
Software Engineering SS18
Course Exercises and Material

May 4, 2018

1 Introduction

The purpose of this problem set is to improve your understanding of Abstract
Data Types(ADT). In the previous exercise you saw an example of an ADT,
namely the (faulty) implementation of a directed graph.

Designing an abstract data type involves determining what services should
be provided and what their behaviour should be. More precisely it involves
writing a specification.

Note that our graph from the last exercise is dependent of a specific im-
plementation. The concept of a graph however does not limit itself to such
implementation details. The goal of this exercise is to design (and use), a graph
interface along with its specification as well one or more implementations of said
interface.

2 Problem

2.1 Interface Design

Design an interface for a graph, that does not assume a specific implementation
of said graph. You can take inspiration from the specification of the last exercise,
but note that it specifically targets directed multi-graphs.

2.2 Implementing and Testing Graphs

Implement a specific implementation of your graph interface, and create tests
to ensure that it complies with your specification. It is up to you to decide if
your graph edges will be directed/undirected, if your graph will be strored as
an adjacency list/matrix etc.

2.3 Use your graph implementation

Write a program that given a graph representing train routes, gives you direc-
tions from one city to another. To this end, you should implement a function

1



getDirections(String fileName, String origin, String destination), which
takes an input file name and two city names and returns a String containing
directions from the origin to the destination.

To read the input file, you should additionally implement a parser that can
read the following format:

c i t y 1 c i t y 2
c i t y 2 c i t y 3

Meaning, there are 3 cities, and there goes a train from city1 to city2 and
city2 to city3. Note that if you implemented your graph as undirected, it also
means that every train also goes in the opposite direction.

To get directions between cities, a simple breadth first search is sufficient.

2


