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Abstract

Background: Tree reconciliation problems have long been studied in phylogenetics. A particular variant of the

reconciliation problem for a gene tree T and a species tree S assumes that for each interior vertex x of T it is

known whether x represents a speciation or a duplication. This problem appears in the context of analyzing

orthology data.

Results: We show that S is a species tree for T if and only if S displays all rooted triples of T that have three

distinct species as their leaves and are rooted in a speciation vertex. A valid reconciliation map can then be

found in polynomial time. Simulated data shows that the event-labeled gene trees convey a large amount of

information on underlying species trees, even for a large percentage of losses.

Conclusions: The knowledge of event labels in a gene tree strongly constrains the possible species tree and, for a

given species tree, also the possible reconciliation maps. Nevertheless, many degrees of freedom remain in the

space of feasible solutions. In order to disambiguate the alternative solutions additional external constraints as

well as optimization criteria could be employed.
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Background

The reconstruction of the evolutionary history of a gene family is necessarily based on at least three interrelated types

of information. The true phylogeny of the investigated species is required as a scaffold with which the associated

gene tree must be reconcilable. Orthology or paralogy of genes found in different species determines whether an

internal vertex in the gene tree corresponds to a duplication or a speciation event. Speciation events, in turn, are

reflected in the species tree.

The reconciliation of gene and species trees is a widely studied problem [1–10]. In most practical applications,

however, neither the gene tree nor the species tree can be determined unambiguously.

Although orthology information is often derived from the reconciliation of a gene tree with a species tree (cf. e.g.

TreeFam [11], PhyOP [12], PHOG [13], EnsemblCompara GeneTrees [14], andMetaPhOrs [15]), recent

benchmarks studies [16] have shown that orthology can also be inferred at similar levels of accuracy without the need

to construct trees by means of clustering-based approachessuch asOrthoMCL [17], the algorithms underlying the

COG database [18,19],InParanoid [20], or ProteinOrtho [21]. In [22] we have therefore addressed the question:

How much information about the gene tree, the species tree, and their reconciliation is already contained in the

orthology relation between genes?

According to Fitch’s definition [23], two genes are (co-)orthologous if their last common ancestor in the gene tree

represents a speciation event. Otherwise, i.e., when theirlast common ancestor is a duplication event, they are

paralogs. The orthology relation on a set of genes is therefore determined by the gene treeT and an “event labeling”

that identifies each interior vertex ofT as either a duplication or a speciation event. (We disregardhere additional

types of events such as horizontal transfer and refer to [22]for details on how such extensions might be incorporated

into the mathematical framework.) One of the main results of[22], which relies on the theory of symbolic

ultrametrics developed in [24], is the following: A relation on a set of genes is an orthology relation (i.e., it derives

from some event-labeled gene tree) if and only if it is a cograph (for several equivalent characterizations of cographs

see [25]). Note that the cograph does not contain the full information on the event-labeled gene tree. Instead the

cograph is equivalent to the gene tree’s homomorphic image obtained by collapsing adjacent events of the same

type [22]. The orthology relation thus places strong and easily interpretable constraints on the gene tree.
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This observation suggests that a viable approach to reconstructing histories of large gene families may start from an

empirically determined orthology relation, which can be directly adjusted to conform to the requirement of being a

cograph. The result is then equivalent to an (usually incompletely resolved) event-labeled gene tree, which might be

refined or used as constraint in the inference of a fully resolved gene tree. In this contribution we are concerned with

the next conceptual step: the derivation of a species tree from an event-labeled gene tree. As we shall see below, this

problem is much simpler than the full tree reconciliation problem. Technically, we will approach this problem by

reducing the reconciliation map from gene tree to species tree to rooted triples of genes residing in three distinct

species. This is related to an approach that was developed in[26] for addressing the full tree reconciliation problem.

Methods
Definitions and Notation

Phylogenetic Trees

A phylogenetic tree T (on L)is a rooted treeT = (V,E), with leaf setL ⊆V, set of directed edgesE, and set of

interior verticesV0 =V \L that does not contain any vertices with in- and outdegree oneand whose rootρT ∈V has

indegree zero. In order to avoid uninteresting trivial cases, we assume that|L| ≥ 3. The ancestor relation�T onV is

the partial order defined, for allx,y∈V, by x�T y whenevery lies on the path fromx to the root. If there is no danger

of ambiguity, we will writex� y rather thanx�T y. Furthermore, we writex≺ y to meanx� y andx 6= y. Forx∈V,

we writeL(x) := {y∈ L|y� x} for the set of leaves in the subtreeT(x) of T rooted inx. Thus,L(ρT) = L and

T(ρT) = T. Forx,y∈V such thatx andy are joined by an edgee∈ E we writee= [y,x] if x≺ y. Two phylogenetic

treesT = (V,E) andT ′ = (V ′,E′) onL are said to beequivalentif there exists a bijection fromV to V ′ that is the

identity onL, mapsρT to ρT ′ , and extends to a graph isomorphism betweenT andT ′. A refinementof a phylogenetic

treeT onL is a phylogenetic treeT ′ onL such thatT can be obtained fromT ′ by collapsing edges (see e.g. [27]).

Suppose for the remainder of this section thatT = (V,E) is a phylogenetic tree onL with root ρT . For a non-empty

subset of leavesA⊆ L, we define lcaT(A), or themost recent common ancestor of A, to be the unique vertex inT that

is the greatest lower bound ofA under the partial order�T . In caseA= {x,y}, we put lcaT(x,y) := lcaT({x,y}) and

if A= {x,y,z}, we put lcaT(x,y,z) := lcaT({x,y,z}). For later reference, we have, for allx∈V, thatx= lcaT(L(x)).

Let L′ ⊆ L be a subset of|L′| ≥ 2 leaves ofT. We denote byT(L′) = T(lcaT(L′)) the (rooted) subtree ofT with root

lcaT(L′). Note thatT(L′) may have leaves that are not contained inL′. Therestriction T|L′ of T to L′ is the

phylogenetic tree with leaf setL′ obtained fromT by first forming the minimal spanning tree inT with leaf setL′ and

then by suppressing all vertices of degree two with the exception of ρT if ρT is a vertex of that tree. A phylogenetic

treeT ′ on some subsetL′ ⊆ L is said to bedisplayedby T (or equivalently thatT displays T′) if T ′ is equivalent with
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T|L′ . A setT of phylogenetic treesT each with leaf setLT is calledconsistentif T = /0 or there is a phylogenetic

treeT onL =
⋃

T∈T LT thatdisplaysT , that is,T displays every tree contained inT . Note that a consistent set of

phylogenetic trees is sometimes also called compatible (see e.g. [27]).

It will be convenient for our discussion below to extend the ancestor relation�T onV to the union of the edge and

vertex sets ofT. More precisely, for the directed edgee= [u,v] ∈ E we putx≺T e if and onfly if x�T v ande≺T x if

and only ifu�E x. For edgese= [u,v] and f = [a,b] in T we pute� f if and only if v� b.

Rooted triples

Rooted triples are phylogenetic trees on three leaves with precisely two interior vertices. Sometimes also called

rooted triplets [28] they constitute an important concept in the context of supertree reconstruction [27,29] and will

also play a major role here. SupposeL = {x,y,z}. Then we denote by((x,y),z) the tripler with leaf setL for which

the path fromx to y does not intersect the path fromz to the rootρr and thus, having lcar(x,y)≺ lcar(x,y,z). ForT a

phylogenetic tree, we denote byR(T) the set of all triples that are displayed byT.

Clearly, a setR of triples isconsistentif there is a phylogenetic treeT onX =
⋃

r∈R L(ρr) such thatR ⊆ R(T). Not

all sets of triples are consistent of course. Given a triple setR there is a polynomial-time algorithm, referred to

in [27] asBUILD, that either constructs a phylogenetic treeT that displaysR or that recognizes thatR is

inconsistent, that is, not consistent [30]. Various practical implementations have been described starting with [30],

improved variants are discussed in [31,32].

The problem of determining a maximum consistent subsetR ′ of an inconsistent set of triples, on the other hand is

NP-hard and also APX-hard, see [33,34] and the references therein. We refer to [35] for an overview on the available

practical approaches and further theoretical results.

TheBUILD algorithm, furthermore, does not necessarily generate fora given triple setR a minimal phylogenetic tree

T that displaysR, i.e.,T may resolve multifurcations in an arbitrary way that is not implied by any of the triples in

R. However, the tree generated byBUILD is minor-minimal, i.e., ifT ′ is obtained fromT by contracting an edge,T ′

does not displayR anymore. The trees produced byBUILD do not necessarily have the minimum number of internal

vertices. Thus, depending onR, not all trees consistent withR can be obtained fromBUILD. Semple [36] gives an

algorithm that produces all minor-minimal trees consistent with R. It requires only polynomial time for each of the

possibly exponentially many minor-minimal trees. The problem of constructing a tree consistent withR and

minimizing the number of interior vertices in NP-hard and hard to approximate [37].
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Figure 1:Left: Example of an evolutionary scenario showing the evolution of a gene family. The corresponding true
gene treeT̂ appears embedded in the true species treeŜ. The mapµ̂ is implicitly given by drawing the species tree
superimposed on the gene tree. In particular, the speciation vertices in the gene tree (red circuits) are mapped to the
vertices of the species tree (gray ovals) and the duplication vertices (blue squares) to the edges of the species tree.
Gene losses are represented with “⊗” (mapping to edges in̂S). The observable speciesa,b, . . . , f are the leaves of the
species tree (green ovals) and extand genes therein are labeled with “⊙”.
Right: The corresponding gene treeT with observed events from the left tree. Leaves are labeled with the correspond-
ing species.

Event Labeling, Species Labeling, and Reconciliation Map

A gene treeT arises through a series of events along a species treeS. We consider bothT andSas phylogenetic trees

with leaf setsL (the set of genes) andB (the set of species), respectively. We assume that|L| ≥ 3 and|B| ≥ 1. We

consider only gene duplications and gene losses, which takeplace between speciation events, i.e., along the edges of

S. Speciation events are modeled by transmitting the gene content of an ancestral lineage to each of its daughter

lineages.

The true evolutionary history of a single ancestral gene thus can be thought of as a scenario such as the one depicted

in Fig. 1. Since we do not consider horizontal gene transfer or lineage sorting in this contribution, an evolutionary

scenario consists of four components: (1) A true gene treeT̂, (2) a true species treêS, (3) an assignment of an event

type (i.e., speciation•, duplication�, loss⊗, or observable (extant) gene⊙) to each interior vertex and leaf ofT̂, and

(4) a mapµ assigning every vertex of̂T to a vertex or edge of̂S in such a way that (a) the ancestor order ofT̂ is

preserved, (b) a vertex of̂T is mapped to an interior vertex ofŜ if and only if it is of type speciation, (c) extant genes
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of T̂ are mapped to leaves ofŜ.1

In order to allowµ̂ to map duplication vertices to a time point before the last common ancestor of all species in̂S, we

need to extend our definition of a species tree by adding an extra vertex and an extra edge “above” the last common

ancestor of all species. Note that strictly speakingŜ is not a phylogenetic tree anymore. In case there is no dangerof

confusion, we will from now on refer to a phylogenetic tree onB with this extra edge and vertex added as a species

tree onB and toρB as the root ofB. Also, we canonically extend our notions of a triple, displaying, etc. to this new

type of species tree.

The true gene treêT represents all extant as well as all extinct genes, all duplication, and all speciation events. Not all

of these events are observable from extant genes data, however. In particular, extinct genes cannot be observed. The

observable partT = T(V,E) of T̂ is the restriction ofT̂ to the leaf setL of extant genes, i.e.,T = T̂|L.

Furthermore, we can observe a mapσ : L → B that assigns to each extant gene the species in which it resides. Of

course, forx∈ L we haveσ(x) = µ̂(x). HereB is the leaf set of the extant species tree, i.e.,B= σ(L). For ease of

readability, we also putσ(T ′) = {σ(x) : x∈ L(y)} for any subtreeT ′ of T with T ′ = T(y) wherey∈V0.

Alternatively, we will sometimes also writeσ(y) instead ofσ(T(y)). Last but not least, forY ⊆ L, we put

σ(Y) = {σ(y) : y∈Y}.

The observable part of the species treeS= (W,H) is the restrictionŜ|B of Ŝ to B. In order to account for duplication

events that occurred before the first speciation event, the additional vertexρS∈W and the additional edge

[ρS, lcaSB] ∈ H must be part ofS.

The evolutionary scenario also implies anevent labelingmapt : V →{•,�,⊙} that assigns to each interior vertexv

of T a valuet(v) indicating whetherv is a speciation event (•) or a duplication event (�). It is convenient to use the

special label⊙ for the leavesx of T. We write(T, t) for the event-labeled tree. We remark thatt was introduced as

“symbolic dating map” in [24]. It is calleddiscriminatingif, for all edges{u,v} ∈ E, we havet(u) 6= t(v) in which

case(T, t) is known to be in 1-1-correspondence to a cograph [22]. Note that we will in general not require thatt is

discriminating in this contribution. ForT = (V,E) a gene tree onL, B a set of species, and mapst andσ as specified

above, we require however thatµ andσ must satisfy the following compatibility property:

(C) Letz∈V be a speciation vertex, i.e.,t(z) = •, and letT ′ andT ′′ be subtrees ofT rooted in two distinct children

of z. Thenσ(T ′)∩σ(T ′′) = /0.

Note the we do not require the converse, i.e., from the disjointness of the species setsσ(T ′) andσ(T ′′) we donot

1Alternatively, one could definêT andŜ to be metric graphs (i.e., comprising edges that are real intervals glued together at the vertices) with a
distance function that measures evolutionary time. In this picture,µ̂ is a continuous map that preserves the temporal order and satisfied conditions
(b) and (c).
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conclude that their last common ancestor is a speciation vertex.

For x,y∈ L andz= lcaT(x,y) it immediately follows from condition (C) that ift(lcaT(x,y)) = • thenσ(x) 6= σ(y)

since, by assumption,x andy are leaves in distinct subtrees belowz. Equivalently, two distinct genesx 6= y in L for

whichσ(x) = σ(y) holds, that is, they are contained in the same species ofB, must have originated from a duplication

event, i.e.,t(lcaT(x,y)) =�. Thus we can regardσ as a proper vertex coloring of the cograph corresponding to(T, t).

Let us now consider the properties of the restriction ofµ̂ to the observable partsT of T̂ andSof Ŝ. Consider a

speciation vertexx in T̂. If x has two childreny′ andy′′ so thatL(y′) andL(y′′) are both non-empty then

x= lcaT̂(z
′,z′′) for all z′ ∈ L(y′) andz′′ ∈ L(y′′) and hence,x= lcaT(L(y′)∪L(y′′)). In particular,x is an observable

vertex inT. Furthermore, we know thatσ(L(y′))∩σ(L(y′′)) = /0, and therefore,̂µ(x) = lcaS(σ(L(y′)∪L(y′′)).

Considering all pairs of children with this property this can be rephrased aŝµ(x) = lcaŜ(σ(L(x))). On the other hand,

if x does not have at least two children with this property, and hence the corresponding speciation vertex cannot be

viewed as most recent common ancestor of the set of its descendants inS, thenx is not a vertex in the restriction

T = T̂|L of T̂ to the setL of the extant genes. The restrictionµ of µ̂ to the observable treeT therefore satisfies the

properties used below to define reconciliation maps.

Definition 1. Suppose that B is a set of species, that S= (W,H) is a phylogenetic tree on B, that T= (V,E) is a gene

tree with leaf set L and thatσ : L → B and t: V →{•,�,⊙} are the maps described above. Then we say that S is a

species tree for(T, t,σ) if there is a mapµ : V →W∪H such that, for all x∈V:

(i) If t (x) =⊙ thenµ(x) = σ(x).

(ii) If t (x) = • thenµ(x) ∈W \B.

(iii) If t (x) =� thenµ(x) ∈ H.

(iv) Let x,y∈V with x≺T y. We distinguish two cases:

1. If t(x) = t(y) =� thenµ(x)�S µ(y) in S.

2. If t(x) = t(y) = • or t(x) 6= t(y) thenµ(x)≺S µ(y) in S.

(v) If t(x) = • thenµ(x) = lcaS(σ(L(x)))

We callµ the reconciliation map from(T, t,σ) to S.

We note thatµ−1(ρS) = /0 holds as an immediate consequence of property(v), which implies that no speciation node

can be mapped above lcaS(B), the unique child ofρS.
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Figure 2: Example of the mappingµ of nodes of the gene treeT to the species treeS. Speciation nodes in the gene
tree (red circles) are mapped to nodes in the species tree, duplication nodes (blue squares) are mapped to edges in the
species tree.σ is shown as dashed green arrows. For clarity of exposition, we have identified the leaves of the gene
tree on the left with the species they reside in via the mapσ .

We illustrate this definition by means of an example in Fig. 2 and remark that it is consistent with the definition of

reconciliation maps for the case when the event labelingt onT is not known [38]. Continuing with our notation from

Definition 1 for the remainder of this section, we easily derive their axiom set as

Lemma 2. If µ is a reconciliation map from(T, t,σ) to S and L is the leaf set of T then, for all x∈V,

(D1) x∈ L impliesµ(x) = σ(x).

(D2.a) µ(x) ∈W impliesµ(x) = lcaS(σ(L(x))).

(D2.b) µ(x) ∈ H implieslcaS(σ(L(x)))≺S µ(x).

(D3) Suppose x,y∈V such that x≺T y. If µ(x),µ(y) ∈ H thenµ(x)�S µ(y); otherwiseµ(x)≺S µ(y).

Proof. Supposex∈V. Then (D1) is equivalent to(i) and the fact thatt(x) =⊙ if and only if x∈ L. Conditions(ii)

and(v) together imply (D2.a). Ifµ(x) ∈ H thenx is duplication vertex ofT. From condition(iv) we conclude that

lcaS(σ(L(x)))�S µ(x). Since lcaS(σ(L(x))) ∈W, equality cannot hold and so (D2.b) follows. (D3) is an immediate

consequence of(iv).

For T a gene tree,B a set of species and mapsσ andt as above, our goal is now to characterize (1) those(T, t,σ) for

which a species tree onB exists and (2) species trees onB that are species trees for(T, t,σ).
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Results and Discussion
Results

Unless stated otherwise, we continue with our assumptions on B, (T, t,σ), andSas stated in Definition 1. We start

with the simple observation that a reconciliation map from(T, t,σ) to Spreserves the ancestor order ofT and hence

T imposes a strong constraint on the relationship of most recent common ancestors inS:

Lemma 3. Let µ : V →W∪H be a reconciliation map from(T, t,σ) to S. Then

lcaS(µ(x),µ(y))�S µ(lcaT(x,y)) (1)

holds for all x,y∈V.

Proof. Assume thatx andy are distinct vertices ofT. Consider the unique pathP connectingx with y. P is uniquely

subdivided into a pathP′ from x to lcaT(x,y) and a pathP′′ from lcaT(x,y) to y. Condition (iv) implies that the

images of the vertices ofP′ andP′′ underµ , resp., are ordered inSwith regards to�S and hence are contained in the

intervalsQ′ andQ′′ that connectµ(lcaT(x,y)) with µ(x) andµ(y), respectively. In particularµ(lcaT(x,y)) is the

largest element (w.r.t.�S) in the union ofQ′∪Q′′ which contains the unique path fromµ(x) to µ(y) and hence also

lcaS(µ(x),µ(y)).

Since a phylogenetic tree (in the original sense)T is uniquely determined by its induced triple setR(T), it is

reasonable to expect that all the information on the speciestree(s) for(T, t,σ) is contained in the images of the triples

in R(T) (or more precisely their leaves) underσ . However, this is not the case in general as the situation is

complicated by the fact that not all triples inR(T) are informative about a species tree that displaysT. The reason is

that duplications may generate distinct paralogs long before the divergence of the species in which they eventually

appear. To address this problem, we associate to(T, t,σ) the set of triples

G=G(T, t,σ) =
{

r ∈R(T)
∣

∣t(lcaT(r)) = • and σ(x) 6= σ(y), for allx,y∈ L(r)pairwise distinct
}

. (2)

As we shall see below,G(T, t,σ) contains all the information on a species tree for(T, t,σ) that can be gleaned from

(T, t,σ).

Lemma 4. If µ is a reconciliation map from(T, t,σ) to S and((x,y),z) ∈G(T, t,σ) then S displays

((σ(x),σ(y)),σ(z)).

Proof. PutG=G(T, t,σ) and recall thatL denotes the leaf set ofT. Let {x,y,z} ∈
(L

3

)

and assume w.l.o.g. that

((x,y),z) ∈G. First consider the case thatt(lcaT(x,y)) = •. From condition(v) we conclude that
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y x

Figure 3: Triples fromT whose root is a duplication event are in general not displayed from the species treeS. (a)
Triple with duplication event at the root obtained from the true evolutionary history ofT shown in panel (b). Panel (c)
is the true species tree. In the triple (a) the speciesy appears as the outgroup even though thex is the outgroup in the
true species tree.

µ(lcaT(x,y)) = lcaS(σ(x),σ(y)) andµ(lcaT(x,y,z)) = lcaS(σ(x),σ(y),σ(z)). Since, by assumption,

lcaT(x,y)≺ lcaT(x,y,z), we have as a consequence of condition(iv) thatµ(lcaT(x,y))≺ µ(lcaT(x,y,z)). From

lcaT(x,z) = lcaT(y,z) = lcaT(x,y,z) we conclude thatSmust display((σ(x),σ(y)),σ(z)) asS is assumed to be a

species tree for(T, t,σ).

Now suppose thatt(lcaT(x,y)) =� and therefore,µ(lcaT(x,y)) ∈ H. Moreover,µ(lcaT(x,y,z)) ∈W holds. Hence,

Lemma 3 and property(iv) together imply that lcaS(σ(x),σ(y))≺S µ(lcaT(x,y))≺S µ(lcaT(x,y,z)). Thus, we again

obtain that the triple((σ(x),σ(y)),σ(z)) is displayed byS.

It is important to note that a similar argument cannot be madefor triples inR(T) rooted in a duplication vertex ofT

as such triplets are in general not displayed by a species tree for (T, t,σ). We present the generic counterexample in

Fig. 3.

To state our main result (Theorem 6), we require a further definition.

Definition 5. For (T, t,σ), we define the set

S=S(T, t,σ) = {((a,b),c)|∃((x,y),z) ∈G(T, t,σ) with σ(x) = a, σ(y) = b, andσ(z) = c} (3)

As an immediate consequence of Lemma 4,S(T, t,σ) must be displayed by any species tree for(T, t,σ) with leaf set

B.

Theorem 6. Let S be a species tree with leaf set B. Then there exists a reconciliation mapµ from (T, t,σ) to S

whenever S displays all triples inS(T, t,σ).

Proof. Recall thatL is the leaf set ofT = (V,E). PutS= (W,H) andS=S(T, t,σ). We first consider the subset

G := {x∈V | t(x) ∈ {•,⊙}} of V comprising of the leaves and speciation vertices ofT.

We explicitly construct the mapµ : G→W as follows. For allx∈V, we put
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(M1) µ(x) = σ(x) if t(x) =⊙,

(M2) µ(x) = lcaS(σ(L(x))) if t(x) = •.

Note that alternative (M1) ensures thatµ satisfies Condition(i). Also note that in view of the simple consequence

following the statement of Condition(C) we have for allx∈V with t(x) = • that there are leavesy′,y′′ ∈ L(x) with

σ(y′) 6= σ(y′′). Thus lcaS(µ(L(x)) ∈W \B, i.e. µ satisfies Condition(ii) . Also note that, by definition, Alternative

(M2) ensures thatµ satisfies Condition(v).

Claim: If x,y∈ G with x≺T y thenµ(x)≺S µ(y).

Sincey cannot be a leaf ofT asx≺T y we havet(y) = •. There are two cases to consider, eithert(x) = • or t(x) =⊙.

In the latter caseµ(x) = σ(x) ∈ B while µ(y) ∈W \B as argued above. Sincex∈ L(y) we haveµ(x)≺S µ(y), as

desired.

Now supposet(x) = •. Again by the simple consequence following Condition(C), there are leavesx′,x′′ ∈ L(x) with

a= σ(x′) 6= σ(x′′) = b. Sincex≺T y andt(y) = •, by Condition(C), we conclude thatc= σ(y′) /∈ σ(L(x)) holds for

all y′ ∈ L(y)\L(x). Thus,((a,b),c) ∈S. But then((a,b),c) is displayed bySand therefore

lcaS(a,b)≺S lcaS(a,b,c). Since this holds for all triples((x′,x′′),y′) ∈G with x′,x′′ ∈ L(x) andy′ ∈ L(y)\L(x) we

concludeµ(x) = lcaS(σ(L(x)))≺S lcaS(σ(L(x))∪σ(L(y)\L(x))) = lcaS(σ(L(y))) = µ(y), establishing the Claim.

It follows immediately thatµ also satisfies Condition(iv.2) if x andy are contained inG.

Next, we extend the mapµ to the entire vertex setV of T using the following observation. Letx∈V with t(x) =�.

We know by Lemma 3 thatµ(x) is an edge[u,v] ∈ H so that lcaS(σ(L(x)))�S v. Such an edge exists for

v= lcaS(σ(L(x))) by construction. Every speciation vertexy∈V with x≺T y therefore necessarily maps above this

edge, i.e.,u�S µ(y) must hold. Thus we set

(M3) µ(x) = [u, lcaS(σ(L(x)))] if t(x) =�.

which now makesµ a map fromV to W∪H.

By construction, Conditions(iii) , (iv.2) and(v) are thus satisfied byµ . On the other hand, if there is speciation vertex

y between two duplication verticesx andx′ of T, i.e.,x≺T y≺T x′, thenµ(x)≺S µ(x′). Thusµ also satisfies

Condition(iv.1).

It follows thatµ is a reconciliation map from(T, t,σ) to S.

Corollary 7. Suppose that S is a species tree for(T, t,σ) and that L and B are the leaf sets of T and S, respectively.

Then a reconciliation mapµ from (T, t,σ) to S can be constructed in O(|L||B|).
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Proof. In order to find the image of an interior vertexx of T underµ , it suffices to determineσ(L(x)) (which can be

done for allx simultaneously e.g. by bottom up transversal ofT in O(|L||B|) time) and lcaS(σ(L(x))). The latter task

can be solved in linear time using the idea presented in [39] to calculate the lowest common ancestor for a group of

nodes in the species tree.

We remark that given a species treeSonB that displays all triples inS(T, t,σ), there is no freedom in the

construction of a reconciliation map on the set{x∈V | t(x) ∈ {•,⊙}}. The duplication vertices ofT, however, can

be placed differently, resulting in possibly exponentially many reconciliation maps from(T, t,σ) to S.

Lemma 4 implies that consistency of the triple setS(T, t,σ) is necessary for the existence of a reconciliation map

from (T, t,σ) to a species tree onB. Theorem 6, on the other hand, establishes that this is also sufficient. Thus, we

have

Theorem 8. There is a species tree on B for(T, t,σ) if and only if the triple setS(T, t,σ) is consistent.

We remark that a related result is proven in [26, Theorem.5] for the full tree reconciliation problem starting from a

forest of gene trees.

It may be surprising that there are no strong restrictions onthe setS(T, t,σ) of triples that are implied by the fact that

they are derived from a gene tree(T, t,σ).

Theorem 9. For every setX of triples on some finite set B of size at least one there is a gene tree T= (V,E) with leaf

set L together with an event map t: V →{•,�,⊙} and a mapσ : L → B that assigns to every leaf of T the species in

B it resides in such thatX=S(T, t,σ).

Proof. Irrespective of whetherX is consistent or not we construct the components of the required 3-tuple(T, t,σ) as

follows: To each triplerk = ((xk1,xk2),xk3) ∈ X we associate a tripleTk = ((ak1,ak2),ak3) via a map

σk : Lk = {ak1,ak2,ak3}→ {xk1,xk2,xk3} with σ(aki) = xki for i = 1,2,3 where we assume that for any two distinct

triplesrk, r l ∈ X we have thatσk(Lk)∩σl (Ll ) = /0. Then we obtainT = (V,E) by first adding a single new vertexρT

to the union of the vertex sets of the triplesTk and then connectingρT to the rootρk of each of the triplesTk. Clearly,

T is a phylogenetic tree onL =
·
⋃

rk∈X
L(ρk). Next, we define the mapt : V →{•,�,⊙} by puttingt(ρT) =�,

t(a) =⊙ for all a∈ L andt(a) = • for all a∈V − (L∪{ρT}). Finally, we define the mapσ : L → B by putting, for

all a∈ L, σ(a) = σk(a) wherea∈ Lk. ClearlyS(T, t,σ) = X.

We remark that the gene tree constructed in the proof of Theorem 9 can be made into a binary tree by splitting the

root ρT into a series of duplication and loss events so that each subtree is the descendant of a different paralog.
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Figure 4: The setS(T, t,σ) inferred from the event labeled gene tree(T, t,σ) does not necessarily define a unique
species tree. For clarity of exposition, we have identified,via the mapσ , the leaves of the gene tree and of the set of
triplesS(T, t,σ) with the species they reside in .

Since by Theorem. 9 there are no restrictions on the possibletriple setsS(T, t,σ), it is clear thatSwill in general not

be unique. An example is shown in Fig.4.

Results for simulated gene trees

In order to determine empirically how much information on the species tree we can hope to find in event labeled gene

trees, we simulated species trees together with corresponding event-labeled gene trees with different duplication and

loss rates. Approximately 150 species trees with 10 to 100 species were generated according to the the “age

model” [40]. These trees are balanced and the edge lengths are normalized so that the total length of the path from

the root to each leaf is 1. For each species tree, we then simulated a gene tree as described in [41], with duplication

and loss rate parametersr ∈ [0,1] sampled uniformly. Events are modeled by a Poisson distribution with parameter

r · ℓ, whereℓ is the length of an edge as generated by age model. Losses wereadditionally constrained to retain at

least one copy in each species, i.e.,σ(L) = B is enforced. After determining the triple setS(T, t,σ) according to

Theorem 6, we usedBUILD [27] (see also [42]) to compute the species tree. In all cases, BUILD returns a tree that is a
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Figure 5: Left: Heat map that represents the percentage of recovered splitsin the inferred species tree from triples
obtained from simulated event-labeled gene trees with different loss and duplication rates.
Right: Scattergram that shows the average of losses and duplications in the generated data and the accuracy of the
inferred species tree.

homomorphic contraction of the simulated species tree. Thedifference between the original and the reconstructed

species tree is thus conveniently quantified as the difference in the number of interior vertices. Note that in our

situation this is the same as the split metric [27].

The results are summarized in Fig. 5. Not surprisingly, the recoverable information decreases in particular with the

rate of gene loss. Nevertheless, at least 50% of the splits inthe species tree are recoverable even at very high loss

rates. For moderate loss rates, in particular when gene losses are less frequent than gene duplications, nearly the

complete information on the species tree is preserved. It isinteresting to note thatBUILD does not incorporate splits

that are not present in the input tree, although this is not mathematically guaranteed.

Discussion

Event-labeled gene trees can be obtained by combining the reconstruction of gene phylogenies with methods for

orthology detection. Orthology alone already encapsulates partial information on the gene tree. More precisely, the

orthology relation is equivalent to a homomorphic image of the gene tree in which adjacent vertices denote different

types of events. We discussed here the properties of reconciliation mapsµ from a gene treeT along with an event

labelling mapt and a gene to species assignment mapσ to a species treeSand show that(T, t) event labeled gene
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trees for which a species tree exists can be characterized interms of the setS(T, t,σ) of triples that is easily

constructed from a subset of triples ofT. Simulated data shows, furthermore, that such trees conveya large amount

of information on the underlying species tree, even if the gene loss rate is high.

It can be expected for real-life data the treeT contains errors so thatS :=S(T, t,σ) may not be consistent. In this

case, an approximation to the species tree could be obtainede.g. from a maximum consistent subset ofS. Although

(the decision version of) this problems is NP-complete [43,44], there is a wide variety of practically applicable

algorithms for this task, see [35,45]. Even ifS is consistent, the species tree is usually not uniquely determined.

Algorithms to list all trees consistent withS can be found e.g. in [46,47]. A characterization of triple sets that

determine a unique tree can be found in [48]. Since our main interest is to determine the constraints imposed by

(T, t,σ) on the species treeS, we are interested in a least resolved treeS that displays all triples inS. TheBUILD

algorithm and its relatives in general produce minor-minimal trees, but these are not guaranteed to have the minimal

number of interior nodes. Finding a species tree with a minimal number of interior nodes is again a hard

problem [37]. At least, the vertex minimal trees are among the possibly exponentially many minor minimal trees

enumerated by Semple’s algorithms [36].

For a given species treeS, it is rather easy to find a reconciliation mapµ from (T, t,σ) to S. A simple solutionµ is

closely related to the so-called LCA reconcilation: every nodex of T is mapped to the last common ancestor of the

species below it, lcaS(σ(L(x))) or to the edge immediately above it, depending on whetherx is speciation or a

duplication node. While this solution is unique for the speciation nodes, alternative mappings are possible for the

duplication nodes. The set of possible reconciliation mapscan still be very large despite the specified event labels.

If the event labelingt is unknown, there is a reconciliation from any gene treeT to any species treeS, realized in

particular by the LCA reconciliation, see e.g. [26,38]. Thereconciliation then defines the event types. Typically, a

parsimony rule is then employed to choose a reconciliation map in which the number of duplications and losses is

minimized, see e.g. [1,4,5,9]. In our setting, on the other hand, the event types are prescribed. This restricts the

possible reconciliation maps so that the gene tree cannot bereconciled with an arbitrary species tree any more.

Since the observable events on the gene tree are fixed, the possible reconciliations cannot differ in the number of

duplications. Still, one may be interested in reconciliation maps that minimize the number of loss events. An

alternative is to maximize the number of duplication eventsthat map to the same edge inS to account for whole

genome and chromosomal duplication event [9].
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Conclusions

Our approach to the reconciliation problem via event-labeled gene trees opens up some interesting new avenues to

understanding orthology. In particular, the results in this contribution combined with those in [22] concerning

cographs should ultimately lead to a method for automatically generating orthology relations that takes into account

species relationships without having to explicitly compute gene trees. This is potentially very useful since gene tree

estimation is one of the weak points of most current approaches to orthology analysis.
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