

Rooted triplet= rooted binary phylogenetic tree with exactly three leaves.

For three leaves A, B, C in T we write ((A, B), C) if the path from A to B does not intersect the path from C to the root ρ .

That is the unique rooted triplet with

$$lca(A,B) \prec lca(A,C) = lca(B,C)$$

Any rooted phylogenetic tree can be represented by a set of rooted triplets.

Combining Rooted Triples

Consensus Tree "displays" all rooted triples:

 Intro
 Distance Based
 Consensus Methods
 Phylo with Event Relations
 Phylo

 0000000
 00000
 00000
 00000
 00000
 0000

Phylo with Event Relations II 00000000 ParaPhylo 000000000

Combining Rooted Triples

Consensus Tree does not always exist!!

For three leaves A, B, C in T we write ((A, B), C) if the path from A to B does not intersect the path from C to the root ρ .

That is the unique rooted triplet with

$$lca(A,B) \prec lca(A,C) = lca(B,C)$$

T and an arbitrary triple ((A, B), C) are consistent iff

$$lca(A,B) \prec lca(A,C) = lca(B,C)$$

T displays ((A, B), C).

Intro 0000000 Consensus Methods

Phylo with Event Relations

Phylo with Event Relations I

ParaPhylo 000000000

BUILD

Theorem (Aho, Sagiv, Szymanski, Ullman - 1981; Semple & Steel - 2003) Let \mathscr{R} by a collection of rooted triples with leaf set \mathscr{L} . Then there is an $O(|\mathscr{R}||\mathscr{L}|)$ time algorithm – called BUILD – that either

- constructs a phylogenetic tree ${\it T}_{|\mathscr{R}}$ that displays each member of \mathscr{R}

or

• recognizes \mathscr{R} as inconsistent.

Idea of this recursive, top-down approach: Partition \mathscr{L} into blocks according to \mathscr{R} . Output a tree consisting of a root whose children are roots of the trees obtained by recursing on each block.

 Intro
 Distance Based
 Consensus Methods
 Phylo with Event Relations
 <

BUILD

Let \mathscr{R} be a set of triples defined on a leaf set \mathscr{L} .

For any $L \subseteq \mathscr{L}$ define $\mathscr{R}_{|L} = \{((x, y)z) \in \mathscr{R} \mid x, y, z \in L\}.$

To find blocks use auxiliary graph $G(\mathscr{R}_{|L}, L) = (L, E)$ with $(x, y) \in E$ iff there is a triple $((x, y)z) \in \mathscr{R}_{|L}$

BUILD

Let \mathscr{R} be a set of triples defined on a leaf set \mathscr{L} .

For any $L \subseteq \mathscr{L}$ define $\mathscr{R}_{|L} = \{((x, y)z) \in \mathscr{R} \mid x, y, z \in L\}.$

To find blocks use auxiliary graph $G(\mathscr{R}_{|L}, L) = (L, E)$ with $(x, y) \in E$ iff there is a triple $((x, y)z) \in \mathscr{R}_{|L}$

Exmpl: $L = \{A, B, C\}, \mathcal{R} = ((A, B)C), G(\mathcal{R}_{|L}, L)$

BUILD

Let \mathscr{R} be a set of triples defined on a leaf set \mathscr{L} .

For any $L \subseteq \mathscr{L}$ define $\mathscr{R}_{|L} = \{((x, y)z) \in \mathscr{R} \mid x, y, z \in L\}.$

To find blocks use auxiliary graph $G(\mathscr{R}_{|L}, L) = (L, E)$ with $(x, y) \in E$ iff there is a triple $((x, y)z) \in \mathscr{R}_{|L}$

Crucial observation: If ((xy)z) is consistent with a tree T then the leaves labeled by *x* and *y* cannot descend from two different children of the root of *T*, i.e., *x* and *y* must belong to the same block.

BUILD

Let \mathscr{R} be a set of triples defined on a leaf set \mathscr{L} .

For any $L \subseteq \mathscr{L}$ define $\mathscr{R}_{|L} = \{((x, y)z) \in \mathscr{R} \mid x, y, z \in L\}.$

To find blocks use auxiliary graph $G(\mathscr{R}_{|L}, L) = (L, E)$ with $(x, y) \in E$ iff there is a triple $((x, y)z) \in \mathscr{R}_{|L}$

Crucial observation: If ((xy)z) is consistent with a tree *T* then the leaves labeled by *x* and *y* cannot descend from two different children of the root of *T*, i.e., *x* and *y* must belong to the same block.

Therefore, the algorithm defines the partition of $L \subseteq \mathscr{L}$ by: Blocks of leaves iff connected components in $G(\mathscr{R}_{|L}, L)$

Lemma (Aho, Sagiv, Szymanski, Ullman (1981), Bryant & Steel (1995))

A given triple set \mathscr{R} on a leaf set \mathscr{L} is consistent if and only if for all $L \subseteq \mathscr{L}$ with |L| > 1 the graph $G(\mathscr{R}_{|L}, L)$ is disconnected.

Intro	Distance Based	Consensus Methods	Phylo with Event Relations	Phylo with Event Relations II	
0000000	00000	00000000000000	00000	0000000	000000000

BUILD

- 1: **INPUT:** Set of triples in \mathcal{R} , leaf set \mathcal{L} .
- 2: **OUTPUT:** A rooted, phylog. tree distinctly leaf-labeled by \mathscr{L} consistent with all rooted triplets in \mathscr{R} , if one exists; otherwise *null*.
- 3: compute $G(\mathcal{R}, \mathcal{L})$
- 4: compute connected components C_1, \ldots, C_s of $G(\mathscr{R}, \mathscr{L})$
- 5: if s = 1 and $|\mathscr{L}| = 1$ then
- 6: return tree $\simeq K_1$
- 7: else if s = 1 and $|\mathscr{L}| > 1$ then
- 8: return null
- 9: **else**
- 10: **for** i = 1,...*s* do
- 11: $T_i = \text{BUILD}(\mathscr{R}_{|V(C_i)}, V(C_i))$
- 12: end for
- 13: **if** $T_i \neq null$ for all i = 1, ..., s then
- 14: attach all of these trees to a common parent node and let T be the resulting tree; else T = null.
- 15: end if
- 16: end if

$\mathscr{R} = \{((AB)C), ((AC)D), ((DE)B)\}$

 Consensus Methods
 Phylo with Event Relations

 OOOOOOOOOOOOO
 OOOOOO

Phylo with Event Relations II 00000000 ParaPhylo 000000000

BUILD - Example

$$\begin{split} \mathscr{R} &= \{ ((AB)C), ((AC)D), ((DE)B) \} \\ C_1 &:= \texttt{BUILD}(\mathscr{R}_{|\mathscr{L}}, \mathscr{L} = \{A, B, C\}) \\ \mathscr{R}_1 &:= \{ ((AB)C) \} \\ C_2 &:= \texttt{BUILD}(\mathscr{R}_{|\mathscr{L}}, \mathscr{L} = \{D, E\}) \\ \mathscr{R}_2 &:= \emptyset \end{split}$$

$$G(\{A, B, C\})$$
:

000000 (

Consensus Methods

Phylo with Event Relation

Phylo with Event Relations II 00000000 ParaPhylo 000000000

BUILD - Example

$$\begin{array}{l} C_{11} := \texttt{BUILD}(\mathscr{R}_{|\mathscr{L}}, \mathscr{L} = \{A, B\}) \\ C_{12} := \texttt{BUILD}(\emptyset, \{C\}) \\ C_{21} := \texttt{BUILD}(\emptyset, \{D\}) \\ C_{22} := \texttt{BUILD}(\emptyset, \{E\}) \end{array}$$

Distance Based Co

Consensus Methods

Phylo with Event Relation: 00000 Phylo with Event Relations II 00000000 ParaPhylo 000000000

BUILD - Example

BUILD - Example

Consensus Tree does not always exist!!