\ & \text{if } E_{i,j} = E_{i,k} + E_{k+1,j} \text{ then} \\ & \text{Traceback}(E, i, k) \\ & \text{Traceback}(E, k+1, j) \\ & \text{break} \end{aligned}
```

// i unpaired

// j unpaired

// i,j pair

// combined structures

Comparison of RNA Structure

Nussinov Algorithm - Basepair Maximization

Traceback (similar as in Needleman-Wunsch Algorithm):

		1	2	3	4	5	6	7	8	9
		G	G	G	Α	Α	Α	U	С	С
1	G	0	0	0	0	0	0	1	2	3
2	G	0	0	0	0	0	0	1	2	3
3	G		0	0	0	0	0	1	2	2
4	Α			0	0	0	0	1	1	1
5	Α				0	0	0	1	1	1
6	Α					0	0	1	1	1
7	U						0	0	0	0
8	С							0	0	0
9	С								0	0

Secondary Structure

. ((. . ())) G G G A A A U C C

Find Structure of RNA's

Comparison of RNA Structure

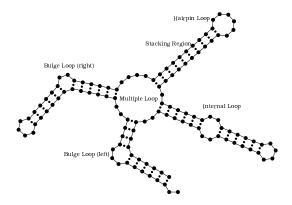
Nussinov drawbacks

Maximizing the nr of bp does not lead to biological meaningful structures:

Stacking of bp not considered:

((((.))) stable () () . () instable

Size of intern loop not considered:

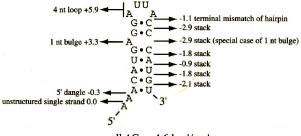

Nevertheless, although Nussinov-Alg is too simple to be accurate, it is stepping-stone for later algorithms

Find Structure of RNA's

Comparison of RNA Structure

RNA MinFreeEnergy (MFE) Folding

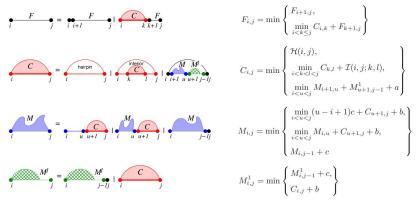
Define energy model for RNA that takes into account local energy contributions from loop and stacking regions.


- · More realistic: thermodynamics and statistical mechanics.
- · Stability of an RNA sec.str. coincides with thermodynamic stability
- Quantified as the amount of free energy released/used by forming bp.

Comparison of RNA Structure

RNA MinFreeEnergy (MFE) Folding

Define energy model for RNA that takes into account local energy contributions contributions from loop and stacking regions.


The Turner rules are a set of experimentally determined parameters which allow us to predict the stability of RNA secondary structures.

overall $\Delta G = -4.6$ kcal/mol

Comparison of RNA Structure

MFE-folding via Loop Decomposition

First proposed by Zuker et al.

init:
$$F_{i,j} = 0, \ C_{i,j} = M_{i,j} = M_{i,j}^1 = \infty$$
.

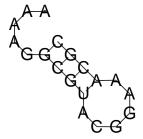
- F_{1,n} stores the energy value of the thermodynamically most stable structure, its Minimum Free Energy (MFE).
- traceback structure

MFE-folding via loop decomposition: remarks

- $F_{i,j}$: free energy of the opt. sub-struct. on the sub-seq. $s_i \dots s_j$.
- *C_{i,j}* : free energy of the opt. sub-struct. on the sub-seq. *s_i* ... *s_j* given that *i* and *j* form a base pair.
- $M_{i,j}$: free energy of the opt. sub-struct. on the sub-seq. $s_i \dots s_j$ given that $s_i \dots s_j$ is part of a multi-loop and has at least one "component".
- *M*¹_{i,j}: free energy of the opt. sub-struct. on the sub-seq. *s_i*...*s_j* given that *s_i*...*s_j* is part of a multi-loop and has exactly one component which has the closing pair (*i*, *h*) for some *h* satisfying *i* < *h* ≤ *j*.

Find Structure of RNA's

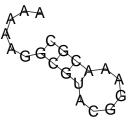
RNA Fold


Comparison of RNA Structure

http://rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/RNAfold.cgi

Find Structure of RNA's

Comparison of RNA Structure


Symmetric Difference

AAAAGGCGUACGGAAACGC

 $\begin{aligned} S_1 &= \{ (6,19), (7,18)(8,17)(9,16) \} \\ S_2 &= \{ (7,20), (8,19)(9,18)(10,17) \} \end{aligned}$

 $|S_1 \Delta S_2| = 8$

AAAAAGGCGUACGGAAACGC

ind Structure of RNA's

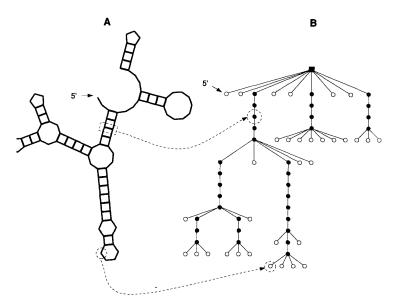
Comparison of RNA Structure

String Alignment

$$S_1 = (((...((...))))))$$

 $S_2 = (((\ldots \ldots)))$

String Alignment:

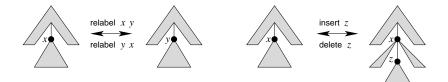

((((..***...)))***

"Structure" Alignment:

Find Structure of RNA's

Comparison of RNA Structure

Tree Edit Distance


ind Structure of RNA's

Comparison of RNA Structure

Tree Edit Distance

There are three basic edit operations with associated costs γ :

relabel
$$x \to y$$
 with $\gamma(x \to y)$
insert $\emptyset \to z$ with $\gamma(\emptyset \to z)$
delete $z \to \emptyset$ with $\gamma(z \to \emptyset)$

ind Structure of RNA's

Comparison of RNA Structure

Tree Edit Distance

 $\gamma(S)$, (ordered) edit map M, $\gamma(S) = \gamma(M)$

$$D(F_1, F_2) = \min \begin{cases} D(F_1 - v_1, F_2) + \gamma(v_1 \to \emptyset), \\ D(F_1, F_2 - v_2) + \gamma(\emptyset \to v_2), \\ D(T(v_1) - v_1, T(v_2) - v_2) + \\ D(F_1 \setminus T(v_1), F_2 \setminus T(v_2)) + \gamma(v_1 \to v_2) \end{cases}$$

where:

$$\begin{aligned} D(\emptyset, \emptyset) &= 0\\ D(\emptyset, F_2) &= D(\emptyset, F_2 - v_2) + \gamma(\emptyset \to v_2)\\ D(F_1, \emptyset) &= D(F_1 - v_1, \emptyset) + \gamma(v_1 \to \emptyset) \end{aligned}$$