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Abstract Orthology detection is an important problem in comparativeand evolu-
tionary genomics and, consequently, a variety of orthologydetection methods have
been devised in recent years. Although many of these methodsare dependent on gen-
erating gene and/or species trees, it has been shown that orthology can be estimated
at acceptable levels of accuracy without having to infer gene trees and/or reconciling
gene trees with species trees. Thus, it is of interest to understand how much informa-
tion about the gene tree, the species tree, and their reconciliation is already contained
in the orthology relation on the underlying set of genes. Here we shall show that
a result by Böcker and Dress concerning symbolic ultrametrics, and subsequent al-
gorithmic results by Semple and Steel for processing these structures can throw a
considerable amount of light on this problem. More specifically, building upon these
authors’ results, we present some new characterizations for symbolic ultrametrics and
new algorithms for recovering the associated trees, with anemphasis on how these
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2 Hellmuthet al.

algorithms could be potentially extended to deal with arbitrary orthology relations. In
so doing we shall also show that, somewhat surprisingly, symbolic ultrametrics are
very closely related to cographs, graphs that do not containan induced path on any
subset of four vertices. We conclude with a discussion on howour results might be
applied in practice to orthology detection.

Keywords Orthology· Symbolic Ultrametric· Cograph· Cotree· Rooted triples

1 Introduction

With the current deluge of DNA sequencing data, orthology detection has become
an important task in bioinformatics, and it lies at the heartof many comparative and
evolutionary genomic studies. A variety of orthology detection methods have been
devised in recent years (see e.g. Kristensen et al (2011) foran overview). Many of
these methods are tree-based and typically rely on the reconciliation of a gene tree
with a species tree (cf. e.g.TreeFam (Li et al, 2006),PhyOP (Goodstadt and Ponting,
2006),PHOG (Datta et al, 2009) andEnsemblCompara GeneTrees (Hubbard et al,
2007),MetaPhOrs (Pryszcz et al, 2011)). Even so, computing gene trees from se-
quence data is not only computationally demanding, but it isalso a rather error-prone
task especially for large data sets. Moreover, in a recent benchmark study it was
shown that orthology can be estimated at acceptable levels of accuracy without even
having to infer gene trees and/or to reconcile gene trees with species trees (Altenhoff
and Dessimoz, 2009). It makes sense, therefore, to look at the connection of trees
and orthology from a different angle:How much information about the gene tree, the
species tree, and their reconciliation is already contained in the orthology relation
between genes?

In this paper, we shall explore the following model for shedding light on this
question. Suppose thatX is a set of genes having a common origin, and that their
evolutionary history is given by a gene tree, i.e. a (graph-theoretical) treeT = (V,E)
with vertex setV, edge setE and leaf setX. Typically one can think ofT as being
derived from a species tree, in which case the interior vertices ofT will correspond
to speciation or duplication events.1 Note that two genesx,y in X are orthologs if
the event corresponding to the (unique) least common ancestor lcaT(x,y) of x andy
in T is a speciation; ifx andy are not orthologs then lcaT(x,y) will correspond to
some other events such as a duplication. In particular, we obtain a mapt from the
set of interior vertices ofT to some setM of events, and, consequently, a mapd(T;t)
from distinct pairsx,y in X to M given by puttingd(T;t)(x,y) = t(lcaT(x,y)). These
concepts are illustrated in Fig. 1. Note that in practice, wedo not necessarily know
the pair(T; t), but that there are bioinformatics methods that allow us to estimate the
valuesd(T;t)(x,y) for x,y ∈ X (Altenhoff and Dessimoz, 2009; Lechner et al, 2011).
Hence, in this set-up, the above question can be rephrased asfollows: Given an arbi-
trary symmetric mapδ : X×X → M, i.e. an orthology relation, can we determine if
there is a pair(T; t) for which d(T;t)(x,y) = δ (x,y) holds for x,y∈ X distinct and, if
not, can we at least find some pair(T; t) where this is almost true?

1 In reality, other events such as horizontal gene transfer might also occur, although we will not consider
these explicitly here.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Orthology Relations, Symbolic Ultrametrics, and Cographs 3

�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

b c e a d

m3m3

m2

m1
(T;t)

Fig. 1 A phylogenetic treeT = (V,E) on the setX = {a, . . . ,e}, together with a mapt from the set of
interior vertices ofT to the set of eventsM = {m1,m2,m3}, as indicated by the labels on the interior vertices
of T. The vertex inV that is the least common ancestor ofc anda has labelm2 and sod(T;t)(c,a) = m2.

Intriguingly, a solution to the first part of this question has already been given
by Böcker and Dress (1998) in a different context. In particular, they completely
characterized maps of the formd(T;t), with (T; t) as above, maps which they called
symbolic ultrametrics. Moreover, in subsequent work Semple and Steel (2003) pre-
sented an algorithm that can be used to reconstructT andt from any given symbolic
ultrametric. In this paper, we shall build upon these results, presenting some new
characterizations for symbolic ultrametrics and novel algorithms for recovering the
associated trees, with an emphasis on how these results and algorithms could be po-
tentially used to cope with arbitrary orthology relations.In so doing we shall also
show that, somewhat surprisingly, symbolic ultrametrics are very closely related to a
well-studied class of graphs called cographs, which is precisely the class of graphs
that do not contain induced paths on any subset of four vertices (Corneil et al, 1981).

The rest of this paper is organized as follows. In Section 2, we present the basic
and relevant concepts used in this paper. In Section 3, we recall the aforementioned
results concerning symbolic ultrametrics from (Böcker and Dress, 1998) and (Semple
and Steel, 2003), and prove some mild generalizations of these results that are rele-
vant to the question above concerning orthology relations.In Section 4, we show that
symbolic ultrametrics can also be characterized in terms ofcographs (see Proposi-
tion 3) and that the tree corresponding to a symbolic ultrametric can also be recovered
using cotrees, trees that can be canonically associated to cographs. In Section 5, we
present a connection between symbolic ultrametrics and a certain collection of parti-
tions that can be associated to the corresponding tree (see Corollary 3). We use this
result in the following section to help obtain a new algorithm for deciding whether or
not a map is a symbolic ultrametric and, if this is the case, for constructing its corre-
sponding tree representation. We conclude in Section 7 witha discussion on how our
results might be applied in practice to orthology detection.

2 Preliminaries: Phylogenetic Trees and Rooted Triples

In this section, we present the relevant basic concepts and notation. Unless stated
otherwise, we will follow Semple and Steel (2003).
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4 Hellmuthet al.

In the remainder of this paper,X will always denote a finite set of size at least
three.

A treeT = (V,E) is a connected cycle-free graph with vertex setV(T) = V and
edge setE(T) = E. A vertex ofT of degree one is called aleaf of T and all other
vertices ofT are calledinterior. A star is a tree that has at most one interior vertex.
An edge ofT is interior if both of its end vertices are interior vertices. The sets of
interior vertices and interior edges ofT are denoted byV0 andE0, respectively.

A rooted tree T= (V,E) is a tree that contains a distinguished vertexρT ∈ V
called theroot. Without explicitly stating it we will always assume that a rooted tree
is directed in that all edges ofT are directed away fromρT . For ease of representation
we will always draw rooted trees with the root at the top. A rooted treeT is called
binary if every interior vertex ofT has outdegree two. We define a partial order�T

onV by settingv �T w for any two verticesv,w∈ V for which v is a vertex on the
path fromρT to w. In particular, ifv�T w we callv anancestorof w.

A phylogenetic tree T (on X)is a rooted tree with leaf setX that does not contain
any vertices with in- and outdegree one and whose rootρT has indegree zero. For
A⊆ X a non-empty subset, we define lcaT(A), or themost recent common ancestor
of A, to be the unique vertex inT that is the greatest lower bound ofA under the partial
order�T . In caseA = {x,y} we put lcaT(x,y) = lcaT({x,y}). We denote byT(W)
the (rooted) subtree ofT with root lcaT(W). For convenience, we will sometimes
denote the root ofT(W) by ρW. Two phylogenetic treesT1 andT2 onX are said to be
isomorphicif there is a bijectionψ : V(T1) → V(T2) that induces a (directed) graph
isomorphism fromT1 to T2 which is the identity onX and maps the root ofT1 to the
root ofT2.

SupposeT is a phylogenetic tree onX with root ρT and a non-empty subset
Y ⊆ X with |Y| ≥ 2. Then therestriction T|Y of T to Y is the phylogenetic tree
obtained fromT(Y) by suppressing all vertices of degree two with the exceptionof
ρT if ρT ∈ V(T(Y)). For every vertexv ∈ V(T) we denote byC(v) the subset ofX
such thatv= lcaT(C(v)) and putC (T) =

⋃
v∈V(T){C(v)}. We say that a phylogenetic

treeSon X refines T, in symbolsT ≤ S, if C (T) ⊆ C (S). In addition, we say thatT
displaysa phylogenetic treeSonY if Scan be obtained from the restrictionT|Y of T
to Y by contracting interior edges. Note that contraction of non-interior edges would
not result in a valid phylogenetic tree as such a tree could e.g. have an interior vertex
contained inY. We say that a setR of phylogenetic trees all having leaves inX is
compatibleif R = /0 or if there is a phylogenetic treeT onX that displays every tree
contained inR.

A (rooted) tripleis a binary phylogenetic tree on a setY with |Y| = 3. ForY :=
{x,y,z} ∈

(X
3

)
, we denote byxy|z the unique triplet on Y with root ρt for which

lcat(x,y) 6= ρt holds. Given a phylogenetic treeT onX we denote by

RT :=

{
T|Y : Y ∈

(
X
3

)
andT|Y is binary

}
(1)

its set of rooted triples. Note that, for any phylogenetic treeT onX, we have|RT | ≤(|X|
3

)
and that the maximum is attained precisely ifT is binary.

The importance of sets of rooted triples stems from the fact that the setRT of
rooted triples displayed by a phylogenetic treeT uniquely determinesT up to iso-

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Orthology Relations, Symbolic Ultrametrics, and Cographs 5

morphism, i.e. ifT ′ is a phylogenetic tree for whichRT = RT ′ holds thenT and
T ′ must be isomorphic. In fact, a more general result of this nature is presented by
Semple and Steel (2003, p. 119-120):

Theorem 1 Let R be a collection of triples so that the union of their leaf setsis X.
Then there is a polynomial-time algorithm — calledBUILD — that, when applied to
R, either:

(i) outputs a phylogenetic tree on X that displaysR if R is compatible; or
(ii) outputs the statement“R is not compatible”.

Note that the original version of theBUILD algorithm is due to Aho et al (1981).
A more efficient solution of the same problem has been described e.g. by Rauch Hen-
zinger et al (1999).

3 Symbolic Ultrametrics

In this section, we recall some results from Böcker and Dress (1998) and Semple
and Steel (2003, Section 7) concerning symbolic ultrametrics. We also prove some
mild generalizations of these results with the view to theirpossible application to
orthology relations. More details on such applications will be discussed in the last
section.

From now on,M will always denote a non-empty finite set, the symbol⊙ will
always denote a special element not contained inM, andM⊙ := M∪{⊙}. The symbol
⊙ corresponds to a “non-event” and is introduced for purely technical reasons. It
will always correspond only to the leaves of a phylogenetic tree since these will not
usually correspond to events such as speciation and duplication.

Now, supposeδ : X×X → M⊙ is a map. We callδ a symbolic ultrametric2 if it
satisfies the following conditions:

(U0) δ (x,y) = ⊙ if and only if x = y;
(U1) δ (x,y) = δ (y,x) for all x,y∈ X, i.e.δ is symmetric;
(U2) |{δ (x,y),δ (x,z),δ (y,z)}| ≤ 2 for all x,y,z∈ X; and
(U3) there exists no subset{x,y,u,v} ∈

(X
4

)
such that

δ (x,y) = δ (y,u) = δ (u,v) 6= δ (y,v) = δ (x,v) = δ (x,u). (2)

Note that every symmetric mapδ onX with |X| = 3 that also satisfies Properties
(U0) and (U2) is a symbolic ultrametric onX. Also note that everyultrametric don
X (that is, a symmetric mapd from X×X to the real numbers which vanishes on the
diagonal and that satisfies the additional property thatd(x,z) ≤ max{d(x,y),d(y,z)}
holds for allx,y,z∈ X) is also symbolic ultrametric if the special symbol⊙ is iden-
tified with 0. Ultrametrics are well-studied in phylogenetics as they correspond to
weighted, rooted trees (cf. e.g. Semple and Steel (2003)).

2 Note that in Böcker and Dress (1998) a symbolic ultrametricis defined without the requirement (U0),
which we have introduced for technical reasons.
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6 Hellmuthet al.

Now, suppose thatT = (V,E) is a phylogenetic tree onX and thatt : V → M⊙ is
a map such thatt(x) = ⊙ for all x∈ X. We call such a mapt a symbolic dating map
for T; it is discriminatingif t(u) 6= t(v), for all edges{u,v} ∈ E. To the pair(T; t) we
associate the mapd(T;t) onX×X by setting, for allx,y∈ X,

d(T;t) : X×X → M⊙;d(T;t)(x,y) = t(lcaT(x,y)). (3)

Clearly this map is symmetric and satisfies (U0). We call the pair (T; t) a symbolic
representationof a mapδ : X×X → M⊙ if δ (x,y) = d(T;t)(x,y) holds for allx,y ∈
X; it is called discriminatingif t is discriminating (see Fig 1 for an example of a
discriminating symbolic representation where we have omitted the assignment of the
value⊙ to the leaves). Note that we call two symbolic representations (T; t) and
(T ′; t ′) of δ isomorphicif T andT ′ are isomorphic via a mapψ : V(T)→V(T ′) such
thatt ′(ψ(v)) = t(v) holds for allv∈V(T).

In Böcker and Dress (1998), the following fundamental result concerning the
relationship between symbolic ultrametrics and symbolic representations is proven:

Theorem 2 Supposeδ : X×X → M⊙ is a map. Then there is a discriminating sym-
bolic representation ofδ if and only ifδ is a symbolic ultrametric. Furthermore, up
to isomorphism, this representation is unique.

Given any symbolic ultrametricδ on X, we denote the unique discriminating
symbolic representation ofδ given by this theorem by(Tδ ; tδ ).

Note that the symbolic tree representation of an orthology relation on a set of
genes need not necessarily be discriminating, since duplication events do not nec-
essarily have to come directly after speciation events and vice versa. To help deal
with this, we shall now prove a simple result concerning the relationship between
symbolic ultrametrics and arbitrary symbolic representations. To this end, suppose
that T = (V,E) is a phylogenetic tree onX and thatt : V → M⊙ is a symbolic
dating map that is not discriminating. Then there must existsomee = {u,v} ∈ E0

such thatt(u) = t(v). Let ve denote the vertex inT obtained by collapsing the
edgee. Then the treeTe = (Ve,Ee) with vertex setVe = V \ {u,v}∪ {ve}, edge set
Ee = E \ {e}∪{{ev,w} : {w,u} or {w,v} ∈ E} is clearly a phylogenetic tree onX.
Furthermore the mapte : Ve → M⊙ defined by putting, for allw∈Ve,

te(w) = t(w) if w 6= ve andt(ve) = t(u) (4)

is again a symbolic dating map forTe. Clearly, this construction can be repeated, with
(Te; te) now playing the role of(T; t), until a phylogenetic treêT = (V̂, Ê) on X is
obtained together with a discriminating symbolic dating map t̂ on T̂.

Proposition 1 Let δ : X×X → M⊙ be a map. Then the following are equivalent:

(i) δ is a symbolic ultrametric.
(ii) there is a discriminating symbolic representation ofδ .

(iii) there is a symbolic representation ofδ .

Moreover, ifδ is a symbolic ultrametric, and(T; t) is any symbolic representation of
δ , then(T̂; t̂) is isomorphic to(Tδ ; tδ ).
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Proof (i) ⇒ (ii): Apply Theorem 2.
(ii) ⇒ (iii): This is obvious.
(iii) ⇒ (i): It is straightforward to check that if there is a symbolic representation

(T; t) of δ , thenδ must satisfy (U0)–(U3). Then apply Theorem 2.
To see that the final statement holds, note that ifδ : X×X → M⊙ has a symbolic

representation(T; t), ande = {u,v} ∈ E(T) with t(u) = t(v), thend(Te;te) = d(T;t).
Therefore,d(T̂;t̂) = d(T′;t′) must also hold. Moreover,t̂ is discriminating by construc-
tion and thus, by Theorem 2, the proposition follows. ⊓⊔

We conclude this section by recalling a practical approach for constructing the
discriminating symbolic representation(Tδ ; tδ ) from a given symbolic ultrametric
δ : X ×X → M⊙ based on theBUILD algorithm, that was described by Semple and
Steel (2003, Section 7.6).

Let δ : X×X → M⊙ be a symbolic ultrametric onX and letR(δ ) be the set of
triplesxy|z, {x,y,z} ∈

(X
3

)
satisfying one of the following two conditions:

(R1) δ (x,y) 6= δ (x,z) = δ (y,z), or
(R2) δ (x,y) = δ (x,z) = δ (y,z), and there is somew∈ X such thatδ (x,w) = δ (y,w) 6=

δ (z,w) = δ (x,y).

Furthermore, denote byRδ ⊆R(δ ) the subset ofR(δ ) consisting only of the triples
satisfying condition (R1). Ifδ is a symbolic ultrametric thenR(δ ) = RTδ (Böcker
and Dress, 1998, Lemma 2). Moreover, we have the following result, which is a mild
generalization of (Semple and Steel, 2003, p. 167-8):

Proposition 2 Let δ : X ×X → M⊙ be a map that satisfies Properties (U0)–(U2).
Then the following are equivalent:

(i) δ is a symbolic ultrametric.
(ii) R(δ ) is compatible.

(iii) Rδ is compatible.

In particular, δ is a symbolic ultrametric if and only if theBUILD algorithm applied
to Rδ or R(δ ) returns a phylogenetic tree T, in which case the map t: V(T) → M⊙,
v 7→ δ (x,y) with v= lcaT(x,y), x,y ∈ X, is well-defined and(T; t) is isomorphic to
the discriminating symbolic representation forδ .

Proof Clearly all 3 assertions are equivalent if|X| = 3. So assume|X| ≥ 4. The
implications (i)⇒ (ii) and (ii) ⇒ (iii) are trivial in view of the observation preceding
Proposition 2.

(iii) ⇒ (i): Suppose for contradiction thatRδ is compatible but thatδ is not a
symbolic ultrametric. Thenδ does not satisfy Property (U3) and so there exists some
{x,y,u,v} ∈

(X
4

)
such thatδ (x,y) = δ (y,u) = δ (u,v) 6= δ (y,v) = δ (x,v) = δ (x,u).

But thenR := {xy|v,xu|y,uv|x} ⊆ Rδ must hold which is impossible asR is not
compatible and thusRδ cannot be compatible. ⊓⊔

It follows from this result and Theorem 2 that we can decide inpolynomial time
whether or notδ is a symbolic ultrametric by applying theBUILD algorithm to the
setRδ , which will also construct a symbolic representation ofδ in case it is. The
following additional consequence, which will not be used later, is also worth noting:
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8 Hellmuthet al.

Corollary 1 Supposeδ is a symbolic ultrametric on X. Thenδ has a unique symbolic
representation if and only if|R(δ )| =

(|X|
3

)
.

Proof Suppose first that|R(δ )| =
(|X|

3

)
. Then|RTδ | =

(|X|
3

)
in view of (Böcker and

Dress, 1998, Lemma 2) recalled above asδ is a symbolic ultrametric. Since only a
binary phylogenetic tree can display

(|X|
3

)
triples, it follows thatTδ must be binary.

But this implies immediately that(Tδ ; tδ ) is the unique symbolic representation forδ
because any symbolic representation forδ can be obtained from(Tδ ; tδ ) by resolving
interior vertices ofTδ .

Conversely, assume thatδ has a unique symbolic representation(T; t). ThenT
must be binary as otherwise, by Proposition 1, there would exist an interior vertex
of T that could be resolved to obtain a new symbolic representation (T ′; t ′) for δ
contradicting the uniqueness of(T; t). But then(T; t) is isomorphic to(Tδ ; tδ ) and so
|RTδ | =

(|X|
3

)
. Sinceδ is a symbolic ultrametric onX, Lemma 2 of Böcker and Dress

(1998) impliesRTδ = R(δ ) and so the corollary follows. ⊓⊔

4 Cographs and Cotrees

In this section, we shall investigate a connection between symbolic ultrametrics and
complement-reducible graphsor cographs. As mentioned in the introduction, a co-
graph is aP4-free graph (i.e. a graph such that no four vertices induce a subgraph that
is a path of length 3), although there are a number of equivalent characterizations of
such graphs (see e.g. (Brandstädt et al, 1999) for a survey).

Let δ : X×X → M⊙ be a map satisfying Properties (U0) and (U1). Forx∈ X and
m∈ M, we define theneighborhood Nm(x) of x with respect tom andδ as

Nm(x) = Nm,δ (x) := {y∈ X : δ (x,y) = m} . (5)

Note that, in view of Property (U0),x /∈ Nm(x) and that, in view of Property (U1),
y∈Nm(x) if and only ifx∈Nm(y). We also define, for each fixedm∈M, an undirected
graphGm(δ ) = (Vm,Em) with vertex setVm = Vm(δ ) = X and edge set

Em = Em(δ ) :=

{
{x,y} ∈

(
X
2

)
: y∈ Nm(x), x∈ X

}
. (6)

For example, ifδ = d(T;t) for the pair (T; t) depicted in Fig. 1, thenGm1(δ ) is
the graph with vertex set{a, . . . ,e} and edge set{{a,b},{d,b},{e,b},{c,b}}, and
Gm3(δ ) is the graph with the same vertex set asGm1(δ ) and edge set{{a,d},{c,e}}.

The following result gives the aforementioned connection between symbolic ul-
trametrics and cographs:

Proposition 3 Let δ : X ×X → M⊙ be a map satisfying Properties (U0) and (U1).
Thenδ is a symbolic ultrametric if and only if

(U2’) For all {x,y,z} ∈
(X

3

)
there is an m∈ M such that Em(δ ) contains two of the three

edges{x,y}, {x,z}, and{y,z}.
(U3’) Gm(δ ) is a cograph for all m∈ M.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Orthology Relations, Symbolic Ultrametrics, and Cographs 9

Proof Suppose thatδ is a map as in the statement of the proposition. Note that we
may assume|X| ≥ 4.

Clearly,δ satisfies (U2) if and only if it satisfies Property (U2’). Moreover, it is
easy to see that (U3’) implies (U3). Thus if (U3’) and (U2’) hold, thenδ is a symbolic
ultrametric onX. Thus, it only remains to show that ifδ satisfies (U2) and (U3) (i.e.
δ is a symbolic ultrametric), then it must satisfy (U3’).

Suppose this is not the case, i.e. (U3’) does not hold. Then there exists
{x,y,u,v} ∈

(X
4

)
and somem ∈ M such that the subgraph ofG(δ ) induced on

{x,y,u,v} is a path of length three. Suppose that this path isx,y,u,v. Thenδ (x,y) =
δ (y,u) = δ (u,v) = m andm 6∈ {δ (x,u),δ (x,v),δ (y,v)}. But (U2) impliesδ (x,u) =
δ (x,v) = δ (y,v), and so (U3) does not hold. This contradiction completes theproof.

⊓⊔

Intriguingly, it is well-known in the literature concerning cographs that, to any
cographG, one can associate a canonicalcotree T(G) = (V,E). This is a rooted tree
with root3 ρ , leaf set equal to the vertex setV(G) of Gand inner vertices that represent
so-called ”join” and ”union” operations together with a labeling mapλG :V0 →{0,1}
such thatλG(ρ) = 1 and, ifv∈V0 andw1, . . . ,wk ∈V0, k≥ 2, are the children ofv,
then|λG(v)−λG(wi)|= 1, for all i = 1, . . . ,k (cf. (Corneil et al, 1981)). For example,
if δ = d(T;t) for the pair(T; t) depicted in Fig. 1, then the cotrees associated to the
cographsGm1(δ ), Gm2(δ ), andGm3(δ ), respectively, are depicted in Fig. 2. Note that
the cotree associated to a cograph has root labeled with 0 if and only if the cograph
is disconnected.
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Fig. 2 For the symbolic ultrametricδ = d(T ;t), with (T;t) pictured in Fig. 1, the three cotrees
(T(Gmi (δ )),λGmi (δ )), i = 1,2,3, pictured in that order from left to right. Note that the tree T depicted
in Fig. 1 refines each of the cotrees.

The key observation about cographs that concerns us here is that, given a cograph
G, a pair{x,y} ∈

(V(G)
2

)
is an edge inG if and only if λG(lcaT(G)(x,y)) = 1 (cf.

(Corneil et al, 1981, p. 166)). It is therefore natural to askwhat the relationship is
between the discriminating representation of a symbolic ultrametricδ and the cotrees
associated to the cographs coming fromδ given by Proposition 3. We shall now show
that there is a very close connection between these structures.

3 Note that in cotrees the root might have outdegree one; in such cases we will simply suppress this
vertex and its outgoing edge.
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10 Hellmuthet al.

To this end, supposeδ : X ×X → M⊙ is a map satisfying Properties (U0) and
(U1) andm∈ M. Consider the mapδm : X×X → {0,1,⊙} defined, for allx,y ∈ X,
by putting

δm(x,y) =





⊙ if x = y,

1 if {x,y} ∈ Em(δ ),

0 else.

(7)

Note if δ is a symbolic ultrametric onX, then it is easy to see thatδm is also a
symbolic ultrametric onX, m∈ M (essentially becauseG(δm) is a cograph).

Lemma 1 Let δ : X ×X → M⊙ be a symbolic ultrametric. Then, for all m∈ M,
(T(Gm(δ ));λGm(δ )) is the discriminating symbolic representation forδm.

Proof Supposem∈M, and letT ′ = T(Gm(δ )) andt ′ = λGm(δ ). In view of Theorem 2
it suffices to show thatδm(x,y) = d(T ′;t′)(x,y) holds for all x,y ∈ X. Let x,y ∈ X.
Then, by the aforementioned properties of the cotree associated to a cograph and
Proposition 3, it follows thatd(T ′;t′)(x,y) = t ′(lcaT ′(x,y)) = 1 if and only if {x,y} ∈
Em(δ ) if and only if δm(x,y) = 1, as required. ⊓⊔

Using this lemma, we now prove a technical result which, given a symbolic ultra-
metricδ , relates triples inR(δ ) and, form∈ M, triples inRδm.

Theorem 3 Letδ : X×X →M⊙ be a symbolic ultrametric. Then the following hold:

(i) For all m ∈ M, Rδm ⊆ Rδ .
(ii) For all m ∈ M, R(δm) ⊆ R(δ ).

(iii) Rδ =
⋃

m∈M Rδm.

Proof (i) Supposem∈ M andxy|z∈ Rδm. Thenδm(x,y) 6= δm(x,z) = δm(y,z) and so
either (a)δm(x,y) = 1 andδm(x,z) = δm(y,z) = 0 or (b)δm(x,y) = 0 andδm(x,z) =
δm(y,z) = 1.

If Case (a) holds then{x,y} ∈ Em(δ ) and{x,z},{y,z} 6∈ Em(δ ). Henceδ (x,y) =
m andδ (x,z),δ (y,z) 6= m. Sinceδ is an ultrametric and so satisfies Property (U2) it
follows thatδ (x,z) = δ (y,z). Consequently,xy|z∈ Rδ in this case.

If Case (b) holds then{x,y} 6∈Em(δ ) and{x,z},{y,z}∈Em(δ ). But thenδ (x,z) =
δ (y,z) = m 6= δ (x,y) and soxy|z∈ Rδ must hold in this case, too.

(ii) Let m ∈ M. Supposexy|z ∈ R(δm). Assume first thatxy|z satisfies Prop-
erty (R1). Then Assertion (i) impliesxy|z ∈ Rδ ⊆ R(δ ). So assume thatxy|z
does not satisfy Property (R1). Thenxy|z 6∈ Rδm and xy|z must satisfy Property
(R2), that is,δm(x,y) = δm(x,z) = δm(y,z) and there must exist somew ∈ X such
that δm(x,w) = δm(y,w) 6= δm(z,w) = δm(x,y). We distinguish the casesδm(x,y) =
δm(x,z) = δm(y,z) = 1 andδm(x,y) = δm(x,z) = δm(y,z) = 0.

Assume first thatδm(x,y) = δm(x,z) = δm(y,z) = 1 holds. Thenm = δ (x,y) =
δ (x,z) = δ (y,z) and soδ (z,w) = m andm 6∈ {δ (x,w),δ (y,w)} must hold. But then
Property (U2) implies thatδ (x,w) = δ (y,w) 6= m and so (R2) holds. Thus,xy|z∈
R(δ ) in this case.

Now, assume thatδm(x,y) = δm(x,z) = δm(y,z) = 0 holds. Then m 6∈
{δ (x,y),δ (x,z),δ (y,z),δ (z,w)} and som= δ (x,w) = δ (y,w). By Property (U2) it
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Orthology Relations, Symbolic Ultrametrics, and Cographs 11

follows thatm1 := δ (y,z) = δ (z,w) = δ (z,x) 6= m. If m2 := δ (x,y) = m1 thenxy|z
satisfies Property (R2) forδ and soxy|z∈ R(δ ). If m2 6= m1 thenxy|z∈ Rδm2

⊆

Rδ ⊆ R(δ ) in view of Assertion (i). This completes the proof of (ii).
(iii) Statement (i) clearly implies

⋃
m∈M Rδm ⊆ Rδ . To see that the converse set

inclusion holds, letxy|z∈Rδ . Then there exists somem∈ M such thatm= δ (x,y) 6=
δ (x,z) = δ (y,z) and thus{x,y} ∈Em(δ ) and{x,z},{y,z} 6∈Em(δ ). Hence,δm(x,y) =
1 6= 0 = δm(x,z) = δm(y,z) and soxy|z∈ Rδm, as required. ⊓⊔

Using this theorem, we now see how the discriminating symbolic representation
Tδ of a symbolic ultrametricδ can be constructed from the cotreesT(Gm(δ )), m∈ M
(or, equivalently, the discriminating symbolic representations of the mapsδm, m∈M).
The first statement of the following corollary is illustrated in Fig. 2.

Corollary 2 Let δ : X×X → M⊙ be a symbolic ultrametric. Then, for each m∈ M,
T(Gm(δ )) ≤ Tδ . Moreover, Tδ is isomorphic to the tree obtained by applyingBUILD
to the set

⋃
m∈M Rδm.

Proof The second statement follows immediately from Theorem 3(ii) and Proposi-
tion 2.

To see thatT(Gm(δ )) ≤ Tδ holds for allm∈ M, note that sinceδm is a symbolic
ultrametricR(δm) = RTδm

holds by Lemma 2 of (Böcker and Dress, 1998) recalled
above. Hence by Theorem 3 (ii),RTδm

⊆RTδ . By Theorem 6.4.1 of Semple and Steel
(2003) this last statement holds if and only ifTδm ≤ Tδ . Now apply Lemma 1. ⊓⊔

Remark 1By modifying the argument in the proof of part (iii) of Theorem 3, it is
straightforward to show, under the same assumptions given in the theorem plus the
additional assumption|M| ≥ 3, thatTδ is isomorphic to the tree obtained by applying
BUILD to the set

⋃
m∈M′ Rδm, for anyM′ ⊆M with |M′|= |M|−1. However, in general

it is not possible to obtainTδ usingBUILD in this way by using subsets ofM with size
less than|M|−1 (see Fig. 3).
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Fig. 3 A symbolic representation of a symbolic ultrametricδ on the setX = {x1, . . . ,xn−1} with values in
the setM = {m1, . . . ,mn}. It can be shown that it is not possible to reconstructTδ by applyingBUILD to
the set

⋃
m∈M′ Rδm, for anyM′ ⊆ M with |M′| ≤ n−2.
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12 Hellmuthet al.

5 Pseudo-Cherries, Cliques, and Partitions

In this section, we will show that the cliques4 in a certain graphG(δ ) that can be as-
sociated to a symbolic ultrametricδ : X×X →M⊙ are closely related to the structure
of the discriminating symbolic representation ofδ (see Proposition 4). We use this
result in the next section to help derive a new algorithm for determining whether a
map is a symbolic ultrametric or not. We shall also show that cliques inG(δ ) can be
characterized in terms of cliques in the graphsGm(δ ), m∈ M, defined in the previous
section (see Corollary 3).

Let δ : X×X → M⊙ be a symmetric map that satisfies (U0). Forδ (x,y) = m∈
M, x 6= y, we have{x,y} ⊆ Nm(x) △ Nm(y), where△ denotes the usual symmetric
difference of sets. For future reference note that, withNm[x] := Nm(x)∪{x}, x ∈ X,
we have

Nm(x) △ Nm(y) = {x,y} if and only if Nm[x] = Nm[y], (8)

for all m∈ M and ally,z∈ X. Also note that this condition is satisfied for at most one
m∈ M for any given pair{x,y} ∈

(X
2

)
.

Now, defineG(δ ) to be the graph with vertex setX and edge set

E(δ ) :=

{
{x,y} ∈

(
X
2

)
: Nm[x] = Nm[y] for somem∈ M

}
. (9)

For example, ifδ = d(T;t) for the pair(T; t) depicted in Fig. 1, then the graphG(δ ) is
the graph with vertex set{a, . . . ,e} and edge set{{c,e},{a,d}}. We denote byC(G)
the (set-inclusion) maximal cliques of a graphG, and for brevity we letC(δ ) denote
C(G(δ )), for δ : X×X →M⊙ a symmetric map that satisfies (U0). Note thatδ (x,y) =
δ (u,v) holds for any cliqueC∈ C(δ ) with |C| ≥ 2 and any two{x,y},{u,v} ∈

(C
2

)
in

caseδ is a symbolic ultrametric. Also note that there exists aC ∈ C(δ ) with |C| ≥ 2
in this case because the treeTδ has a vertex such that all of its children (of which
there must be at least two) are leaves.
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Fig. 4 A phylogenetic treeT on X = {a,b,c, · · · , j}. The verticesx = lcaT (C′) andy = lcaT(C) are the
most recent common ancestors of the setsC = {a,d,e} andC′ = {h, i, j}. Both C andC′ are pseudo-
cherries ofT. However,C′ is also a cherry ofT whereasC is not.

4 A clique in a graph is a subset of its vertices such that every two vertices in the subset are connected
by an edge.
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Suppose thatT is a phylogenetic tree onX with rootρ . LetC⊆X be a non-empty
subset ofX and putvC = lcaT(C). We callC a pseudo-cherryof T if a leaf x of T is
adjacent tovC if and only if x∈C. If, in addition, every vertexv∈V(T) adjacent to
vC that does not lie on a path fromρ to vC is contained inX, then we callC acherryof
T. Note that a pseudo-cherry must contain at least one elementand that the definition
of a cherryC reduces to the usual definition of a cherry (as given e.g. by Semple and
Steel (2003)) in case|C| = 2. We illustrate these two definitions in Fig. 4.

Now, let t : V(T) → M⊙ be a symbolic dating map forT. For eachm∈ M, we
define a relation∼m onX by putting, for allx,y∈ X, x∼my if x = y or, in casex and
y are distinct,t(u) = m holds for every interior vertexu of T that lies on the unique
path fromx to y. Clearly∼m is an equivalence relation onX. We write Π̃m for the
corresponding partition ofX. Note that the∼m-equivalence classes can in some cases
be estimated directly from data without having to constructa tree (e.g. for inparalogs,
that is, paralogs which all arise from duplication events after a speciation event).

We now show that ifδ is a symbolic ultrametric, then the cliques in the graph
G(δ ) correspond to pseudo-cherries in the discriminating symbolic representation of
δ .

Proposition 4 Let T be a phylogenetic tree on X, t: V(T) → M⊙ be a symbolic
dating map, andδ = d(T;t) be the associated symbolic ultrametric on X. Then:

(i) x∼my if and only if Nm[x] = Nm[y], for all {x,y} ∈
(X

2

)
and all m∈ M.

(ii) The graph G(δ ) is the disjoint union of its maximal cliques.
(iii) If the map t is discriminating, then a non-empty subsetC of X is a maximal clique

of G(δ ) if and only if C is a pseudo-cherry of T .

Proof (i) Suppose first that{x,y} ∈
(X

2

)
such thatx∼my for somem∈ M. Assume

for contradiction thatNm[x] 6= Nm[y], that is,(Nm(x) △ Nm(y))\{x,y} 6= /0, in view of
Equ. (8). Choose some elementz in that set. Then the restrictionT ′ := T|{x,y,z} of
T to {x,y,z} is either the star with leaf set{x,y,z} or isomorphic to one of the triples
in R := {xy|z,yz|x,xz|y}. If T ′ were the star on{x,y,z} then lcaT(x,z) = lcaT(z,y) =
lcaT(x,y) would follow. But thenδ (x,z) = δ (z,y) = δ (x,y) = m so thatz∈ Nm(x)∩
Nm(y), contradictingz∈ Nm(x) △ Nm(y)−{x,y}. ThusT ′ must be isomorphic to one
of the triples inR.

If T ′ were isomorphic to the triplexy|z then lcaT(x,z) = lcaT(y,z) and soδ (x,z) =
δ (y,z). But the choice ofz implies that we may assume without loss of generality that
z∈ Nm(x) \Nm(y), so thatδ (x,z) = m 6= δ (y,z), a contradiction. IfT ′ were isomor-
phic to the triplexz|y, then lcaT(x,y) = lcaT(z,y) and soδ (z,y) = δ (x,y) = mwould
follow as, by assumption,x∼my holds. But thenz 6∈ Nm(x)\Nm(y), a contradiction.
By symmetry,T ′ cannot be isomorphic to the remaining tripleyz|x either which yields
the final contradiction.

Conversely, suppose that{x,y} ∈
(X

2

)
such thatNm[x] = Nm[y], for somem∈ M.

We need to show thatt(w) = mholds for every interior vertexw∈V(T)0 on the path
P from x to y. Assume, for contradiction, that there exists some interior vertexu ∈
V(T)0 onP with t(u) 6= m. Thenu 6= lcaT(x,y) sincet(lcaT(x,y)) = δ (x,y) = mas, by
assumption,Nm[x] = Nm[y]. Starting atx and traversingP, letu′ ∈V(P) andu′′ ∈V(P)
denote the predecessor and successor ofu, respectively. SinceT is a phylogenetic
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14 Hellmuthet al.

tree and so has no vertex with in- and outdegree one, there must exist a leafz∈V(T)
such that the path fromu to z does not cross the edges{u′,u},{u′′,u} ∈ E(P). Thus
z /∈ {x,y} and either lcaT(x,z) = u or lcaT(y,z) = u must hold. By symmetry, we may
assume without loss of generality that lcaT(x,z) = u. Thenδ (x,z) = t(u) 6= m and
so z /∈ Nm(x). By construction ofz, we have lcaT(y,z) = lcaT(y,x) and soδ (y,z) =
δ (y,x) = m. Hence,z∈ Nm(y) and soz∈ Nm(y) \Nm(x) ⊆ Nm(y) △ Nm(x) = {x,y}.
This is a contradiction in view of Equ. (8). Thus,t(w) = m for every interior vertex
w∈V(T)0 onP, as required.

(ii) The observation thatG(δ ) is the disjoint union of its maximal cliques is a
trivial consequence of (i) and the fact that∼m is an equivalence relation onX, for all
m∈ M.

(iii) Suppose thatt is discriminating. Then the definition of a pseudo-cherry im-
mediately implies that any pseudo-cherry ofT must be a maximal clique ofG(δ ).

Conversely, assume thatC is a maximal clique ofG(δ ). PutvC := lcaT(C). We
show first that every leaf ofT adjacent withvC must be contained inC. To see this,
note that if there is a leafz∈ X −C of T adjacent tovC then lcaT(z,x) = vC would
hold for allx∈C and, so,δ (z,x) = t(vC) would follow for all suchx. But thenC∪{z}
would be a clique inG(δ ) that containsC which is impossible asC is a maximal
clique inG(δ ).

Now, for contradiction, assume that there exists some leafz∈ V(T) of T that is
contained inC but is not adjacent tovC. Then, by the definition ofvC, we must have
|C| ≥ 2. Putm= t(vC) and note thatδ (x,y) = m holds for all{x,y} ∈

(C
2

)
. Also note

that the pathP from vC to z must be of length at least two. Letw ∈ V(T)0 denote
the child ofvC on P. Sincet is discriminating, it follows thatt(w) 6= m. Let y ∈ X
be a leaf ofT for which there exists a directed path fromw to y and this path does
not have an edge in common with the path fromw to z. Note thaty∈C cannot hold
since lcaT(z,y) = w and, so,δ (z,y) = t(w) 6= m. Thus,y ∈ X −C. Sincey 6∈ Nm(z)
andy ∈ Nm(x) clearly holds for allx ∈ C, we obtainy ∈ Nm(x)∆Nm(z) = {x,z} in
view of the fact thatC is a clique,x,z∈C, and Equ. (8), a contradiction. Thus,C is a
pseudo-cherry ofT. ⊓⊔

We now give an alternative description of the maximal cliques of G(δ ) for δ a
symbolic ultrametric, in terms of the graphsGm(δ ) defined in the previous section. To
this end, we first describe a general way of constructing a partition from a collection
of subsets of a non-empty, finite set. Denote the power set of anon-empty, finite set
Y by P(Y) and assume thatZ is a finite, non-empty set. We say that a collection
A ∈ P(Z) is acover for Zif

⋃
A∈A A = Z holds. Now, supposeA ∈ P(Z) is a cover

for Z. Then we associate toA a collectionΠ(A) of subsetsB ⊆ Z that satisfy the
following three conditions:

(P1) there exists someA∈ A such thatB⊆ A,
(P2) there are no two distinct elementsx,y∈ B such that there exists someA∈ A with

x∈ A andy /∈ A, and
(P3) B is (set-inclusion) maximal with respect to satisfying Property (P2).

The proof of the following lemma is routine.
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Lemma 2 Suppose Z is a non-empty, finite set. If a collectionA of subsets of Z is a
cover for Z thenΠ(A) is a partition of Z.

Now, supposeδ : X×X → M⊙ is a map that satisfies Properties (U0) and (U1).
Then, for allm∈ M, Lemma 2 implies thatΠ(C(Gm(δ ))) is a partition ofX, since
any vertex of a graph must be a vertex in a maximal clique of that graph. For exam-
ple, consider again the symbolic ultrametricδ = d(T;t) associated to the pair(T; t)
depicted in Fig. 1. ThenΠ(C(Gm3(δ ))) = {{b},{a,d},{c,e}} andΠ(C(Gm1(δ )))
andΠ(C(Gm2(δ ))) are the partitions that consist of all singletons of{a, . . . ,e}.

We now show that for allm∈M the partitionΠ̃m corresponding to the equivalence
relation∼m defined above can be given in terms of the cliques ofGm(δ ).

Theorem 4 Let T be a phylogenetic tree on X and let t: V(T) → M⊙ be a symbolic
dating map. ThenΠ(C(Gm(d(T;t)))) = Π̃m holds for all m∈ M.

Proof Supposem∈ M and putδ = d(T;t) andΠm = Π(C(Gm(δ )). Since bothΠm

andΠ̃m are partitions ofX it suffices to show that a subsetA⊆ X with |A| ≥ 2 is an
element inΠm if and only if it is an element iñΠm.

Suppose first thatA ∈ Π̃m. Let {x,y} ∈
(A

2

)
. Thenx∼my and sot(lcaT(x,y)) =

m. Thus{x,y} ∈ E(Gm(δ )). Consequently, there must exist a maximal cliqueC ∈
C(Gm(δ )) such thatx,y∈C. Without loss of generality, we may assume thatC is of
minimal size with this property. SinceA is a maximal clique inC(δ ) it follows that
A⊆C and that there cannot exist someC′ ∈ C(Gm(δ )) and distinctx,y∈ A such that
x∈C′ andy 6∈C′. But thenA satisfies Properties (P1) – (P3) with regards toC(Gm(δ ))
and soA∈ Πm must hold.

Conversely, supposeA∈ Πm and assume for contradiction thatA is not an equiv-
alence class iñΠm. Let {x,y} ∈

(A
2

)
. Then there must exist some interior vertexv

on the pathP from x to y in T such thatt(v) 6= m. SinceA ∈ Πm we cannot have
v= lcaT(x,y). Assume without loss of generality thatv lies on the path from lcaT(x,y)
to the leafx. Also assume without loss of generality thatv is such thatt(w) = mholds
for all interior verticesw on the pathP′ from v to x. SinceT does not have degree two
vertices (except possibly the root ofT) there must exist a childw of v that is not a
vertex ofP′. Let z∈V(T) denote a leaf ofT such thatw lies on the path fromv to z.
SinceX is the vertex set ofGm(δ ) andt(lcaT(z,y)) = m 6= t(v) = t(lcaT(x,z)) there
must exist someD ∈ C(Gm(δ )) such thatz,y ∈ D andx /∈ D. But this is impossible
asx,y∈ A andA∈ Πm. ⊓⊔

As a consequence we now immediately obtain the aforementioned relationship:

Corollary 3 Supposeδ : X×X → M⊙ is a symbolic ultrametric. Then the maximal
cliques of G(δ ) are the set-inclusion maximal subsets in

⋃
m∈M Π(C(Gm(δ ))).

Proof The statement follows from Proposition 4(ii) and (iii), thefact that a non-
empty subsetC of X is a pseudo-cherry ofTδ if and only if A ∈ Π̃m holds for some
m∈ M, and Theorem 4. ⊓⊔
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16 Hellmuthet al.

6 A Bottom-Up Construction of Symbolic Representations

We have seen in Proposition 2 that theBUILD algorithm can be used to determine
whether a map is a symbolic ultrametric or not, and if so, constructs its discrimi-
nating symbolic representation.BUILD can be thought of as a “top-down” algorithm
as, in essence, it starts at the root of the tree (if it exists)and ends when it reaches
the leaves. In this section, we present an alternative “bottom-up” algorithm, called
BOTTOM-UP, which will use our clique-based analysis of symbolic representations in
the last section. Such an algorithm could provide a potentially useful alternative to
BUILD as it is based on finding (nearly) maximal cliques in graphs, for which many
different algorithms have been developed in the literature.

Suppose thatδ : X ×X → M⊙ is a symbolic ultrametric, and that(T; t) is some
symbolic representation ofδ . For every maximal cliqueC ∈ C(δ ) let xC ∈C denote
an arbitrary but fixed element inC. Then it is easy to check that the map

d′
(T,t) : C(δ )×C(δ ) → M⊙, d′

(T;t)(C,C′) = d(T;t)(xC,xC′), (10)

C,C′ ∈ C(δ ), is well-defined. A key observation that we shall use in theBOTTOM-UP

algorithm is that the mapd′
(T,t) is in fact a symbolic ultrametric onC(δ ).

In order to prove this last statement, we shall associate a phylogenetic treeT ′ on
C(δ ) plus a symbolic dating mapt ′ : C(δ ) → M⊙ for T ′ as follows. Note that by
Proposition 4, every element inC(δ ) is a pseudo-cherry ofTδ ; we putvC = lcaTδ (C),
for all C ∈ C(δ ), and fix some leafxC ∈ L(Tδ ) contained inC. Next, we remove all
leaves inC\{xC} from T together with all edges in{{vC,y} ∈ E(T) : y∈C\{xC}}.
If vC 6= ρT and this process has renderedvC a degree two vertex then suppressvC, and
if vC = ρT and this process has renderedvC an outdegree one vertex then identifyvC

with its unique leaf. LetT ′ = (V ′,E′) denote the resulting tree. Then the restriction
t ′|V′ of t toV ′ is clearly a discriminating symbolic dating map forT ′. Moreover, since

d′
(T;t)(C,C′) = d(T;t)(xC,xC′) = t(lcaT(xC,xC′)) = t ′(lcaT ′(C,C′)) = d(T ′;t′)(C,C′)

holds for allC,C′ ∈ C(δ ), it follows that(T ′; t ′) is the (necessarily unique) discrimi-
nating symbolic representation ofd′

(T;t). Thus, by Theorem 2 we have:

Proposition 5 Let T be a phylogenetic tree on X and t: V(T) → M⊙ be a symbolic
dating map. Then the map d′

(T;t) : C(d(T;t))×C(d(T;t)) → M⊙ defined in Equ. 10 is a

symbolic ultrametric onC(d(T;t)).

We now establish a second result which will be central to theBOTTOM-UP algo-
rithm. Given a mapδ : X×X → M⊙ satisfying (U0)–(U2) we denote the set of con-
nected components ofG(δ ) by π(δ ) and, for future reference, we letπ2(δ ) denote
those elements inπ(δ ) with size at least two.

Lemma 3 Suppose thatδ : X ×X → M⊙ is a map that satisfies Properties (U0)–
(U2), and K∈ π2(δ ). Then the following hold:

(i) If {x,y,z} ∈
(K

3

)
is such that x,y,z is a path in K of length two, thenδ (x,y) =

δ (y,z).
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(ii) If {x,y,z} ∈
(K

3

)
is such that{x,y} and{y,z} are edges in K, then{z,x} must also

be an edge in K.
(iii) K is a clique andδ (x,y) = δ (u,v) holds for all{x,y},{u,v} ∈

(K
2

)
.

Proof (i) Suppose for contradiction that there exists{x,y,z} ∈
(K

3

)
such thatx,y,z is

a path of length two butm1 := δ (x,y) 6= δ (y,z) =: m2. Then Property (U2) implies
δ (x,z)∈ {m1,m2}. Without loss of generality we may assume thatδ (x,z) = m1. Then
z∈ Nm1(x) and, sinceδ (x,z) 6= m1, we also havez 6∈ Nm1(y). Hence,z∈ Nm1(x)−
Nm1(y) ⊆ Nm1(x)∆Nm1(y) = {x,y} since{x,y} is an edge inK, a contradiction.

(ii) Suppose for contradiction that there exists{x,y,z} ∈
(K

3

)
such that{x,y} and

{y,z} are edges inK but {x,z} is not an edge inK. Then Assertion (i) implies that
δ (x,y) = δ (y,z) =: m. We distinguish the casesδ (x,z) = m andδ (x,z) 6= m.

First, supposeδ (x,z) = m. Then there must exist someu∈K−{x,z} such thatu∈
Nm(x)∆Nm(z) as otherwise{x,z} would be an edge inK. Without loss of generality,
we may assume thatu ∈ Nm(x)−Nm(z). Note that since both{x,y} and{y,z} are
edges inK it follows thaty∈ Nm(x)∩Nm(z) and sou 6= y. Moreover, since{x,y} is
an edge inK, {x,y} = Nm(x)∆Nm(y) must hold, and sou ∈ Nm(y). Similarly, since
{y,z} is an edge inK, u∈ Nm(z) which is impossible. Thus{x,z} must be an edge of
K.

Now supposeδ (x,z) 6= m. Thenz 6∈ Nm(x). Since{y,z} is an edge inK we have
z∈ Nm(y) and soz∈ Nm(y)−Nm(x) ⊆ Nm(y)∆Nm(x) = {x,y} as{x,y} is an edge of
K, a contradiction. Thus{x,z} must be also an edge ofK in this case.

(iii) This is an immediate consequence of Assertions (i) and(ii). ⊓⊔

We now present theBOTTOM-UP algorithm. The pseudo-code for this algorithm
is given in Fig. 5.BOTTOM-UP works in a similar way to the UPGMA algorithm
(Sneath and Sokal, 1973) for constructing phylogenetic trees from distance matrices.
EssentiallyBOTTOM-UP works by iteratively looking for pseudo-cherries and, if it
finds them, defining a new map on the set of these pseudo-cherries along the lines of
Proposition 5.

We now prove a result that is analogous to Proposition 2.

Theorem 5 Supposeδ : X×X → M⊙ is a map. Then the algorithmBOTTOM-UP is a
polynomial-time algorithm that either:

(i) outputs a symbolic discriminating representation forδ if δ is a symbolic ultra-
metric, or

(ii) the statement “δ is not a symbolic ultrametric”

Proof We first remark that if the input mapδ : X × X → M⊙ satisfies Properties
(U0)–(U2) then, at each execution step of the while loop at Line 3, if Line 5 is not
executed then the mapδ ′ defined in Line 12 must also satisfy (U0)–(U2). Moreover,
the maptC defined in Line 8 is well-defined since, in view of Lemma 3,δ (C1,C2) =
δ (C3,C4) holds for all{C1,C2},{C3,C4}∈

(C
2

)
. In addition, since the set of connected

components of a graph can be found in polynomial time and the size of the setF
defined in Line 11 decreases by at least one in each execution of the while loop in
Line 3 (in case Line 5 is not executed), it follows that the runtime forBOTTOM-UP is
polynomial in|X|.
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18 Hellmuthet al.

BOTTOM-UP

Input: Non-empty finite setsX andM with |X| ≥ 3 and a mapδ : X×X → M⊙.
Output: Discriminating symbolic representation ofδ or the statement “δ is not a symbolic ultrametric

on X”.

1. If δ does not satisfy Property (U0), (U1), or (U2) then return thestatement “δ is not a symbolic
ultrametric onX” and stop.

2. LetF = {(T{x},t{x}) : x∈ X}, where, forx∈ X, T{x} is the tree consisting of one vertexx and
t{x} is the map onV(T{x}) given by puttingt{x}(x) = ⊙.

3. While |F| ≥ 2 do
4. Compute the setsπ(δ ) andπ2(δ ).
5. If π2(δ ) = /0, then return the statement “δ is not a symbolic ultrametric onX” and stop.
6. For allC∈ π2(δ ) do
7. LetTC be the phylogenetic tree obtained by adding a new vertexw and edges

{w,ρC′} from w to the rootρC′ of TC′ , for all C′ ∈C.
8. DefinetC : V(TC) → M⊙ by puttingtC(w) equal toδ (C1,C2) for anyC1 6= C2 ∈C,

andtC′ (v) for anyv∈V(TC′), C′ ∈C.
9. Collapse edges ofTC as necessary to ensure that the restriction oftC to the vertex

set of the resulting tree is discriminating. Denote the resulting pair also by(TC;tC).
10. end do Line 6.
11. LetF = {(TC;tC) : C∈ π(δ )}, where we identify each singleton set inπ(δ ) with

its unique element.
12. For allC∈ π(δ ) choose somexC ∈C and defineδ ′ : π(δ )×π(δ ) → M⊙ to be the map

given by settingδ ′(C1,C2) := δ (xC1,xC2) for all C1 6= C2 ∈ π(δ ).
13. Letδ = δ ′.
14. end do Line 3.
15. Return the unique element inF.

Fig. 5 TheBOTTOM-UP algorithm.

Now, to complete the proof, given a mapδ : X ×X → M⊙ we will prove the
following claims: (i) if δ is a symbolic ultrametric, thenBOTTOM-UP will output a
phylogenetic treeT onX and a discriminating symbolic dating map forT, and (ii) if
BOTTOM-UP returns a phylogenetic treeT onX and a discriminating symbolic dating
mapt on T, then(T; t) is a discriminating symbolic representation forδ . This will
complete the proof of the theorem in view of Theorem 2.
Proof of (i):Assumeδ is a symbolic ultrametric so that, in particular,δ satisfies Prop-
erties (U0)–(U2). We first remark that, sinceπ2(δ ) 6= /0 (in view of Proposition 4(iii)),
Line 5 is not executed at the first execution of the while loop on Line 3. Moreover,
as in each execution step of that loop the mapδ ′ defined in Line 12 is a symbolic
ultrametric, in view of Proposition 5 we must also haveπ2(δ ′) 6= /0.

We now show thatBOTTOM-UP returns a pair(Tδ ; tδ ) whereTδ is a phylogenetic
tree onX andtδ is a discriminating symbolic dating map forTδ . Note that it suf-
fices to show that at the end of each execution of the while loopin Line 3, every
element(TC; tC) in the setF defined at Line 11 consists of a phylogenetic treeTC and
a discriminating symbolic dating maptC for TC.

To this end, assume thatk≥ 1 executions of that loop have been carried out, and
denote the map computed in Line 12 at executionl by δl , for l = k−1,k, where we
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set δ0 := δ . Let C ∈ π(δk−1). If C 6∈ π2(δk−1) then, by assumption,TC and tC are
of the required form, where we identifyC with its unique element. So assume that
C∈ π2(δk−1). Then, by construction, the treeTC generated in Line 7 is a phylogenetic
tree on

⋃
A∈C L(TA). Sinceδ satisfies properties (U0)–(U2), the maptC defined in

Line 8 is well-defined in view of the remark at the beginning ofthe proof. Now, note
that there can be at most oneC′ ∈C such thattC(w) = tC(ρC′). If there exists no such
element, thentC is a discriminating symbolic dating map forTC. Moreover, if such
an elementC′ exists, then the map obtained by restrictingtC to the vertex set of the
phylogenetic tree obtained fromTC by collapsing the edge{w,ρC′} is a discriminating
symbolic dating map for that tree. Thus the pair(TC; tC) in Line 9 is of the required
form and so (i) follows.
Proof of (ii): Suppose thatδ is an arbitrary map, and thatBOTTOM-UP returns a pair
(Tδ ; tδ ) with Tδ a phylogenetic tree onX andtδ a discriminating symbolic dating
map forTδ . Note that in this case,δ must satisfy Properties (U0)–(U2). To show
that (ii) holds, it suffices to show that in each execution of the while loop in Line 3
every element(TC; tC) in the setF defined in Line 11 is a discriminating symbolic
representation ofδ restricted toL(TC).

To this end, assume thatk≥ 1 executions of the while loop have been carried out
and, as before, denote the map defined in Line 12 at executionl by δl , l = k− 1,k
whereδ0 := δ . Let C ∈ π(δk−1). If C 6∈ π2(δk−1) then, by assumption,(TC; tC) is a
discriminating symbolic representation forδ restricted toL(TC), where we identify
C with its unique element.

So, assume thatC ∈ π2(δk−1). Supposex,y ∈ L(TC). Since, by assumption,
(TC′ ,tC′) is a discriminating symbolic representation ofδ restricted toL(TC′), for all
C′ ∈C, we may assume without loss of generality that there exist distinctC1,C2 ∈C
such thatx ∈ L(TC1) andy ∈ L(TC2). Note that the definition of the treeTC and the
maptC imply thatw = lcaTC(c1,c2) holds for allc1 ∈ L(TC1) and allc2 ∈ L(TC2), and
soδ (c1,c2) = tC(w) for all suchc1 andc2. But thend(TC;tC)(x,y) = tC(lcaTC(x,y)) =
tC(w) = δ (x,y). Thus, again,(TC; tC) is a discriminating symbolic representation of
δ restricted toL(TC). This completes the proof of (ii). ⊓⊔

7 Discussion

The case of most immediate practical relevance for the results presented in this paper
is the case|M|= 2, where the events inM are simply speciation and duplication. Here,
we assume that we are given an arbitrary orthology relationδ : X×X → {0,1}⊙ on
a setX of genes (i.e., a map that satisfies (U0) and (U1) and that assigns the value 1
to pairs of genes that are (co-)orthologs and 0 to pairs that are paralogs), a relation
that can be reliably estimated fromX using various bioinformatics techniques; cf.
e.g. (Lechner et al, 2011) and the reference therein. We thenaim to obtain a symbolic
representation(T; t) of δ , such thatx,y∈ X are orthologs if lcaT(x,y) corresponds to
a speciation event and paralogs if lcaT(x,y) corresponds to a duplication event within
a single lineage (i.e.t(lcaT(x,y)) equals 1 or 0, respectively).

The above results immediately provide the following characterizations of orthol-
ogy relations for which a symbolic representation exists:
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Corollary 4 Suppose thatδ : X ×X → {0,1}⊙ is an orthology relation. Then the
following are equivalent:

(i) δ has a symbolic representation.
(ii) δ is a symbolic ultrametric.

(iii) G1(δ ) = G0(δ ) is a cograph.

Somewhat surprisingly, this simple characterization of “ideal” orthology relations
does not seem to appear in the literature, even though Falls et al (2008) describes clus-
ters of orthologous genes as Turán graphs, a subclass of cographs. Related methods,
which use clustering algorithms to help identify orthologs, have been developed e.g.
by Tatusov et al (2000), Li et al (2003), Berglund et al (2008), Wheeler et al (2008)
or Lechner et al (2011).

We suspect that Corollary 4 could have far-reaching consequences for the area of
orthology detection. In particular, instead of employing clustering techniques, given
an arbitrary orthology relationδ , it suggests looking for either a symbolic ultrametric
or a cograph that is ‘close’ toδ , from which a (partially resolved) gene tree could then
be constructed. Clearly this is not a trivial endeavor sincein practical applications
any estimate ofδ will be plagued by noise and hence will be neither a symbolic
ultrametric nor a cograph.

More specifically, for finding symbolic representations, itcould be of interest to
try modifying theBUILD orBOTTOM-UP algorithms to enable them to handle arbitrary
orthology relations. For example, ideas behind theMIN-CUT supertree algorithm
(Semple and Steel, 2000), an algorithm extendingBUILD which outputs a tree given
anyset of rooted triples, could be explored, as well as related approaches for finding
compatible sets of triples that have as many triples as possible in common with a
given set of triples, such as those in e.g. Byrka et al (2010).Alternatively, Proposi-
tion 4 suggests that heuristics for finding maximum cliques (or subsets that are close
to being maximum cliques) in graphs might be useful for modifying theBOTTOM-UP
algorithm.

For finding cographs there is a large literature that could beuseful for analyzing
orthology relations. For example, in the cograph editing problem, given a graphG =
(V,E) one aims to convertG into a cographG∗ = (V,E∗) such that the number|E △

E∗| of inserted or deleted edges is minimized. Recently it has been proven that this
optimization problem is NP-complete (Liu et al, 2011) which, in view of the above
results, implies the following:

Corollary 5 Letδ : X×X →{0,1}⊙ be an orthology relation map, and K be a pos-
itive integer. Then the problem of deciding if there is a mapδ ∗ : X ×X → {0,1}⊙

such that G1(δ ∗) is a cograph (or, equivalently,δ ∗ a symbolic ultrametric) with
|E1(δ ) △ E1(δ ∗)| ≤ K is NP-complete.

Even so, it should be noted that the cograph editing problem is fixed parameter
tractable (Protti et al, 2009), and so there may be off-the-shelf solutions to help get
around this difficulty. Alternatively, efficient ILP approaches might be worth investi-
gating.

Before concluding it is worth mentioning that the general theory developed above
for |M|> 2 is potentially useful for more refined applications. More specifically, gene
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duplications have several different mechanistic causes that are also empirically dis-
tinguishable in real data sets. Thus it could be of interest,for example, to consider
setsM which, as well as representing speciation and duplication events could also
take into account events such as local segmental duplications, duplications by retro-
transposition, or whole-genome duplications (Zhang, 2003). Moreover, in addition to
such events, it might be of interest to consider lineage sorting and horizontal gene
transfer, both of which play an important role in genome evolution (Maddison, 1997;
Page and Charleston, 1998). From the point of view of gene trees, these behave in
a similar manner to speciations, although they introduce incongruencies between the
gene and species trees. Hence it might be of interest to investigate whether some of
the theory developed in this paper could be extended to phylogenetic networks, graph
theoretical structures generalizing phylogenetic trees which are commonly used for
modeling horizontal gene transfer (see e.g. (Huson et al, 2010)).
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