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1
Graph Theory - an Introduction

1.1 Basic Definitions

Definition 1.2. A (simple) graph G=(V,E) is a tupel with a non-empty set V (vertices) and unordered

pairs of distinct vertices (u,v) ∈ E

0 1

2

3

Figure 1.1: A simple graph G = (V,E) with V = {0,1,2,3} and E = {(0,1),(1,2),(1,3)}.

Definition 1.3. Two vertices u,v ∈V are adjacent iff (u,v) ∈ E.

Definition 1.4. Vertex v is incident to an edge e iff ∃ e = (x,v) ∈ E.

Definition 1.5. A directed graph G = (V,E) has a non-empty vertex set V and ordered tupels [u,v].

1
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0 1 2

Figure 1.2: A directed graph G = (V,E) with V = {0,1,2} and E = {[0,1], [1,2], [2,1]}.

Definition 1.6. The vertex degree of a vertex is defined as follows:

• undirected case

– deg(v) = |{e ∈ E | v ∈ e}|

• directed case

– degout(v) = |{e ∈ E | e = [v,x]}|

– degin(v) = |{e ∈ E | e = [x,v]}|

– deg(v) = degin(v)+degout(v)

1.7 Theorems

Theorem 1.1. For any (undirected) graph G = (V,E) holds

∑
v∈V

deg(v) = 2 |E|

Proof. Summing the degree of each vertex can be regarded as counting the number of incident edges

for each vertex. Since an edge always connects two vertices, each edge is counted twice.

Theorem 1.2. Every Graph G = (V,E) contains an even number of vertices with odd degree.

Proof. See exercises.

Theorem 1.3. Let G = (V,E) be an undirected graph, then G has two vertices of the same degree.

Proof. See exercises.

1.8 Further Definitions

Definition 1.9. Let G1,G2 be two graphs. Then G1 is isomorphic to G2 (G1 ∼= G2) if there is a

bijective mapping φ : V (G1)→V (G2) s.t. ∀ (u,v) ∈ E(G1)⇔ (φ(u),φ(v)) ∈ E(G2).
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0 1

23

a

c

b

d

G1 G2

Figure 1.3: The graph G1 is isomorphic to G2, since there exists a bijective mapping φ : V (G1) 7→ V (G2) s.t.

φ(0) = a,φ(1) = b,φ(2) = c,φ(3) = d and ∀ (u,v) ∈ E(G1)⇔ (φ(u),φ(v)) ∈ E(G2).

Definition 1.10. A subgraph of a graph can be defined in two ways.

1. A graph H is subgraph of a graph G H ⊆ G if

• V (H)⊆V (G)

• E(H)⊆ E(G)

2. An arbitrary graph F is a subgraph of G if

∃H ⊆ G : F ∼= H

0

1

2 3

a b c

H
G

F

Figure 1.4: According to definition 1 F is not a subgraph of G but it is according to definition 2.

Definition 1.11. If all pairs of vertices of F with F ∼= H ⊆ G that are adjacent in G via a mapping φ

are also adjacent in H (and thus in F), we call F with respect to H an induced subgraph.

Definition 1.12. A subgraph H ⊆ G is a spanning subgraph if V (H) =V (G).

Definition 1.13. A complete graph G is denoted by Kn i.e. all vertices of V (Kn) are pairwise adjacent.

Definition 1.14. A walk in a graph G = (V,E) is a sequence of vertices (v1,v2, . . . ,vn) s.t (vi,vi+1) ∈
E.



4 1. Graph Theory - an Introduction

a

b
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2

G F

Figure 1.5: F is not an induced graph of G as e = (0,2) is missing.
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c 0
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G F

H

Figure 1.6: F is an induced graph of G as F ∼= H ⊆ G.

Definition 1.15. A closed walk is a walk where in addition there exists an edge between start and end

point, thus a closed walk is a sequence of vertices (v1,v2, . . . ,vn,v1).

Definition 1.16. A path is a walk where all vertices and hence all edges are distinct.

Definition 1.17. A cycle is a path s.t. (v1, . . . ,vn,v1), i.e. only the first and last vertices are identical.

Definition 1.18. A graph G = (V,E) is connected if for any two vertices u,v ∈ V there exists a path

connnecting u and v. Otherwise G is disconnected.

Definition 1.19. Let G = (V,E) be a graph. H ⊆ G is a connected component of G if

@H ′ ⊆ G : H ′ is connected ∧ H ( H ′

Definition 1.20. A tree is a connected graph that does not contain cycles.

Definition 1.21. A forest F = (V,E) is a graph where each connected component is a tree.

0 1 2

3

4G
H

H ′

Figure 1.7: H is not a connected component of G since H ′ = ({2,3,4},{(2,3),(3,4),(2,4)}) ⊆ G and obvi-

ously, H ( H ′.
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1.22 More Theorems

Theorem 1.4. T is a tree if and only if there exists only one path between any two vertices u,v∈V (T )

Proof.

Let T be a tree. Since T is connected there exists at least a path between u and v with u,v ∈ V .

Assume there are two different paths, so they differ at least in one vertex w. Then there exists a cycle

(w, . . . ,u, . . . w̃, . . . ,u, . . . ,w), this contradicts the definition of a tree.�

Let there exists exactly one path between u and v, thus T is connected. Assume there exists a cycle.

Then there exist two paths between u and v, which is a contradiction to our premise.�

Theorem 1.5. Let G = (V,E) be a connected graph. G is a tree if and only if |E|= |V |−1.

Proof. Let G be a tree. We perform a proof by induction over the number of vertices |V |= n.

• Induction Basis
Let n = 1.

|E|= 0 = |V |−1 = 1−1 = 0.

• Induction Hypothesis
Let k be an integer, assume the hypothesis is true for trees with |V | ≤ k.

• Inductive Step
Consider T with |V | = k. By removing an arbitrary edge (u,v) ∈ E we obtain a tree T ′ =

T \{(u,v)} which is disconnected. Thus T ′ has exactly two connected compounds T1, T2 that

are trees with the following properties:

– |V (T1)|= k1 < k

– |V (T2)|= k2 < k

– k1 + k2 = k

– |E(T1)|= k1−1

– |E(T2)|= k2−1
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Now the number of edges in T can be computed as follows:

|E(T )|= |E(T1)|+ |E(T2)|+1

= k1−1+ k2−1+1

= k1 + k2−1

= k−1

To show the other direction, i.e. |E| = |V | − 1⇒ G is a tree, we assume that G fulfills |E| =
|V |− 1 and is connected. If G is not a tree, it has to contain cycles. Now, we can remove all

edges from these cycles such that the modified graph G′ = (V,E ′) becomes a tree, however G′

is still connected. Let us assume that k such edges have been removed from G. Then we have

|E ′|= |V |−1− k which is a contradiction to the fact that G′ is still connected. �

Corollary 1.6. If G is connected, then |E| ≥ |V |−1 and G has a spanning tree.

1.23 Some more definitions

Definition 1.24. Let G = (V,E) be a graph. The distance between two arbitrary vertices u,v ∈ V is

the number of edges involved in a shortest path connecting u and v. If such a path does not exist, we

set the distance between u and v to infinity, i.e. d(u,v) = +∞.

Definition 1.25. The graph G = (V,E) is a weighted graph if there exists a weighting function w :

E→ R+
0 that assigns a weight to each edge.

Definition 1.26. The length of a path P = (u, . . . ,v) in a weighted graph G = (V,E) is given by

∑
e∈P

w(e). To compute the length of a path in a non-weighted graph G = (V,E), we set w(e) = 1 for

all edges in G. The length of a non-existing path is set to infinity.

Lemma 1.7. Connected subgraphs of shortest paths (subpaths) are itself shortest paths.

Proof. See exercise.

Lemma 1.8. Let G = (V,E) be a graph and u,v,x ∈V . Then the triangle inequality holds:
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d(u,v)≤ d(u,x)+d(x,v)

Proof. Let us assume that we have d[u,v] > d[u,x] + d[x,v]. But this would imply that the shortest

path between u and v is actually not the shortest path since the sub-paths [u,x] and [x,v] are actually

shorter. Due to this contradiction the triangle inequality holds.

1.27 Graph Representations

There are several possibilities to represent a graph:

1. Adjacency matrix: a |V |× |V | matrix with

Ai j =

1 if (i, j) ∈ E

0 else

2. Incidence matrix: a |V |× |E| matrix with

Bi j =

1 if i is incident to edge j

0 else

3. Adjacency list: a list L in which each element is a set of nodes

L[i] = {v|(v, i) ∈ E}

Advantage of the Adjacency Matrix

The adjacency matrix can be used to compute the number of walks of length k between any two

vertices vi,v j ∈V in a graph G = (V,E). The number of k-walks for a node is given by

Ak
i j = (A ·A · . . . ·A︸ ︷︷ ︸

k times

)i j

1.28 Computing the Distance between Vertices

We know that d(u,v) is the distance between the nodes u,v ∈ V , which is defined as the number of

edges on a shortest path between u and v. In an undirected graph, the distances of a node v to all other

nodes x can be determined using breadth first search (BFS), see algorithm ??
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Algorithm 1 Bread - First - Search

Require: graph G = (V,E), start node s ∈V

Ensure: arrays of distances δ and predecessors pred

for all v ∈V do
δ [v]← ∞

pred[v]← NIL

end for
δ [s] = 0

enqueue(Q,s)

while Q is not empty do
u← dequeue(Q)

for all v ∈ ad j(u) do
if δ [v] = ∞ then

δ [v]← δ [u]+1

pred[v] = u

enqueue(Q,u)

end if
end for

end while
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Theorem 1.9. BFS(G,s) needs O(|V |+ |E|).

Proof. See exercise. Hint: use ∑
v inV

deg(v) = 2|E|.

Theorem 1.10. When BFS(G,s) terminates δ (v) = d(s,v) ∀v ∈V .

1.29 Graph Coloring

1.29.1 Definition

Definition 1.30. A (proper) coloring γ of a graph G = (V,E) is a mapping γ from the set of vertices

V to a set of colors C, i.e. γ : V →C. A coloring is called proper when the coloring function γ fulfills

∀ (vi,v j) ∈ E : γ(vi) 6= γ(v j)

This means that all pairwise adjacent vertices need to exhibit alternating colors.

For a trivial coloring one could just use |C| = |V |, that is, assign a different color to each vertex.

But, usually one wants to determine the minimal number of colors one needs for a coloring of G. A

coloring γ that requires at most k colors is called a k-coloring of the graph G, that is, |C| ≤ k. The

coloring that uses the smallest k possible is called the chromatic number χ(G) of the graph G.

1.30.1 Scheduling Problem

Consider a set of courses, each requiring one time unit. The problem now is to find a scheduling of

courses requiring the fewest time units in total such that courses ci and c j do not occur at the same

time if a student wants to visit both. In the graph each vertex vi represents the course ci, conflicting

courses are connected with an edge. Now, the chromatic number of the graph gives the minimal

number of timeslots for the scheduling problem.

Graph coloring can also be used to model the Sudoku game, using vertices to represent cells and

edges to represent dependencies.

Hint: keep graph coloring in mind for exercises regarding NP-complete problems.

Theorem 1.11. For any graph G = (V,E) we have

χ(G)≤ 1+∆(G)
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where ∆(G) is the maximal degree of any node in G. The equality

χ(G) = 1+∆(G)

holds for complete graphs.

Proof. This proof is based on induction over |V |.

• Induction Basis
Let |V | = 1. Then we have χ(G) = 1 and ∆(G) = 0 and therefore the equation χ(G) ≤ 1+

∆(G) = 1 = 1+0 = 1 holds.

• Induction Hypothesis The assumption χ(G) ≤ 1+∆(G) holds for all graphs with |V | ≤ k

where k is an integer.

• Induction Step Let G = (V,E) be a graph with |V | = k and v ∈ V an arbitrary vertex. Now,

consider the graph G− v, which is defined as G = (V \ {v},E \ {(x,v)|∀x ∈ V}). Then we

obviously have |V (G− v)| < k. As a consequence we can use the induction hypothesis and

have χ(G−v)≤ 1+∆(G−v), which means that there exists a ∆(G−v)+1-coloring. We also

know that the node v had at most ∆(G) neighbours, that is

∆(G− v)≤ ∆(G)

We can now distinguish two cases:

1. ∆(G− v) = ∆(G)

This implies that χ(G)≤ 1+∆(G− v) = 1+∆(G) and the assumption holds.

2. ∆(G− v)< ∆(G)

In this case v was the vertex with maximal degree. Thus the new maximal degree

∆(G− v) is at most ∆(G)−1 and we have following implication:

∆(G− v)< ∆(G)⇒ 1+∆(G− v)≤ ∆(G)

This implies that χ(G)≤ 1+∆(G) holds.

1.30.2 Bipartitions

Definition 1.31. A bipartion of the vertex set V is the the disjoint union of the sets V1 and V2 where

V =V1∪̇V2 =V1∪V2∧V1∩V2 = /0. A graph G = (V,E) is called bipartite if and only if there exists a
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partition of V in V1 and V2 s.t.

V =V1∪̇V2

∀e = (a,b) ∈ E : a ∈V1,b ∈V2

A graph is bipartite if and only if a 2-coloring exists.

Theorem 1.12. A graph G = (V,E) is bipartite if and only if G does not contain any odd cycles.

Proof. Let G be bipartite. Assume for contradiction that the graph G = (V,E) contains at least one

odd cycle. Let c = (v1, . . . ,vn,v1) be one such cycle of length n, where n is odd, that is, n = 2i+ 1,

where i ∈ N. The vertices in the cycle c have to be partitioned in the following way:

• vl ∈V1 if l is odd

• vl ∈V2 if l is even

Since n is odd, we know that v1,vn ∈V1. Hence, G cannot be bipartite as there exists the edge (vn,v1).�

Suppose that G does not contain any odd cycles. Let us further assume, without loss of gen-

erality, that G is connected and |V | ≥ 2. Now, let us fix v ∈V and define

X = {x ∈V |d(v,x) = 2n,n ∈ N}

Y = {y ∈V |d(y,x) = 2n+1,n ∈ N}

where X is the set of even-distance vertices to v and Y is the set of odd-distance vertices. We now

claim that X and Y are the bipartition sets, i.e. X∪̇Y =V and that for all edges (u,w) we have u ∈ X

and w ∈Y or vice versa. Assume that there exist x1,x2 ∈ X with (x1,x2) ∈ E. Let us now consider we

have a node v′ such that d(v,v′) = k and there is an edge (v′,x1) and (v′,x2). By construction we have

the following properties:

• d(v,x1) = 2n1

• d(v,x2) = 2n2

• d(v′,x1) = 2n1− k

• d(v′,x2) = 2n2− k

Now, we have to consider two cases.
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1. d(v,v′) = k is even.

Then d(v′,x1) and d(v′,x2) are even and we have an odd cycle c = (v′, . . . ,x1,x2, . . . ,v′) �

2. d(v,v′) = k is odd.

Then d(v′,x1) and d(v′,x2) are odd and consequently d(v′,x1)+ d(v′,x2) is even and we have

again an odd cycle c = (v′, . . . ,x1,x2, . . . ,v′) �



2
Complexity

2.1 Introduction to Complexity

A very important question is whether all problems are solvable or not. In 1936 Adam Turing proved

that not all problems are solvable with the Halting Problem.

2.1.1 The Halting Problem

The problem is as follows.

Is there an algorithm that decides whether any other program terminates or runs forever?

The proof is done via contradiction and we will give here only the proof idea. Assume

that such an algorithm HALT exists, which takes another algorithm A as an input and is able

to determine whether this algorithm terminates or not. Now let us consider algorithm A

as:

Require: /

Ensure: NIL

13
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while HALT(test()) do
pass

end while

We can now distinguish two cases:

1. test() terminates

2. test() does not terminate

If test() terminates, HALT has to return true. But due to the while-loop in test(), test() does

not terminate. which is a contradiction. If we assume that test() does not terminate, then HALT

would return FALSE, which would lead to the termination of test(), which is a contradiction.

Therefore, the halting problem is undecidable.

2.2 Decision vs. Optimization Problems

Generally, one can differentiate between two types of problems: decision and optimization problems.

Decision problems can always be answered in a yes/no fashion, while optimization problems output

more intricate results.

Example of an Optimization Problem

Given a graph G = (V,E) and two nodes u,v ∈V , determine the shortest path between u and v.

Example of a Decision Problem

Given a graph G = (V,E), two nodes u,v ∈ V and an integer k, determine if there is a shortest path

between u and v that is at most of length k.

Optimization and decision problems are related due to the fact that a simple optimization

problem will also be easily (polynomial) solvable in its decision form.

2.3 The sets P and NP

Definition 2.4. P:= set of all decision problems that can be solved in worst-case polynomial time

O(na).
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Definition 2.5. NP:= set of all decision problems that can be "verified" in polynomial time. Thus

given a solution, one can verify if the solution is correct or not. NP stands for non-deterministic

polynomial. Obviously P⊆ NP.

Definition 2.6 (Deterministic Machine). For every input, every step is uniquely determined

Millenium problem Is NP = P or NP 6= P?

Polynomial reduction Given a problem A with unknown complexity. If we can map an arbitrary

instance α ∈ A in polynomial time onto an arbitrary instance β ∈ B with B being a problem with

polynomial complexity and the decision (yes/ no) given by β is also a solution for α , then we have

shown that A is easy by the easiness of B.

B ∈ P⇒ A ∈ P := A≤p B

2.7 NP-completeness

2.7.1 How to prove NP-completeness

Definition 2.8. A problem D is NP-complete if and only if

1. D ∈ NP

2. D is NP-hard:

∀D′ ∈ NP : D′ ≤p D

D is at least as hard as any other problem of D′ ∈ NP

Steps for proving NP-completeness of a problem D

1. Show D inNP

2. Show D is NP-hard

(a) Pick one problem D′ ∈ NP∧D′ NP-complete.

(b) Find a mapping/transformation that maps any instance d′ ∈ D′ to an instance d ∈ D.

(c) Show that the transformation can be done in polynomial time.

(d) Show that d′ ∈ D′ = yes⇔ d ∈ D = yes.
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2.8.1 Transitivity of ≤p

If D′ is NP-complete (NPC) then all D′′ ∈ NP can be mapped to D′ in polynomial time.

f orall D′′ ∈ NP : D′′ ≤p D′∧D′ ≤p D

Thus ∀D′ ∈ NP there exists a mapping from D′→ D in polynomial time.

2.8.2 SAT-Problem (satisfiability problem)

The satisfiability problem is the first known example of an NP-complete problem.

Definition 2.9. Given a boolean formula with literals and AND, OR, NOT operators.

Question: Is there some assignment of TRUE- or FALSE- values to the variables x1, . . . ,xn s.t. the

formula becomes true.

Proof of NP-completeness for SAT

1. SAT ∈ NP

2. Then it was shown that any problem D ∈NP is in polynomial time reducible to SAT , see Cook-

Levin theorem.

Conjunction normed form (CNF)

Every boolean formula can be rewritten in a so called conjunctive normed form (CNF), where con-

junctive means a conjuction of clauses. In this context a clause is defined as disjunction of literals

where a literal and its negation can not be in the same clause. Example:

clause︷ ︸︸ ︷
(x1∨ x2)∧

clause︷ ︸︸ ︷
(x1∨¬x3)︸ ︷︷ ︸

conjunction

k-SAT

Every clause contains exactly k literals. We know that 2−SAT ∈ P.

Theorem 2.1. 3−SAT is NP-complete.
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Proof.

1. 3−SAT ∈ NP

2. 3−SAT is NP-hard as SAT ≤p 3−SAT

Given an arbitrary instance C1, . . . ,Cn of SAT of SAT in CNF. There are four k−SAT possibil-

ities, we have to consider:

a) Let |Ci|= 3, then no transformation is needed.

b) Let |Ci| = 2. Let Ci = x∨ y. We introduce a new variable u, s.t we can transform Ci into

C
′
i = x∨ y∨u and C

′′
i = x∨ y∨¬u. If Ci is true then either x or y are true and thus C

′
i and

C
′′
i are true. On the other hand if C

′
i and C

′′
i are true, then the choice of u is arbitrary and

at least one of the variables x and y has to be true as well.

c) Let |Ci|= 1. Then we denote Ci = x and we introduce an arbitrary literal u to transform Ci

into C
′
i = x∨u and C

′′
i = x∨¬u. With the same reasons as above we can proof this case,

and for |Ci|= 2 we have already shown the transformation.

d) Let |Ci| > 3, we can denote Ci as (x1∨ x2∨ . . .∨ xk). We introduce uk−3 new literals and

transform Ci to:

(x1∨ x2∨u1)∧ (x3∨¬u1∨u2)∧ . . .∧ (xk−2∨¬uk−4∨u−3)∧ (xk−1∨ xk∨¬uk−3)

If Ci is true then at least one of the xi must be true. Let u j be true up to the point where xi

was accounted and u j false thereafter. Assume we have given such a cascade of clauses

of 3− SAT . We have to show that if the cascade is true then Ci ∈ SAT is true. In the

following we will proof the contraposition and thus the assumption. Assume we have Ci =

(x1, . . . ,xk) which is not satisfiable then all xi must be false. We will perform the proof

by contradiction. Assume that the cascade of clauses is satisfied (iff each of the clauses is

true) and all xi are false. We look at the clauses beginning in the end.(xk−1∨ xk ∨¬uk−3)

has to result in true and as all xi are false ¬uk−3 has to be true, and thus uk−3 is false. But

then in (xk−1∨¬uk−4∨uk−3) ¬uk−4 has to be true⇔ uk−4 is false, which is only allowed

to be if xk−1 would have been true, which it is not. �

If all ui are false then obviously (x1∨ x2∨ u1) = (0∨ 0∨ 0) = 0. But then then Ci is not

satisfiable �.
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2.9.1 Clique-Problem

Definition 2.10 (Clique). Let G = (V,E). A clique C = (V ′,E ′) is a complete subgraph of G of the

form ∀u,v ∈V ′ : (u,v) ∈ E ′. The size of a clique is denoted as |V ′|.

Definition 2.11 (Clique-Problem). Given a graph G find a clique of size k. We have
(V

k

)
possible

combinations with k ≤ V
2 .

Theorem 2.2. The Clique-Problem is NP-complete.

Proof.

1. Clique ∈ NP as for the verification we only need to consider
(V ′

2

)
which lies in O(V ′2).

2. We show that 3−SAT ≤p Clique.

Let φ =C1∧C2∧ . . .∧Ck and Cr = (lr
1∨ lr

2∨ lr
3) representing the vertices vr

1,v
r
2,v3. We connect

to vertices vr
i ,v

s
j if both holds:

a) r 6= s

b) lr
i 6= ¬ls

j

Assume φ is satisfiable then each clause Cr contains at least one true literal lr
i that is true. Pick

for each Cr one true literal lr
i (pick corresponding vertices in G). We have chosen k vertices =

V ′. Claim that 〈V ′〉 is a clique. Let vr
i ,v

s
j ∈ V ′∧ r 6= s, both corresponding literals are mapped

to be true. lr
i , l

s
j cannot be the negation of each other. Hence, vr

i and vs
j are connected. Assume

G has a clique 〈V ′〉 of size k. Then no edges connect vertices of the same class. V ′ contains

exactly a vertex per clause. We assign true to each literal lr
i if the corresponding vertex is in the

clique. Hence, each clause gets true and thus φ is true.

2.11.1 Various NP-complete Problems

Decision Problem: Clique-Problem

Given a graph G and an integer k.

Question: Is there a clique in G of size k.
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Decision Problem: Vertex - Cover - Problem (VCP)

Definition 2.12. A vertex cover of a graph G = (V,E) is a subset V ′ ⊆V s.t. ∀(u,v)∈ E : u∈V ′∨v∈
V ′

Optimisation problem Find a vertex cover of G of minimal size.

Decision Problem Given a graph G, integer k. Is there a vertex cover of size k?

Theorem 2.3. The minimal vertex cover problem is NP-complete.

Proof.

1. VCP ∈ NP

Given a VC V ′ , where |V ′|= k. Check for all edges (x,y), x ∈V ′∨ y ∈V ′

2. VCP is NP-hard. We show Clique ≤p VCP.

G has a clique < V ′ > of size l ⇔ Ḡ has a VC of size |V |− |V ′| = k. Assume G has a clique,

induced by V ′ ⊆V , |V ′|= l. Claim V −V ′ is VC of Ḡ. Let (u,v) ∈ Ē ((u,v) /∈ E). Suppose that

(u,v) is not covered by VC, then u,v /∈V −V ′⇒ u,v ∈V ′⇒ (u,v) ∈ E �

Let V −V ′ be a VC of Ḡ⇒ ∀(u,v) ∈ Ē : u ∈V −V ′∨v ∈V −V ′⇒ at least one of u or v is not

contained in V ′. Hence, x,y ∈V ′⇒ (x,y) /∈ Ē ⇒∀x,y ∈V ′ : (x,y) ∈ E⇒<V ′ > is a clique.

ILP - Integer Linear Programming

Definition 2.13. An integer liner programming problem has the following form:

maxctx

subject to

Ax≤ b (2.13.1)

x≥ 0 ,x ∈ N (2.13.2)
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Given integer k is there an assignment to variables x = (x1, . . . ,Xk), where xi ∈ (N) s.t

ctx≥ k Ax≤ b (2.13.3)

x≥ 0 ,x ∈ N (2.13.4)

Theorem 2.4. Theorem ILP is NP-complete.

Proof.

1. ILP ∈ NP as we can obviously check a given solution in polynomial time.

2. Give an instance x ∈ 3SAT map each xi to a new variable zi ∈ {0,1}. Let have for each clause

x1 ∨¬x2 ∨ x3 a transformation to z1 +(1− z2)+ z3. So we can show that {0,1} ILP is NP-

complete.

Decision Problem k−COL

Given a graph G = (V,E) and an integer k ≥ 3. Is χ(G) = k?



3
Some Molecular Biology

3.1 History

A challenge in molecular biology was to understand inheritance.

• In 1865, Mendel introduced an abstract, mathematical model of inheritance in which the basic

unit of inheritance was represented by a gene.

• Several years later, in 1869, Johannes Friedrich Miescher first discovered the DNA from the

nuclei of white blood cells, calling it nuclein.

• Only in 1952, the Hershey - Case - Experiments with T2-Phage revealed that the genetic infor-

mation is carried in the DNA and not in proteins.

• In 1953 James Watson and Francis Crick proposed the now famous double helical structure for

DNA. In the corresponding paper, they already stated that “ It has not escaped our notice that

the specific pairing we have postulated immediately suggests a possible copying mechanism

for the genetic material” .

21
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3.2 DNA - deoxyribonucleic acid

DNA has the following properties:

• carries the information of an organism

• basis of hereditary

• is a polymer, large molecule of repeating structural units, made of small units the so called

nucleotides Adenin (A), Cytosin (C), Thymin (T) and Guanin (G).

• has a double helical structure

• is complementary, that is A binds to T, and C to G.

• DNA is a word of an alphabet A= {A,C,G,T}.

3.3 RNA

RNA has the following properties:

• it is a polymer

• instead of the nucleotide Thymin (T) RNA has the nucleotide Uracil (U)

• RNA is a word over the alphabet A= {A,C,G,U}.

• A Protein is a word over alphabet A= {20letters}.

Figure 3.1 represents the central dogma of moelcular biology, that is that information is carried

form DNA to RNA and from RNA to proteins.

3.4 Cracking the Genetic Code

Even though, it was known that DNA carries the genetic information and also its structure, it still

remained a problem how the creation of 20 amino acids out of four bases was possible. Obviously,

two bases were not enough, since they could only form 16 (42) amino acids. However, a genetic unit

of three bases lead to 64 possible amino acids, which was known to be larger than the existing 20
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Figure 3.1: The central dogma of molecular biology.

amino acids. Thus, it remained still unclear how the genetic units were translated to proteins.

3.4.1 1954 - The diamond code (Gamow)

In the same year as Watson and Crick postulated the structure of the DNA, George Gamow, a russian

physicist, introduced a purely formal (arbitrary) set of rules for the genetic code. The code was

named after the diamond shape between four nucleotides in the DNA, which were encoding the

proteins according to Gamow. Let 1,2 and 3 be three successive bases in the DNA on one strand, and

1’ 2’ and 3’ their complementary bases on the other strand. Two opposite corners of the diamonds

were now formed by 1 and 3’ and 2 and 2’, respectively. The order of the basis plays no role in the

diamond code, that is a diamond rotated by 180Â° encodes for the same amino acid. Since the aim

is to reveal how the 20 amino acids can be formed by the four bases, we will now count how many

different diamonds, that is, amino acids, can be formed with the diamond code. The bases on position

1 and 3’ are not related so we can choose arbitrary one of the four bases for each position. The

opposite corners of the diamond represented by basis 2 and 2’ are forming a base pair. Since there

exist only two possible base pairings (A-T, C-G) and the order does not play a role, we have only two

possibilities for these opposite corners. Now, demanding, that the bases on the 1 and 3’ position are

the same results in 8 possibilities. The problem to choose two distinct bases for the 1 and 3’ position,

is a combinatorical problem, that is, there are
(4

2

)
possibilities. In total, the diamond code achieved

to show a code, which translate the four bases into 20 amino acids, introducing the “magic number

twenty”. All twenty possibilities are presented in Figure 3.2. The diamond code can be also seen as a

triplet code, since it suffice to know one bases of the complement base pair in a diamond. Moreover,
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Figure 3.2: The 20 possible diamonds according to Gamow’s theory.

the diamond code is an overlapping code, that is, each nucleotide appears in three adjacent codons

(genetic units/ successive diamonds). The overlapping attribute was the downfall for the diamond

code, since it is impossible to form all combinations of sequences where one aminoacid is enclosed

by two identical amino acids, for example the amino acid sequences Ser-Tyr-Ser or Leu-Tyr-Leu

cannot be formed by the diamond code. This limitation was found by Francis Crick. Sydney Brenner

showed that no overlapping code is able to represent the proteins.

3.4.2 Crick’s approach

In 1957, Francis Crick proposed a non-overlapping code,the so called comma free code. This implied

that the reading frame of the triplets is determined by the triplets itself. A non-overlapping block of

3 letters was referred to as codon From the initial 64 possibilities, Crick excludes triplets consisting

of only one bases, like AAA or UUU, since in the case of two successive triplets of such a form, the

reading frame is not uniquely determined. The remaining 60 combinations can be grouped by three

triplets, in which the bases are cyclic inverted, for example, ACA CAA and AAC. In each such a

group, only one of the triplets is allowed to form an amino acid, otherwise the reading frame is not

determined and we don’t have a comma-free code. In total, we have then 20 groups, that is, we can

form exactly the magic twenty amino acids. The 20 groups are shown in Figure 3.3.
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Figure 3.3: The 20 groups of amino acids according to Crick’s comma-free code.

3.4.3 Nirenberg and Matthaei

Despite the elegance of the comma-free code, Marshall W. Nirenberg and J.Heinrich Matthaei dis-

proved this approach with their experiments in 1961. In the experiments, they extracted the content

of E.coli bacteria, and removed the original DNA with a DNAase. As a consequence, giving a syn-

thetic mRNA to the extract, the corresponding protein will be created via the proteinbiosynthesis.

They started their experiments with a poly-U chain, which resulted in a sequence of phenylalanin

amino acids. This was the downfall of Crick’s comma-free code, since these kind of codons were not

allowed. Comparing the computing bases distribution in the codons and the relative amount of the

formed amino acid enabled the mapping from amino acids to certain nucleotide combinations but not

the right order of it. This was only achieved five years later. However, they could reveal some of the

assignments with the approach described below:

1. UUUUUUUUU: P1 = {Phe}, B1 = { UUU} ⇒ UUU codes for Phe.

2. UGUGUGUGU: P2 = {Cys, Val}, B2 = { UGU, GUG} ⇒ UGU, GUG are coding for Cys and

Val, but so far we don’t know the right assignment.

3. UUGUUGUUG: P3 = {Leu, Val, Cys}, B3 = { UUG, UGU, GUU}⇒ Since P2∩P3 =Cys and

B2∩B3 = UGU, UGU codes the protein Cys.

4. UGGUGGUGG: P4 = { Trp, Gly, Val}, B4 = {UGG, GGU, GUG }⇒ Since P2∩P4 = Val and

B2∩B4 = GUG, we know that GUG is coding for Val.
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...



4
RNA

4.1 Role of RNA

RNA plays an important role in our live as it participate in the fundamental functions.We have to

differentiate between coding and non-coding RNA. mRNA is a coding RNA since in the protein

biosynthesis mRNA (messenger RNA) is first transcribed from DNA and then carries the coding in-

formation from the nulceus to the ribosomes. Moreover there are several non-coding RNA (ncRNA)

types, such as tRNA (transfer RNA), rRNA (ribosomal RNA) and snRNA(small nuclear RNA, im-

portant for RNA splicing).

4.2 The RNA-World-Hypothesis

The RNA world hypothesis proposes that life based on ribonucleic acid (RNA) pre-dates the current

world of life based on deoxyribonucleic acid (DNA), RNA and proteins. RNA is able both to store

genetic information, like DNA, and to catalyze chemical reactions, like an enzyme protein. It may

therefore have supported pre-cellular life and been a major step in the evolution of cellular life.

27
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4.3 RNA Structures

Definition 4.4 (Base pairing rules). Base pairings must be elements of

B= {AU,UA,GC,CG,GU,UG}

4.4.1 RNA Primary Structure

Definition 4.5. A RNA sequence or primary structure of length n is considered as a word s, of the

alphabet A= {A,C,G,U}n, i.e.

s = s1, . . . ,sn ∈ A= {A,C,G,U}n

4.5.1 RNA Secondary Structure

Definition 4.6. Let s = s1 . . .sn ∈ An and θ ∈ N a fixed parameter.

A secondary structure Sec is a collection of ordered pairs (i, j), where 1≤ i < j≤ n, s.t. the following

properties hold:

1. If (i, j) ∈ Sec, then sis j ∈B = {AU,UA,GC,CG,GU,UG}.

2. If (i, j) ,(k, l) ∈ Sec, then it is not the case that i < k < j < l.

3. If (i, j) ,(k, l) ∈ Sec and i ∈ (k, l) implies that i = k and j = l.

4. If (i, j) ∈ Sec, then j > i+θ , where θ is fixed and usually taken to be 3.

If we are given an arbitrary secondary structure Sec without having the sequence s, just ignore (1).

4.6.1 Realisation of Secondary Structures

A sequence s ∈ A= {A,C,G,U}n realizes a secondary structure Sec if ∀(i, j) ∈ Sec : sis j ∈ B.

4.6.2 Representation of RNA Secondary Structures

There are several possibilities to display RNA structures.

1. The Graph Representation:
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Figure 4.1: Graph representation of a secondary structure

2. The Circle Plot or Nussinov Plot

Each base is represented as a dot on the circle, progressively from 1 through n. For bases si,s j

that are bonded together a line is drawn between i and j.

3. Bracket Representation

Given an RNA secondary structure Sec represented by a set of ordered pairs (i, j) representing

the base pairs. We retrieve the bracket representation for each base si in Sec by the following

rule:

si =


( if (i, j) ∈ Sec

) if ( j, i) ∈ Sec

. otherwise

4.6.3 Combinatorics

What is the number of possible secondary structures between i and j?

Ni, j = Ni+1, j + ∑
k

(i,k)∈Sec

Ni−1,k−1 ·Nk+1, j

Lemma 4.1. Let S(n) = N1,n,S(0) = 0,S(1) = 1. For n≥ 2 holds:

S(n+1) = S(n)+S(n−1)+
n−1

∑
k=2

S(k−1)S(n− k)

Proof. S(2) = 1 S(l) true ∀l ≤ n We consider arbitrary length l ≤ n. If element n+ 1 is not paired
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Figure 4.2: Circle plot representation of a secondary structure

with any other vertex, we just have S(n) secondary structures. However, if n+1 is paired with some

other element k < n we have to consider all possible structures S(n−1) and, in addition, all possible

combinations of structures that can be generated by pairing n+1 with an element k (all substructures

left of k and right of k, i.e. from 1 to k−1 and from 1 to n− k).

Lemma 4.2. For n≥ 1 : S(n)≥ 2n−2

Proof. See exercise.

4.7 Folding Algorithms

4.7.1 Nussinov-Algorithm

The Nussinov algorithm is based on finding the secondary structure of a primary structure s =

(s1, . . . ,sn) such that this structure has a maximal number of hydrogen bonds because such a structure

should minimize the free energy and therefore be the biologically relevant structure. To do this, we

set

δi, j =

1 if si, s j ∈ B

0 else

and let Ei, j (a matrix or 2D-array) denote the maximal number of base pairs in a secondary structure

for s ranging from bases i to j.
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Theorem 4.3. The following recursion holds with Ei, j = 0 if |i− j| ≤ 1 for Θ = 1:

Ei, j = max{Ei+1, j, max
i≤k≤ j

{(Ei+1,k−1 +Ek+1, j+1)δi,k}

Ei, j can be obtained by analyzing substructures ranging from bases i+1 to j and adding individual

bases. There are four cases that are to be distinguished.

1. Add base i such that i and j are paired

Look for best substructure for [i+1, j−1]

2. Add base i such that i is unpaired

Look for best substructure for [i+1, j]

3. Add node i such that j is unpaired

Look for best substructure for [i, j−1]

4. Optimize two substructures [i, . . . ,k−1] and [k+1, . . . , j]

E can be implemented as an n×n matrix, where n is the length of the RNA sequence. We inialize

the matrix by setting Ei,i = 0 for i = 1, . . . ,n (diagonal elements) and Ei,i−1 = 0 for i = 2, . . . ,n. The

final algorithm is given in algorithm 2. To compute the matrix E in the algorithm the following

Algorithm 2 nussinov

Require: empty matrix E of size n×n, input sequence s

Ensure: filled matrix E

for l← 1, . . . ,n do
for i← 1, . . . ,n+1− l do

j← i+ l

compute Ei, j

end for
end for

computation is performed:

Ei, j = max



Ei+1, j condition 2

Ei, j−1 condition 3

Ei+1, j−1 +δi j condition 1

maxi<k< j{Ei,k +Ek+1, j} condition 4
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Algorithm 3 nuss− trace

Require: filled matrix E

Ensure: optimal secondary structure Sec

push(1,n) on empty stack

while stack is non-empty do
if i < j then

if Ei, j = Ei+1, j then
push(i+1, j)

else if Ei, j = Ei, j−1 then
push(i, j−1)

else if Ei, j = Ei+1, j−1 +δi, j then
push(i+1, j−1)

else
for k = i+1, . . . , j do

if Ei, j = Ei,k +Ek+1, j then
push(i,k)

push(k+1, j)

end if
end for

end if
end if

end while

To determine the optimal (maximal number of bonds) secondary structure, we can just traceback the

matrix using the procedure given in algorithm 3. To receive a better result, one can determine the state

of minimal free energy (∆G = ∆H−T ∆S) more explicitly by setting bonding energies in kcal/mol

to −3 for CG, −2 for AU , and −1 for GU . This can be incorporated by setting di, j to these values if i

and j fulfill the requirements. This gives a model whose energy can be characterized experimentally.

4.7.2 Structural Elements

• i: unpaired

• Base pair (i, j) closing a hairpin-loop: we have i < k < j for all inner bases k

• Base pairs (i, j) and (i′, j′) for internal loop if we have i < i′ < j < j′, i = i+1 with j′ = j−1,
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and unpaired interior bases

• Bulge loop: (i, j) and (i′, j−1) or vice versa

• k-multiloops: (i, j)[i+1, i′−1](i′, j′)[i′+1, j′−1].....[ jk +1, j−1]

4.7.3 MFE-Folding Algorithm

Figure 4.3: The four cases for the MFE-Folding Algorithm by Zucker.

Initialize Fii = 0. Ci j = Mi j = M∞
i j = ∞. Compute F1n recursively like Nussinov. In figure 4.3 the

different recursion cases are shown.

4.8 Realizability

Definition 4.9. A sequence s∈A= {A,C,G,U}n realizes a secondary structure S if for all (bi,b j)∈ S

holds (si,s j) ∈ B. Let C(S) denote the set of all sequences realizing the secondary structure S. The

size of a secondary structure is denoted as the number of nucleotides.

Definition 4.10. Given secondary structures S1, . . . ,Sk. A shape graph is a graph G(S1, . . . ,Sk) =

(V,
⋃

Si) such that G contains each edge of all the input structures.

Theorem 4.4. Given secondary structure S,S′ of same size.

C(S)∩C(S′) 6= /0
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Proof.

Let S,S′ be as given, and G(S,S′). We construct a sequence s ∈C(S)∩C(S′). Each vertex is incident

in the shape graph to at most two edges. The connected components of G(S,S′) can only be paths or

cycles. There are three possible types of position:

1. isolated vertices→ arbitrary letters

2. positions (i, j) that are paired both in S and S′m this means the form a single edge in the shape

graph. We can use any sis j ∈ B

3. position i is paired differentially in S and S′.

Theorem 4.5. Given secondary structures S1, . . . ,Sk of size n, the following assumption holds:

k⋂
i=1

C(Si) 6= /0⇔Φ = G(S1, . . . ,Sk) is bipartite

Proof. Let Φ = G(S1, . . . ,Sk) = (V,E) be bipartite, then V can be devided into the two bipartitions

V =V1∪̇V2 Then we can assign to each si : vi ∈V1 an x and to each s j : v j ∈V2 an y s.t. xy ∈ B.

Let
k⋂

i=1
C(Si) 6= /0.Let Φ = G(S1, . . . ,Sk) = (V,E) be not bipartite. Then there exists at least one odd

cycle C in this graph. According to the base pairing rules B there is always an even number of steps

after a base can encounter again. Thus if we start with an arbitrary letter x ∈ {A,C,G,U} then all the

other occurences of x must appear after an even number of steps along this cycle C.�

Definition 4.11. A sequence s ∈ {0,1}n realizes a secondary structure S⇔ ∀(i, j) ∈ S : si 6= s j

Corollary 4.6.
k⋃

i=1

C(Si) 6= /0⇔∃ single sequence s ∈ {0,1}n realizing all Si

Problem 1. Given a sequence s∈{0,1,?}n, where ? is a “don’t care symbol”. The sequence s realizes

a secondary structure S if ∀(i, j) ∈ S : si 6= s j or si = s j = ?

4.11.1 Min?Realization Problem [M?RP]

Given secondary structures S1, . . . ,Sk. Find a single sequence s∈ {0,1,?}n realizing S1, . . . ,Sk s.t. the

number of ? is minimal.
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4.11.2 Algorithm minV_bip(H)

Given a graph H = (V,E). remove the number of vertices of H s.t. H becomes bipartite.

Min?RP⇔ minV_bip(G(S1, . . . ,Sk))

Definition 4.12. Given a graph G = (V,E). Let V ′ ⊆V . V ′ is a Feedback Vertex Set for odd Cycles

(FVOC) if it contains at least one vertex from every odd cycle.

Problem 2. Given a graph G = (V,E) and an integer k. Let ∆(G) be fixed. Is there a FVOC of G of

size k. This decision problem is equivalent to the problem minV_bip(G)

Theorem 4.7. minV_bip(G) is NP-complete for ∆(G)≥ 4.

Proof.

1. minV_bip(G) ∈ NP

Given a solution which is by construction a FVOC, we remove this set of vertices and obtain

then G′. With BFS we check if G′ is bipartite.

2. minV_bip(G) is NP-hard

We will show it by a polynomial reduction from the Vertex Cover problem to the

minV_bip(G) problem VC ≤p minV_bip(G) Let G = (V,E) and ∆(G) = 3. Con-

struct a new graph G̃ = (Ṽ , Ẽ) in the following way:

Ṽ consists of

a) V the vertex set of G

b) for each v ∈V we add a new vertex v′ ∈V ′

c) for each edge e ∈ E we add a new vertex ve ∈V ′′

d) Ṽ =V ∪V ′∪V ′′

Ẽ consist of

a) E the edge set of G

b) fo each edge e = (a,b) ∈ E add two new edges (a′,ve) and (ve,b′) in the edge set E ′

c) ∀v ∈V : add (v,v′) ∈ E ′′
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d) Ẽ = E ∪E ′∪E ′′

Figure 4.4: new graph G̃

Obiously, this construction can be done in polynomial time.

Let the vertex cover VC of G be of size m. This is equivalent to the statement that FVOC

of G̃ has size m. Let be G,VC(G) given and C be an odd cycle in G̃. C cannot be entirely

contained in the subgraph |((V ′∪V ′′),E ′)| ≤ |G̃|, this implies that C contains at least one edge

of E. Consequently, C has to contain at least one vertex u ∈ VC(G). Hence, the vertex cover

VC(G) is FVOC of G̃ and |FVOC| ≤ |VC(G)|. Let U ′ be FVOC of |G̃| with |U ′| ≤ |VC(G)|. If

U ′ contains a vertex ve ∈V ′′, ve can be replaced either by a′ or b′ and U ′ is still a FVOC. Thus

without loss of generalization |U ′| ≤ |V ∪V ′|. Let |U ′′| ≤ |V | s.t. U ′′ consists of all vertices

v ∈V : v ∈U ′∨ v′ ∈U ′. In total we have now a construction s.t. |U ′′| ≤ |U ′| ≤ |VC(G)|. Since

by construction |U ′′| ≤ |V |, U ′′ cannot be a VC of G. Thus there exists an edge e = (v1,v2) ∈ E

that is not covered by U ′′, this means neither v1 nor v2 is contained in U ′′. Consequently,

v1,v′1,v2,v′2 /∈U ′. This contradicts the assumption that U ′ is a FVOC.

4.12.1 Odd Homeomorphic Extension

Motivation

Given G(S1, . . . ,Sk). Is the problem minV_bip(G(S1, . . . ,Sk)) easier?
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Example. Given graph G. How many secondary substructures S1, . . . ,Sk do we need in order that

G(S1, . . . ,Sk)∼= G.

Definition 4.13. Given a graph G = (V,E) then G′ = (V ′,E ′) is an odd homeomorphic extension of

G, if G′ can be obtained from G by replacing edges e = (v1,v2) of G by paths of odd length of the

form (v1,u1, . . . ,uk,v2) where deg(ui) = 2∧ui /∈V .

Theorem 4.8. Let G = (V,E) be given and ∆(G) = k ≥ 3. Then there exists at least S1, . . . ,Sk s.t.

G(S1, . . . ,Sk)∼= G′ where G′ is an odd homeomorphic extension of G. In particular S1, . . . ,Sk can be

constructed in O(|E|) time.

Proof. omitted. See for reference Journal of theoretical biology 2005 p:216-227, On realizing shapes

in theory of RNA neutral networks

Example.

Since G∼= G̃∼= G′ and VC ≤p minV_bip(G) minV_bip(G( S1, . . . ,Sk)) is NP-comple, too.

Lemma 4.9. FVOC for odd cycles in G is FVOC in G′ and vice versa.

Corollary 4.10. minV_bip(G( S1, . . . ,Sk)) is NP-complete for k ≥ 4 which is equivalent to M ?

RP is NP-complete for k ≥ 4.

4.14 Inverse Folding Algorithms

Problem 3. Given a secondary structure S. Find a sequence s s.t. s
m f e−−→ S where s ∈C(S).

The problem to find inverse folding algorithms is e... by the fact that not to all secondary structures S

there exist a sequence s s.t. s
m f e−−→ S.

Problem 4. For a given secondary structure S find sequence s s.t. s
m f e−−→ S′∧d(S,S′) is minimal. The

distance of two secondary structures can for example be computed as the symmetric union of both

structures:

d(S,S′) = S4S′ = S∪S′ \ (S∩S′)





5
Product Graphs

5.1 Motivation

In the study of inheritance of traits and their evolution, one have to distinct between genotype and

pheotype of an organism. The phenotype can be defined as a set of all characters with its character-

istics (traits) of an organism. The question is how the characterisation of a character is determined.

One of the results was that characters can vary independently. This however is equivalent to (local)

prime factors of the phenotype space.

5.2 Properties

1. The product of a simple graph is a simple graph. This means that following properties hold:

• The product graph has no loops,

• no multiple edges,

39
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• no hyperedges.

2. The vertex set of a product is the Cartesian product of the vertex sets of the factors.

3. The adjacency in the product depends on adjacency properties of the projections of pairs of

vertices into factors.

There are 256 possibilities to define such a graph product, but only six of them are commutative,

associative and have a unit. If one wishes the product to depend on the structure of both factors and if

the homomorphism property of the projections into the factors, that will be defined later on, plays a

role, the number of products decreases to 4. In this contribution we are concerned with two of these 4

products, the Cartesian and the strong product. In particular, we are interested in the strong product,

but as it turns out the Cartesian product is closely related to the strong product and plays a central

role in the prime factorization of strong product graphs. Consequently, we will also deal with the

Cartesian product.

5.3 Standard Products

There are 4 standard products:

1. Cartesian Product G2H

The vertex set of the Cartesian product G12G2 of two graphs G1 and G2 is the set

V (G)×V (H) = {(v1,v2)|v1 ∈V (G),v2 ∈V (H)},

that is, the Cartesian product of the vertex sets of the factors.

Two vertices (x1,x2),(y1,y2) are adjacent in the Cartesian product G12G2 if one of the

following conditions is satisfied:

(i) (x1,y1) ∈ E(G1) and x2 = y2

(ii) (x2,y2) ∈ E(G2) and x1 = y1

2. Direct Product G×H

Two vertices (x1,x2),(y1,y2) are adjacent in the direct product G1 × G2 if the following

condition is fulfilled:
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(x1,y1) ∈ E(G1) and (x2,y2) ∈ E(G2)

3. Strong Product G�H

The Strong product is a union of the Cartesian and the Direct product, s.t.

E(G1 �G2) = E(G12G2)∪E(G1×G2)

4. Lexicograph product G◦H

Two vertices (x1,x2),(y1,y2) are adjacent in the Lexicograph product G1 ◦G2 if one of the

following conditions is satisfied:

(i) (x1,y1) ∈ E(G1)

(ii) (x2,y2) ∈ E(G2) and x1 = y1

Figure 5.1: Left: Cartesian product Right: Strong product

5.3.1 Cartesian Graph Products

When using the Cartesian graph product, the multiplication of paths will always result in grids. We

define the hypercube with n dimensions as

Qn =2n
i=1K2

The copies of factors are so called layer or fibers.
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Definition 5.4 (Layer of Fiber). A layer Hw
i is defined as

Hw
i = 〈{v ∈V |vi 6= wi,w j = v j, j 6= i}∪{w}〉

where 〈〉 indicates an induced subgraph and H is given by

H = ?n
i=1Hi = (V,E)

Definition 5.5 (Homomorphism). A homomorphism is defined by a function φ : V (G)→V (H) such

that (u,v) ∈ E(G)⇒ (φ(u),φ(v)) ∈ E(H).

Definition 5.6 (Isomorphism). An isomorphism is defined by a function φ : V (G)→V (H) such that

(u,v) ∈ E(G)⇔ (φ(u),φ(v)) ∈ E(H). It is a stronger form of homomorphism because equivalence,

in contrary to implication, has to hold.

Definition 5.7 (Weak Homomorphism). Given two graphs G,H. There is a week homomorphism

between G and H if the following condition is satisfied:

(u,v) ∈ E(G)⇒ (φ(u),φ(v)) ∈ E(H)∨φ(u) = φ(v),

that means that edges from G are mapped either to edges of H or to vertices of H.

Definition 5.8 (Projection). The projection of G2H into G is defined by the mapping function

PG : G2H 7→ G, (g,h) 7→ g

Analogously,the projection of G2H into H is given by

PH : G2H 7→ H, (g,h) 7→ h

A projection is a week homomorphism.

Properties

The Cartesian product has the following properties:

1. Commutativity

G2H ∼= H2G

2. Assocciativity

(G12G2)2G3 ∼= G12(G22G3)

Thus we can write the product graph G = G12G22 . . .2Gn =2n
i=1Gi.



5.3. Standard Products 43

3. The one-vertex complete graph K1 serves as a unit element for Cartesian products, since

K12G1 ∼= G12K1 ∼= G1

4. Distributivity (using disjoint union ’+’)

G12(H1 +H2) = (G12H1)+(G12H2)

5.8.1 Distances

Theorem 5.1. Let ((g,h),(g′,h′)) ∈V (G2H).

dG2H((g,h),(g′,h′)) = dG(g,g′)+dH(h,h′)

Proof.

Case 1: Without loss of generation we will perform this case for dG(g,g′), it works analogous for

d(h,h′). dG(g,g′) = ∞⇒ ∃ no path between g and g′ in G. Thus G is not connected and obviously,

we can denote G as the disjoint union of G1 and G2. Consequently the product graph will again

consist of two disjoint unions:

G2H = (G1 +G2)2H = G12H +G22H⇒ dG2H((g,h),(g′,h′)) = ∞

Case 2:

(1) Let dG(g,g′),dH(h,h′) < ∞. Then there exists a path PG = (g, . . . ,g′) in G and PH = (h, . . . ,h′)

in H, respectively. Let denote the path PG2H = ((g,h), . . . ,(g′,h′)) as R. Thus the number of edges in

R can be computed by the sum of the two distances dG(g,g′) and dH(h,h′) and we can estimate the

distance dG2H((g,h),(g′,h′)):

dG2H((g,h),(g′,h′))≤ dG(g,g′)+dH(h,h′)

(2) Let another path R′ be a shortest path in G2H between (g,h) and (g′,h′). Since projections are

week homomorphisms, the edges of R′ are mapped to edges in H or vertices in G via a projection PH

or vice versa.

dG2H((g,h),(g′,h′)) = dG|E(R)|= |EPG(R
′)|+ |EPH (R

′)| ≥ dG(g,g′)+dH(h,h′)
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Conclusion

dG2H((g,h),(g′,h′)) = dG(g,g′)+dH(h,h′)

Corollary 5.2. Let G =2n
i=1Gi. For any two vertices x = (x1, . . . ,xn), y = (y1, . . . ,yn) ∈V (G)

dG2H(x,y) =
n

∑
i=1

dGi(xi,yi)

Corollary 5.3. G =2n
i=1Gi is connected if and only if Gi is connected ∀i ∈ {1, . . . ,n}.

This means that G is connected if and only if each factor in G is connected.

5.9 Prime Factor Decomposition (PFD)

Definition 5.10. A graph G is considered prime, when every representation of G as G1 ?G2, where

? denotes some graph product, implicates that we have G1 ' K1∨G2 ' K1. This means that one of

the graphs has to be isomorphic to K1, which is considered a unit element under the graph product ?

if we have G' G?K1.

Lemma 5.4. Let e and f be two incident edges in G (under the Cartesian products), stemming from

different fibers (layers). Then there exists exactly one (∃!) diagonal-free square containing both e and

f .

Proof. See exercise.

Definition 5.11 (Diagonal Free Square). A diagonal free square is a cycle Cn = v1, . . . ,vn,v1 that does

not contain any other edges than that of the cycle.

5.11.1 Nomenclature

The following nomenclature is used regarding graphs:

• Kn: complete graph with n vertices

• Pn: path with n vertices

• Cn: cycle with n vertices
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Theorem 5.5 (Unique PFD for Cartesian Product Graphs). Every connected graph G = (V,E) has a

unique representation as a Cartesian product of prime factors (up to isomorphism and the order of

factors). The number of prime factors is at most log2(n), where n = |V |. We have O(2P) = O(n) with

p≤ log2(n).

PFD is not unique in the class of disconnected graphs.

Theorem 5.6. No Unique PFD for connected Direct Product Graphs.

Proof. Let us have H12H2 ' H32H4. Then we have

(K1 +K2 +K2
2 )2(K1 +K3

2 )' (K1 +K2
2 +K4

2 )2(K1 +K2)

Here, + refers to disjoint union and K j
i is given by 2n

j=1Ki.

We have Hi =K1+A1+A2 with A2 = /0. Therefore, the number of connected components in a product

graph is the same as the product of the number of connected components over all factors.

Let us assume that Hi is not prime for the sake of proving by contradiction. Then we have

K1 +Ai +A2 ' B2(C1 +C2 +C3)

= B2C1 +B2C2 +B2C3

= K1

Consequently, B has to be equal to K1 and therefore Hi has to be prime by definition which is a

contradiction to our assumption.

5.12 Prime Factor Decomposition with respect to 2

5.12.1 The Relation σ

Let G=2n
i=1Gi be a Cartesian product graph. Two edges e, f are in relation σ , (eσ f ), if the endpoints

of e, resp. f , differ exactly in the same coordinate i.There can only be one such coordinate by

definition of the Cartesian product. Thus, for e and f with eσ f holds: they are both edges of fibers of

factor Gi. The edges e and f can than be colored with color i. The aim is to compute the finest σ .

An example is presented in figure 5.2. Two edges e and f are in relation σ if there exists some i such

that c(e) = c( f ) = i holds.
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0 1 2

a 0a 1a 2a

b 0b 1b 2b

1 1

1 1
2 2 2

Figure 5.2: Illustration of different values for c(e) given as edge labels. Do note that, here, the second coordi-

nate is considered to the alphabetic characters, even though they denote the row (first coordinate in

some sense). By definition of σ we know that all horizontal edges share a σ relation among each

other (c(e) = 1

and all vertical edges share a σ relation among each other (c(e) = 2).

5.12.2 The Djokovic-Winkler-Relation Θ

Two edges e = (x,y), f = (a,b) are in Relation Θ, (eΘ f ), iff

d(x,a)+d(y,b) 6= d(x,b)+d(y,a)

Let us consider a square with four nodes as an example, see figure 5.3

x u

y v
e f

Figure 5.3: Example graph for the Θ relation

Lemma 5.7. Let G be a graph. It holds:

(i) Two incident edges e and f be are in relation Θ if and only if they are part of a common triangle.

(ii) Let P be a shortest path in G. Then no two edges of P are in Θ.

(iii) Let C be an isometric cycle of G and e 6= f be edges that are both in C. They are in Θ if and

only if e and f are antipodal edges, that is, oppossite of each other.

Θ is symmetric, reflexiv, not transitiv.

The properties of Θ are illustrated in figure 5.4. In this graph, we have (x,y)Θ(u,v) and (u,v)Θ(x,z)

but there is no Θ−Relation between (x,y) and (x,z).
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Definition 5.13 ( Convex Graphs). The subgraph H ⊆ G is convex if all shortest paths of G are also

shortest paths in H, i.e. H has to contain all shortest paths of the supergraph. Let us consider the

example from figure ??.

Definition 5.14 (Isometric Graphs). The subgraph H ⊆ G is isometric if and only if the distances

between all vertices in H are the same as the distances of these vertices in G.

y

x u v

z

1

6

3 4

2

6

Figure 5.4: Example graph K2,3. Edge labels represent an edge enumeration.

We can convert Θ to an equivalence relation in two ways. We can either compute the transitive

closure of the graph we deal with or we uniquely enumerate each edge. When referring to Θ in

context of a transitivity-closure graph, we write Θ∗. The transitive closure of a graph is the smallest

relation containing Θ that is transitive.

Theorem 5.8. Let us have two edges e and f of a Cartesian product graph with eΘ f , thus c(e) =

c( f ) = i (coordinates differ at i-th position). We then have

eΘ f ⇒∃i : c(e) = c( f ) = i

⇒ eσ f

⇒Θ⊂ σ

trans. closure⇒ Θ
∗ ⊆ σ

Figure 5.5 shows an example of three equivalence classes and the τ relation.

5.14.1 The Relation τ

We have eτ f for e = (u,v), f = (u,w) if and only if we have

(i) e = f or

(ii) u is the only common neighbor of v and w, and (v,w) /∈ E(G)
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v

u

w

e

f

w

Figure 5.5: We have three equivalence classes (Θ∗ (two triangles and the edge f ) and eτ f . It is possible to

merge equivalent classes (some algorithm for prime graphs?).

eτ f implicates that e and f are incident and are assigned different colors according to Θ. Also, the

square-property (diagonal-free square) is not fulfilled. In addition, the edges must be in a fiber of a

single factor.

We have τ ⊆ σ . Because we have Θ ⊆ σ and σ∗ ⊆ σ it is implied that (Θ∪ τ)∗ ⊆ σ . We define

Π = (σ ∪ τ)∗. The relation (Θ∪ τ)∗ is the finest product relation σ and thus corresponds to the PFD

w.r.t. 2 of a given graph.

Lemma 5.9. Π is contained in any product relation σ and satisfies f the square-property.

Proof. We have Π = (Θ∪ τ)∗ ⊆ σ . Let us furthermore have e and f with e = (u,v) and f = (u,w)

This implies that e and f are incident to each other, as illustrated in figure 5.6. We can distinguish

two cases. We have a triangle u,v,w,u. Then we have eΘ f . This, however, contradicts that we have

different Π-classes (different factors). In the second case, we do not have a triangle or a square and

therefofre have eτ f . This is a contradiction to our assumption. Now let us consider the third case.

Here, we have K ≥ 1 squares.

If we have K > 1 squares then we can consider the K2,3 subgraph for which eΘ∗ f holds, which is

a contradiction. We have exactly one square and exactly one (∃!) diagonal-free square, that is, the

square-property is fulfilled.

v

u

w

e

f

Figure 5.6: Example
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b b0 b2 b3

a a0 a2 a3

0 2 3

b1

a1

4

1

b4

a4

Θ2

Θ2

Θ1 Θ2

Θ4

Θ1

Θ1 Θ2

Θ4

Θ1

Θ3

Θ3

Θ3 Θ3

Θ3

Figure 5.7: Illustration for the PFD-algorithm. We have four Θ classes: Θ1, Θ2, Θ3, and Θ4.

5.15 Prime Factor Decomposition (PFD) with respect to 2

The input of this algorithm is the adjacency list of a connected graph G = (V,E). The output are the

prime factors of G with regard to 2.

1. Compute equivalence classes of (Θ∪ τ)∗ (transitive closure), which implies an edge coloring.

2. For i = 1, . . . , |equivalence classes of Π|, color all edges of Πi (the i-th equivalence class) with

color i

3. For i = 1, . . . , |equivalence classes of Πi|, take out one connected component of each color,

store G, the prime factor of Gi

The algorithm is illustrated in figure 5.7. All colors with overlaps with the τ relation can be merged

to yield the prime factor decomposition.

Lingo: Reflection Reflecting a graph is basically the same as drawing the graph in a reasonable

fashion.
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5.16 Prime Factor Decomposition with respect to �

Given a strong product G = G1 � . . .�Gn. Find special subgraphs of G, namely Cartesian Skeleton

S(G). Decompose S(G) with respect to 2 in G1,G, . . . ,Gl where l ≥ n. Additional operation lead to

PFD of G.

5.16.1 Problem

The Cartesian Skeleton is not uniquely determined if ∃v,w ∈ V (G) : N[v] = N[w] then v,w are in

relation S.

Definition 5.17 (Closed Neighbourhood). N[v] = {w|(vw) ∈ E(G)}∩{v}

Definition 5.18 (S-thin). A graph G is S-thin if and only if ∀v,w ∈V (G),v 6= wN[v] 6= N[w]. G/S is

thin. Moreover (G�H)/S = G/S+H/S

Definition 5.19 (Quotient Graph). Given equivalence relation classes Si with i = 1, . . . , l, we call the

Graph G/S a quotient graph.

(Si,S j) ∈ E(G/S)⇔∃u ∈ Si,v ∈ S j : uv ∈ E(G)



6
Phylogenetic Reconstructions

6.1 Introduction

• Phylogenetics is a study of evolutionary history of genes, species or other taxa.

• The aim is to assemble a phylogenetic tree that represents a hypothesis about the evolutionary

ancestor of genes, species and other taxa.

6.2 Methods

There are several methods for creating a tree of taxa representing the evolutionary history. There can

be devided into two groups:

Distance based methods

Here, the distance between two species reflects the period of time in the past when the species

diverged. The aim is to find a tree that is consistent with the data/distance matrix.
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Character based methods

The second method is based on characters, which can be binary characters (i.e Has tail or not),

qualitative characters i.e. number of limbs, vertebras and character strings representing f.ex.

genes. We differentiate between three different character based methods:

1. Parsimony Method
The idea is that evolution is lazy and produce a minimal number on events(mutations).

The aim is to find a tree according to some model of evolutionary change (?) that explains

the data best.

2. Probabilistic Method
Probabilistic methods like maximum Likelihood method is used to describe evolution.

Evolutionary changes are assumed to appear with a particular probability. Again we are

looking for a tree taht fits best to the model.

3. Consensus Method
Find a supertree or greates common subtree for gene trees that reflects each of the gene

trees best.

6.3 Distance Based Method

For given distances between species we want to compute trees.

Definition 6.4. A proper distance matrix D is a symmetric n×n matrix such that

D(i, i) = 0 ∧Di j > 0, i 6= j

Definition 6.5 (Metric). A distance matrix D induces a metric if in addition the triangle inequality

holds

∀i, j,k ∈ {1, . . . ,n}Di j ≤ Dik +Dk j

The question is when a metric space (X ,D) has a tree topology. A metric space can induce an

ultrametric tree or an additive tree. The idea of a constant molecular clock, i.e. that each evolutionary

change/mutation appears with the same probability at each time, location etc. is the interpretation of

ultrametric trees. This kind of tree is rooted, i.e. we have a direction from root to the leaves. The

different species are represented by the leaves, and the aim is to find the right topology of the tree

with respect to the leaves.
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An additive tree is an unrooted tree with bijective labeling 1, . . . ,n genes to the leaves. Moreover

an arbitrary tree T is additive if Di j(T ) = d(i, j)T , thus we have edge weights.

Question: Given a distance matrix D,when can we find a corresponding tree?

Theorem 6.1. D induces an ultrametric if and only if D induces a matrix and in addition holds

∀i, j,k : Di j ≤max{Dik,Dk j}

Lemma 6.2 (Three Point Condition (TPC)). D is an ultrametric on a set X if and only if ∀i, j,k the

largest values of Di j,Dik,Dk j are equal.

Definition 6.6 (Ultrametric Tree). An ultrametric tree T from a distance matrix D has the following

properties.

1. T has n leaves labeled bijectively by ....

2. T is a binary tree, i.e. every inner vertex has two children.

3. On every path from a leaf to the root the weights of the inner vertices are increasing.

4. For every pair of leaves i, j the lowest common ancestor should be weighted with Di j

Theorem 6.3. A distance matrix D has an ultrametric tree T if and only if D induces an ultrametric.

6.6.1 UPGMA
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