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Abstract

Background: Tree reconciliation problems have long been studied in phylogenetics. A particular variant of the
reconciliation problem for a gene tree T and a species tree S assumes that for each interior vertex X of T it is
known whether X represents a speciation or a duplication. This problem appears in the context of analyzing
orthology data.

Results: We show that Sis a species tree for T if and only if Sdisplays all rooted triples of T that have three
distinct species as their leaves and are rooted in a speciation vertex. A valid reconciliation map can then be
found in polynomial time. Simulated data shows that the event-labeled gene trees convey a large amount of
information on underlying species trees, even for a large percentage of losses.

Conclusions: The knowledge of event labels in a gene tree strongly constrains the possible species tree and, for a
given species tree, also the possible reconciliation maps. Nevertheless, many degrees of freedom remain in the
space of feasible solutions. In order to disambiguate the alternative solutions additional external constraints as

well as optimization criteria could be employed.



Background

The reconstruction of the evolutionary history of a geneiliaim necessarily based on at least three interrelatedstype
of information. The true phylogeny of the investigated $pgds required as a scaffold with which the associated
gene tree must be reconcilable. Orthology or paralogy oégéound in different species determines whether an
internal vertex in the gene tree corresponds to a duplic&ti@ speciation event. Speciation events, in turn, are
reflected in the species tree.

The reconciliation of gene and species trees is a widelyieyaroblem [1-10]. In most practical applications,
however, neither the gene tree nor the species tree candrenietd unambiguously.

Although orthology information is often derived from theoaciliation of a gene tree with a species tree (cf. e.g.
TreeFam [11], PhyOP [12], PHOG [13], EnsemblCompara GeneTrees [14], andMetaPhOrs [15]), recent

benchmarks studies [16] have shown that orthology can @&soferred at similar levels of accuracy without the need
to construct trees by means of clustering-based approacicbsagrthoMCL [17], the algorithms underlying the

COG database [18, 19InParanoid [20], or ProteinOrtho [21]. In [22] we have therefore addressed the question:
How much information about the gene tree, the species tnektheir reconciliation is already contained in the
orthology relation between genes?

According to Fitch’s definition [23], two genes are (co-Jarfogous if their last common ancestor in the gene tree
represents a speciation event. Otherwise, i.e., whenldggicommon ancestor is a duplication event, they are
paralogs. The orthology relation on a set of genes is thexefetermined by the gene tréeand an “event labeling”
that identifies each interior vertex ®fas either a duplication or a speciation event. (We disregare additional

types of events such as horizontal transfer and refer toff22]etails on how such extensions might be incorporated
into the mathematical framework.) One of the main resul{2®f, which relies on the theory of symbolic
ultrametrics developed in [24], is the following: A relation a set of genes is an orthology relation (i.e., it derives
from some event-labeled gene tree) if and only if it is a cpgrdor several equivalent characterizations of cographs
see [25]). Note that the cograph does not contain the fudkimftion on the event-labeled gene tree. Instead the
cograph is equivalent to the gene tree’s homomorphic imatgred by collapsing adjacent events of the same

type [22]. The orthology relation thus places strong andleaserpretable constraints on the gene tree.



This observation suggests that a viable approach to recotisg histories of large gene families may start from an
empirically determined orthology relation, which can beedtly adjusted to conform to the requirement of being a
cograph. The result is then equivalent to an (usually indetafy resolved) event-labeled gene tree, which might be
refined or used as constraint in the inference of a fully kesbfene tree. In this contribution we are concerned with
the next conceptual step: the derivation of a species toge &n event-labeled gene tree. As we shall see below, this
problem is much simpler than the full tree reconciliationdgem. Technically, we will approach this problem by
reducing the reconciliation map from gene tree to speceestty rooted triples of genes residing in three distinct

species. This is related to an approach that was develogg@]ifor addressing the full tree reconciliation problem.

Methods
Definitions and Notation
Phylogenetic Trees

A phylogenetic tree T (on Li§ a rooted tred = (V,E), with leaf set. C V, set of directed edgés, and set of
interior vertices/? = V \ L that does not contain any vertices with in- and outdegreeaadevhose rogbr €V has
indegree zero. In order to avoid uninteresting trivial casee assume thdit| > 3. The ancestor relatioft onV is
the partial order defined, for atly € V, by x <1 y whenevew lies on the path fronx to the root. If there is no danger
of ambiguity, we will writex <y rather tharx <7 y. Furthermore, we writ& < yto meanx < y andx #Yy. Forx eV,
we writeL(X) := {y € L|y < x} for the set of leaves in the subtr&¢x) of T rooted inx. Thus,L(pr) =L and

T(pr) =T. Forx,y € V such thak andy are joined by an edgec E we writee= [y, x] if x < y. Two phylogenetic
treesT = (V,E) andT’ = (V/,E’) onL are said to bequivalentf there exists a bijection frof toV’ that is the
identity onL, mapspr to py/, and extends to a graph isomorphism betw&emdT’. A refinementbf a phylogenetic
treeT onL is a phylogenetic treg’ on L such thafl can be obtained froni’ by collapsing edges (see e.g. [27]).
Suppose for the remainder of this section that (V, E) is a phylogenetic tree dnwith root pr. For a non-empty
subset of leave8 C L, we define Ica(A), or themost recent common ancestor gfté be the unique vertex ifi that
is the greatest lower bound Afunder the partial ordery. In caseA = {x,y}, we put Ica (x,y) := Icar ({x,y}) and

if A= {x,y,z}, we putlca(X,Y,z) :=Icar ({x,y,z}). For later reference, we have, for alE V, thatx = Icar (L(x)).
LetL’ C L be a subset dL’| > 2 leaves off . We denote by (L') = T(Icar (L)) the (rooted) subtree &f with root
Icar (L'). Note thafT (L") may have leaves that are not contained'inTherestriction T|,» of T to L’ is the
phylogenetic tree with leaf s&t obtained fronil by first forming the minimal spanning tree Thwith leaf set.’ and
then by suppressing all vertices of degree two with the gimepf pr if pr is a vertex of that tree. A phylogenetic
treeT’ on some subsét C L is said to bedisplayedby T (or equivalently tha® displays T) if T’ is equivalent with



T|u. AsetT of phylogenetic tree$ each with leaf settt is calledconsistentf .7 = 0 or there is a phylogenetic

treeT onL = Uy~ Lt thatdisplays.7, that is,T displays every tree contained ifi. Note that a consistent set of
phylogenetic trees is sometimes also called compatibedse [27]).

It will be convenient for our discussion below to extend theestor relation<t onV to the union of the edge and

vertex sets off. More precisely, for the directed edge= [u,V] € E we putx <1 eif and onfly if x <t vande <t xif

and only ifu <g x. For edgeg = [u,v] andf = [a,b] in T we pute < f if and only if v < b.

Rooted triples

Rooted triples are phylogenetic trees on three leaves wéttigely two interior vertices. Sometimes also called
rooted triplets [28] they constitute an important concephie context of supertree reconstruction [27,29] and will
also play a major role here. Suppdse- {x,y,z}. Then we denote b{(x,y),z) the tripler with leaf setL for which
the path fromx to y does not intersect the path frano the rootp, and thus, having lgéx,y) < Icac(x,y,z). ForT a
phylogenetic tree, we denote BY(T) the set of all triples that are displayed By

Clearly, a setZ of triples isconsistentf there is a phylogenetic tréE on X = |, L(pr) such thatZ C Z(T). Not
all sets of triples are consistent of course. Given a tripteZthere is a polynomial-time algorithm, referred to

in [27] asBUILD, that either constructs a phylogenetic tiethat displaysZ or that recognizes tha# is
inconsistentthat is, not consistent [30]. Various practical implenagiains have been described starting with [30],
improved variants are discussed in [31, 32].

The problem of determining a maximum consistent sub#eatf an inconsistent set of triples, on the other hand is
NP-hard and also APX-hard, see [33, 34] and the refereneesith We refer to [35] for an overview on the available
practical approaches and further theoretical results.

TheBUILD algorithm, furthermore, does not necessarily generata fven triple setZ a minimal phylogenetic tree
T that displaysZ, i.e., T may resolve multifurcations in an arbitrary way that is moplied by any of the triples in
Z% . However, the tree generated BYILD is minor-minimal, i.e., ifT’ is obtained fronil' by contracting an edgd,
does not display? anymore. The trees produced BYILD do not necessarily have the minimum number of internal
vertices. Thus, depending @4, not all trees consistent wit? can be obtained frorBUILD. Semple [36] gives an
algorithm that produces all minor-minimal trees consisteith . It requires only polynomial time for each of the
possibly exponentially many minor-minimal trees. The peatbof constructing a tree consistent wighand

minimizing the number of interior vertices in NP-hard anddi® approximate [37].



Figure 1:Left: Example of an evolutionary scenario showing the evolutiba gene family. The corresponding true
gene treel appears embedded in the true species &reEhe mapjt is implicitly given by drawing the species tree
superimposed on the gene tree. In particular, the speciaédices in the gene tree (red circuits) are mapped to the
vertices of the species tree (gray ovals) and the duplicatéstices (blue squares) to the edges of the species tree.
Gene losses are represented witl (mapping to edges iS). The observable speciagh, ..., f are the leaves of the
species tree (green ovals) and extand genes therein aledatiéh “©".

Right: The corresponding gene tréewith observed events from the left tree. Leaves are labeitttie correspond-

ing species.

Event Labeling, Species Labeling, and Reconciliation Map

A gene tre€l arises through a series of events along a specieStMe consider boti andSas phylogenetic trees
with leaf setd (the set of genes) ar8i(the set of species), respectively. We assume|that 3 and|B| > 1. We
consider only gene duplications and gene losses, whichplake between speciation events, i.e., along the edges of
S. Speciation events are modeled by transmitting the gentebaof an ancestral lineage to each of its daughter
lineages.

The true evolutionary history of a single ancestral gens ttan be thought of as a scenario such as the one depicted
in Fig. 1. Since we do not consider horizontal gene trangféneage sorting in this contribution, an evolutionary
scenario consists of four components: (1) A true gene‘ftr,e(é) a true species tre® (3) an assignment of an event
type (i.e., speciatiom, duplication], loss®, or observable (extant) gena to each interior vertex and leaf @f, and

(4) a mapu assigning every vertex af to a vertex or edge din such a way that (a) the ancestor ordef d§

preserved, (b) a vertex df is mapped to an interior vertex &fif and only if it is of type speciation, (c) extant genes



of T are mapped to leaves 6f*

In order to allowjI to map duplication vertices to a time point before the lastiemn ancestor of all species $we
need to extend our definition of a species tree by adding aa e&ttex and an extra edge “above” the last common
ancestor of all species. Note that strictly spealdig not a phylogenetic tree anymore. In case there is no dariger
confusion, we will from now on refer to a phylogenetic treeBwith this extra edge and vertex added as a species
tree onB and topg as the root 0B. Also, we canonically extend our notions of a triple, digjotg, etc. to this new
type of species tree.

The true gene tre represents all extant as well as all extinct genes, all dagitin, and all speciation events. Not all
of these events are observable from extant genes data, Bovrparticular, extinct genes cannot be observed. The
observable parff = T(V,E) of T is the restriction off to the leaf set. of extant genes, i.eT, = T|,.

Furthermore, we can observe a n@mpL — B that assigns to each extant gene the species in which iegesef
course, foix € L we haveo(x) = fi(x). HereB is the leaf set of the extant species tree, Bes o(L). For ease of
readability, we also putr(T’) = {o(x) : x € L(y)} for any subtred”’ of T with T’ = T(y) wherey € V°.

Alternatively, we will sometimes also write(y) instead ofo (T (y)). Last but not least, for C L, we put
a(Y)={o(y) :yeY}.

The observable part of the species tfee (W, H) is the restrictior§g of Sto B. In order to account for duplication
events that occurred before the first speciation event,dbti@nal vertexps € W and the additional edge

[ps,IcasB] € H must be part of.

The evolutionary scenario also impliesevent labelingnapt : V — {e,[J, ®} that assigns to each interior vertex

of T a valuet(v) indicating whethew is a speciation even#) or a duplication event(). It is convenient to use the
special label> for the leaves of T. We write(T,t) for the event-labeled tree. We remark thatas introduced as
“symbolic dating map” in [24]. It is callediscriminatingif, for all edges{u,v} € E, we havet(u) # t(v) in which
case(T,t) is known to be in 1-1-correspondence to a cograph [22]. Nwtewe will in general not require thats
discriminating in this contribution. FoF = (V,E) a gene tree oh, B a set of species, and mapando as specified

above, we require however thatand o must satisfy the following compatibility property:

(C) LetzeV be a speciation vertex, i.¢(z) = e, and letT’ andT” be subtrees of rooted in two distinct children

of z Theno(T)Na(T") =0.

Note the we do not require the converse, i.e., from the disjeiss of the species set§T’) ando(T”) we donot

1Alternatively, one could defin@ andSto be metric graphs (i.e., comprising edges that are realaiteglued together at the vertices) with a
distance function that measures evolutionary time. In thitupe, {1 is a continuous map that preserves the temporal order anieshtionditions
(b) and (c).



conclude that their last common ancestor is a speciatiaexer

Forx,y € L andz= Icar (x,y) it immediately follows from condition (C) that if(Icar (x,y)) = e thena(X) # o (y)
since, by assumptiom,andy are leaves in distinct subtrees belavEquivalently, two distinct genes# yin L for
which o(x) = o(y) holds, that is, they are contained in the same speciBsroiist have originated from a duplication
event, i.e.f(Icar (x,y)) = O. Thus we can regard as a proper vertex coloring of the cograph correspondiff@to.
Let us now consider the properties of the restrictiofi @b the observable parof T andSof S. Consider a
speciation vertexin T. If x has two childrery’ andy” so thatl(y') andL(y") are both non-empty then
x=lcaz(Z,Z’) forall Z e L(y') andZ’ € L(y") and hencex = Icar (L(y") UL(y”)). In particularx is an observable
vertex inT. Furthermore, we know that(L(y')) N o(L(y")) = 0, and thereforei(x) = Icas(a(L(y) UL(Y")).
Considering all pairs of children with this property thisidze rephrased g$(x) = Icag(o(L(x))). On the other hand,
if x does not have at least two children with this property, amtbehe corresponding speciation vertex cannot be
viewed as most recent common ancestor of the set of its désotninS, thenx is not a vertex in the restriction

T= T|L of T to the seL of the extant genes. The restrictiprof [I to the observable treE therefore satisfies the

properties used below to define reconciliation maps.

Definition 1. Suppose that B is a set of species, that §V,H) is a phylogenetic tree on B, that=¥ (V,E) is a gene
tree with leaf set L and that : L — B andt:V — {e,[J, ®} are the maps described above. Then we say that S is a

species tree fofT,t, o) if there is a mapu : V — W UH such that, for all xc V:
(i) Ift(x) =@ thenu(x) = o(x).
(i) 1ft (x) =ethenu(x) e W\B.
(iii) Ift (x) =0 thenu(x) € H.
(iv) Letxy eV with x<Ty. We distinguish two cases:
1. Ift(x) =t(y) = O thenu(x) <su(y)inS.
2. Ift(x) =t(y) = e ort(x) #t(y) thenu(x) <su(y)in S.
(V) Ift(x) = e thenu(x) = Icag(a(L(x)))
We callu the reconciliation map froniT,t,0) to S.

We note thaps—(ps) = 0 holds as an immediate consequence of prog&jtwhich implies that no speciation node

can be mapped above K8), the unique child ops.



Gene Tree Species Tree

Figure 2: Example of the mapping of nodes of the gene trék to the species tre® Speciation nodes in the gene
tree (red circles) are mapped to nodes in the species trpication nodes (blue squares) are mapped to edges in the
species treeo is shown as dashed green arrows. For clarity of expositienhave identified the leaves of the gene
tree on the left with the species they reside in via the map

We illustrate this definition by means of an example in Fign@ eemark that it is consistent with the definition of
reconciliation maps for the case when the event labelmgT is not known [38]. Continuing with our notation from

Definition 1 for the remainder of this section, we easily detheir axiom set as

Lemma 2. If u is a reconciliation map fronT,t,0) to S and L is the leaf set of T then, for alex/,
(D1) xe L impliesu(x) = o(x).

(D2.a) u(x) € W impliesu(x) = Icag(a(L(x))).

(D2.b) u(x) € H impliesicag(o(L(X))) <s H(X).
(D3) Suppose,y €V such that <1 y. If u(x), u(y) € H thenpu(x) <s u(y); otherwisep (x) <s p(y).

Proof. Supposex € V. Then (D1) is equivalent t@) and the fact that(x) = © if and only if x € L. Conditions(ii)
and(v) together imply (D2.a). Ifu(x) € H thenx is duplication vertex ol . From condition(iv) we conclude that
Icag(o(L(X))) <s U(X). Since Icg(o(L(x))) € W, equality cannot hold and so (D2.b) follows. (D3) is an imiiaés

consequence dfv). O

ForT a gene treeB a set of species and mapsandt as above, our goal is now to characterize (1) thdsé, o) for

which a species tree dexists and (2) species trees Bthat are species trees f(F,t, o).



Results and Discussion
Results

Unless stated otherwise, we continue with our assumptinii; 0T, t, o), andSas stated in Definition 1. We start
with the simple observation that a reconciliation map frdit, o) to Spreserves the ancestor orderffoand hence

T imposes a strong constraint on the relationship of moshtez@mmon ancestors B

Lemma 3. Letu :V —WUH be a reconciliation map fron(iT,t, o) to S. Then

Icas(u(x), u(y)) =s p(lcar (x,y)) @)
holds for all xy e V.

Proof. Assume thak andy are distinct vertices of . Consider the unique pathconnectingk with y. P is uniquely
subdivided into a patR’ from x to Icar (x,y) and a pattP” from Icar (x,y) toy. Condition (iv) implies that the
images of the vertices & andP” underp, resp., are ordered iBwith regards to<s and hence are contained in the
intervalsQ andQ” that connecti(lcar (x,y)) with p(x) and(y), respectively. In particulau(Icar (x,y)) is the

largest element (w.r.tzs) in the union ofQ’ U Q" which contains the unique path frog(x) to (y) and hence also

lcas(p(X), 1 (Y))- O

Since a phylogenetic tree (in the original serBé3 uniquely determined by its induced triple $&{T), it is
reasonable to expect that all the information on the spé@esgs) for(T,t, o) is contained in the images of the triples
in R(T) (or more precisely their leaves) under However, this is not the case in general as the situation is
complicated by the fact that not all triplesf(T) are informative about a species tree that displey$he reason is
that duplications may generate distinct paralogs longreefte divergence of the species in which they eventually

appear. To address this problem, we associat& g o) the set of triples
&=06(Tto)={re 9%(T)|t(lcar(r)) = e and o(x) # a(y), for allx,y € L(r) pairwise distinc} . 2

As we shall see below(T,t, o) contains all the information on a species tree(fbit, o) that can be gleaned from

(T,t,0).

Lemma 4. If u is a reconciliation map fron(T,t, o) to S and((x,y),2) € &(T,t, o) then S displays
((a(x),0(y)),0(2).

Proof. Put® = &(T,t, o) and recall that denotes the leaf set @f. Let {x,y,z} € (5) and assume w.l.o.g. that

((x,y),z) € &. First consider the case thatcar (x,y)) = e. From condition(v) we conclude that
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Figure 3: Triples froml whose root is a duplication event are in general not displdg@n the species tres. (a)
Triple with duplication event at the root obtained from theestevolutionary history of shown in panel (b). Panel (c)
is the true species tree. In the triple (a) the spegiggpears as the outgroup even thoughxisethe outgroup in the
true species tree.

p(lcar (x,y)) = Icas(a(x), a(y)) andu(lcar (x,y,2)) = Icas(o(x),a(y),a(z)). Since, by assumption,

Icar (x,y) < Icar (x,Y,z), we have as a consequence of conditiohthat i (Icar (x,y)) < p(lcar (x,y,2)). From
Icar (x,2) = Icar (y,z) = Icar (x,Y,z) we conclude thaBmust display((o(x),a(y)),c(z)) asSis assumed to be a
species tree fofT,t, o).

Now suppose thatlcar (x,y)) = O and thereforey (Icar (x,y)) € H. Moreover,u(Icar (x,Y,2z)) € W holds. Hence,
Lemma 3 and propertfiv) together imply that lcg{o(x), a(y)) <s u(lcar(x,y)) <s u(lcar (x,y,z)). Thus, we again
obtain that the triplé(o(x),o(y)),0(2)) is displayed bys. O

It is important to note that a similar argument cannot be nfadgiples in93(T) rooted in a duplication vertex df
as such triplets are in general not displayed by a specie$dr¢T,t, o). We present the generic counterexample in
Fig. 3.

To state our main result (Theorem 6), we require a furthendiefin.
Definition 5. For (T,t, o), we define the set
6 =6(T.t,0) ={((a,b),0)[3((xy),2) € &(T,t,0) with o(x) = a, o (y) = b, ando(z) = c} 3)

As an immediate consequence of Lemm&4T,t, o) must be displayed by any species tree(fbit, o) with leaf set

B.

Theorem 6. Let S be a species tree with leaf set B. Then there exists ag#ietion mapyu from (T,t,0) to S

whenever S displays all triples &(T,t, o).

Proof. Recall that is the leaf set o = (V,E). PutS= (W,H) and& = &(T,t,0). We first consider the subset
G:={xeV |t(x) € {e,©}} of V comprising of the leaves and speciation vertice$ of

We explicitly construct the map : G — W as follows. For alk € V, we put

10



(M1) p(x)=0o(x)ift(x) =0,
(M2) p(x) =lcas(o(L(x))) if t(x) =e.

Note that alternative (M1) ensures thasatisfies Conditioifi). Also note that in view of the simple consequence
following the statement of ConditiofC) we have for allk € V with t(x) = e that there are leavgs,y’ € L(x) with
o(y) # a(y’). Thus lcg(u(L(x)) € W\ B, i.e. u satisfies Conditiofii). Also note that, by definition, Alternative
(M2) ensures thatt satisfies Conditiorv).

Claim: If x,y € G with x <7 y thenu(x) <s u(y).

Sincey cannot be a leaf of asx <7 y we havet(y) = e. There are two cases to consider, eitt{&f = e ort(x) = ©.
In the latter casegt(x) = g(x) € B while u(y) € W\ B as argued above. Singe= L(y) we haveu(x) <s u(y), as
desired.

Now supposé(x) = e. Again by the simple consequence following Condit{@), there are leaves, X’ € L(x) with
a=o0(X) # g(X") =b. Sincex <7 y andt(y) = e, by Condition(C), we conclude that = o(y') ¢ o(L(x)) holds for
ally € L(y) \ L(x). Thus,((a,b),c) € &. But then((a,b),c) is displayed bySand therefore

Icas(a,b) <slcas(a, b, c). Since this holds for all triple§(x’,x"),y’) € & with X, x” € L(x) andy’ € L(y) \ L(x) we
concludeu(x) = Icag(o(L(x))) <slcas(a(L(x))Ua(L(y)\L(x))) =Icas(a(L(y))) = u(y), establishing the Claim.
It follows immediately thajt also satisfies Conditiofiv.2) if x andy are contained if.

Next, we extend the map to the entire vertex s&t of T using the following observation. Lete V with t(x) = [
We know by Lemma 3 that (x) is an edgéu,v] € H so that Icg(o(L(x))) <sV. Such an edge exists for

v =lcag(o(L(x))) by construction. Every speciation vertgx V with x <1 y therefore necessarily maps above this

edge, i.e.u <s u(y) must hold. Thus we set
(M3) p(x) =[u,lcas(o(L(x)))]if t(x) =00

which now makeg: a map fromv toWUH.

By construction, Condition§ii) , (iv.2) and(v) are thus satisfied by. On the other hand, if there is speciation vertex
y between two duplication verticesandx of T, i.e.,x <1 y <1 X, thenu(x) <s 4(X). Thusu also satisfies
Condition(iv.1).

It follows that i is a reconciliation map fron(iT,t,0) to S. O

Corollary 7. Suppose that S is a species tree(fort, o) and that L and B are the leaf sets of T and S, respectively.

Then a reconciliation map from (T,t,0) to S can be constructed in(@@||B|).

11



Proof. In order to find the image of an interior vertexof T undery, it suffices to determine(L(x)) (which can be
done for allx simultaneously e.g. by bottom up transversarah O(|L||B|) time) and Icg(og(L(x))). The latter task
can be solved in linear time using the idea presented in [B8alculate the lowest common ancestor for a group of

nodes in the species tree. O

We remark that given a species ti®en B that displays all triples & (T,t, o), there is no freedom in the
construction of a reconciliation map on the $ete V | t(x) € {e,®}}. The duplication vertices df, however, can
be placed differently, resulting in possibly exponengiaiany reconciliation maps frofT,t,o) to S

Lemma 4 implies that consistency of the triple &€fT,t, o) is necessary for the existence of a reconciliation map
from (T,t,0) to a species tree d&. Theorem 6, on the other hand, establishes that this is af§cient. Thus, we

have
Theorem 8. There is a species tree on B fF,t, g) if and only if the triple se®(T,t, 0) is consistent.

We remark that a related result is proven in [26, Theorenobitfe full tree reconciliation problem starting from a
forest of gene trees.
It may be surprising that there are no strong restrictionthersetS(T,t, o) of triples that are implied by the fact that

they are derived from a gene trégt, o).

Theorem 9. For every sefX of triples on some finite set B of size at least one there is a rer T= (V, E) with leaf
set L together with an event mapV — {e,[J,®} and a mapo : L — B that assigns to every leaf of T the species in

B it resides in such that = &(T,t, 0).

Proof. Irrespective of whetheX is consistent or not we construct the components of the redj@-tuple(T,t, o) as
follows: To each triple, = ((Xk1,Xk2), X3) € X we associate a tripl& = ((ax1,a2), a3) vVia a map

Ok : Lk = {au1, &, ks — {X1, X2, X3} With o (axi) = X for i = 1,2, 3 where we assume that for any two distinct
triplesry,r; € X we have thaby(Lx) N oj (L)) = 0. Then we obtaim = (V, E) by first adding a single new vertgx
to the union of the vertex sets of the triplgsand then connectingr to the rootpy of each of the triplegi. Clearly,
T is a phylogenetic tree dﬂ:Urkex L(pk). Next, we define the map V — {e,[0,®} by puttingt(pr) = 0O,
t(a)=0@forallacLandt(a)=eforallacV — (LuU{pr}). Finally, we define the map : L — B by putting, for

allael, o(a) = ox(a) wherea € Ly. Clearly&(T,t,0) = X. O

We remark that the gene tree constructed in the proof of Em& can be made into a binary tree by splitting the

root pr into a series of duplication and loss events so that eachemuistthe descendant of a different paralog.

12
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Figure 4: The se6(T,t, o) inferred from the event labeled gene ti@et, o) does not necessarily define a unique
species tree. For clarity of exposition, we have identifiéd the mapo, the leaves of the gene tree and of the set of
triples&(T,t, o) with the species they reside in .

Since by Theorem. 9 there are no restrictions on the podsiple setsS(T,t, 0), it is clear thatSwill in general not

be unique. An example is shown in Fig.4.

Results for simulated gene trees

In order to determine empirically how much information oe #pecies tree we can hope to find in event labeled gene
trees, we simulated species trees together with corregppedent-labeled gene trees with different duplicatiod an
loss rates. Approximately 150 species trees with 10 to 1@0iep were generated according to the the “age

model” [40]. These trees are balanced and the edge lengthmamalized so that the total length of the path from

the root to each leaf is 1. For each species tree, we thenatieduh gene tree as described in [41], with duplication
and loss rate parameters [0, 1] sampled uniformly. Events are modeled by a Poisson distoibwvith parameter

r- ¢, wherel is the length of an edge as generated by age model. Lossesdditionally constrained to retain at

least one copy in each species, i@(L) = B is enforced. After determining the triple s&tT,t, g) according to

Theorem 6, we useBUILD [27] (see also [42]) to compute the species tree. In all ¢&E4%.D returns a tree that is a
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Figure 5: Left: Heat map that represents the percentage of recoveredigpiits inferred species tree from triples
obtained from simulated event-labeled gene trees witlemifft loss and duplication rates.

Right: Scattergram that shows the average of losses and dupfisatiche generated data and the accuracy of the
inferred species tree.

homomorphic contraction of the simulated species tree.dlfference between the original and the reconstructed
species tree is thus conveniently quantified as the difterémthe number of interior vertices. Note that in our
situation this is the same as the split metric [27].

The results are summarized in Fig. 5. Not surprisingly, #everable information decreases in particular with the
rate of gene loss. Nevertheless, at least 50% of the spliteiapecies tree are recoverable even at very high loss
rates. For moderate loss rates, in particular when genedase less frequent than gene duplications, nearly the
complete information on the species tree is preservediritésesting to note tha&UILD does not incorporate splits

that are not present in the input tree, although this is ndhemaatically guaranteed.

Discussion

Event-labeled gene trees can be obtained by combining to@s&uction of gene phylogenies with methods for
orthology detection. Orthology alone already encapssilpsgtial information on the gene tree. More precisely, the
orthology relation is equivalent to a homomorphic imagehef gene tree in which adjacent vertices denote different
types of events. We discussed here the properties of rdiatioci mapsu from a gene tred@ along with an event

labelling mapt and a gene to species assignment midp a species treBand show thafT,t) event labeled gene
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trees for which a species tree exists can be characterizeds of the se®&(T,t, o) of triples that is easily
constructed from a subset of triples©f Simulated data shows, furthermore, that such trees canigge amount
of information on the underlying species tree, even if theegless rate is high.

It can be expected for real-life data the tieeontains errors so tha&t := &(T,t, o) may not be consistent. In this
case, an approximation to the species tree could be obtaigeffom a maximum consistent subsetafAlthough
(the decision version of) this problems is NP-complete 443, there is a wide variety of practically applicable
algorithms for this task, see [35, 45]. Everéifis consistent, the species tree is usually not uniquelyrohited.
Algorithms to list all trees consistent with can be found e.qg. in [46,47]. A characterization of triplesshat
determine a unique tree can be found in [48]. Since our magmast is to determine the constraints imposed by
(T,t,0) on the species tre® we are interested in a least resolved Bbat displays all triples i©. TheBUILD
algorithm and its relatives in general produce minor-maitrees, but these are not guaranteed to have the minimal
number of interior nodes. Finding a species tree with a mahimmber of interior nodes is again a hard

problem [37]. At least, the vertex minimal trees are amomgpbssibly exponentially many minor minimal trees
enumerated by Semple’s algorithms [36].

For a given species tre® it is rather easy to find a reconciliation mggdrom (T,t,0) to S. A simple solutionu is
closely related to the so-called LCA reconcilation: evepgex of T is mapped to the last common ancestor of the
species below it, lecgo(L(x))) or to the edge immediately above it, depending on whetliespeciation or a
duplication node. While this solution is unique for the spéion nodes, alternative mappings are possible for the
duplication nodes. The set of possible reconciliation negpsstill be very large despite the specified event labels.
If the event labeling is unknown, there is a reconciliation from any gene ffee any species tres, realized in
particular by the LCA reconciliation, see e.g. [26, 38]. Theonciliation then defines the event types. Typically, a
parsimony rule is then employed to choose a reconciliatiap m which the number of duplications and losses is
minimized, see e.g. [1,4,5,9]. In our setting, on the otleerd) the event types are prescribed. This restricts the
possible reconciliation maps so that the gene tree cannetdoaciled with an arbitrary species tree any more.
Since the observable events on the gene tree are fixed, thibleagconciliations cannot differ in the number of
duplications. Still, one may be interested in reconciiatimaps that minimize the number of loss events. An
alternative is to maximize the number of duplication evehéd map to the same edgeSio account for whole

genome and chromosomal duplication event [9].
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Conclusions

Our approach to the reconciliation problem via event-labglene trees opens up some interesting new avenues to
understanding orthology. In particular, the results i tontribution combined with those in [22] concerning
cographs should ultimately lead to a method for automdgicgnerating orthology relations that takes into account
species relationships without having to explicitly comggene trees. This is potentially very useful since gene tree

estimation is one of the weak points of most current appresith orthology analysis.
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