
University of Greifswald

Faculty of Mathematics and Computer Science

Genetic programming as a means for

generating improved tree balance indices

MASTER THESIS

submitted in partial ful�llment of the requirements for the degree of Master of

Science (M.Sc.) in Biomathematics by

Sophie Johanna Kersting

First supervisor: Prof. Dr. Mareike Fischer

Second supervisor: Prof. Dr. Volkmar Liebscher

Greifswald, August 13, 2020



Abstract

Balance indices are measurements of the degree of symmetry in (rooted binary) trees

and are objects of current research. They can be used as statistical tests to decide if a tree

is likely to have arisen by chance or if its topology was generated under a di�erent tree

development model. This can give insights amongst others on evolutionary in�uences in the

history of species based on an analysis of their reconstructed phylogeny.

The already existing wide range of balance indices raised questions: How can we decide

for as few as possible indices to avoid the consequences of multiple testing? Is there a most

powerful balance index (for a speci�c task)? Several studies were performed to compare

the statistical power of some of indices. However, there are no formulated guidelines or

recommendations on when to use which balance index, yet.

In this master thesis we will perform a substantially larger comparison with a longer list

of balance indices and on a large variety of alternative tree models. We will see that there are

indeed groups of balance indices better suited to di�erent alternative tree models, showing

that the decision for a certain balance index could be improved with prior knowledge.

To further advance the search for an optimized balance index we will use genetic pro-

gramming to travel across the �eld of possible balance indices in order to �nd a better

performing individual. For this we will use two approaches with di�erent building blocks

as well as two di�erent optimization tasks. Thereby we will discover a newly constructed

balance index that has the advantage of being an �allrounder�, performing well on all of the

alternative models, a feature that none of the other tested established indices showed to this

extent. By this we can also show that genetic programming as an optimization algorithm

can be a viable tool for this particular topic in the area of phylogenetics.



Table of Contents

1 Introduction 1

2 Trees, tree models and balance indices 3

2.1 The Yule model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 The ζ-models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Balance indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Comparison of established balance indices 16

3.1 Methods of comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1.1 Null hypothesis (Yule model) . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.2 Test statistics and their distributions (BI and distribution by sampling) . 18

3.1.3 Level of signi�cance and critical region (quantile-based) . . . . . . . . . . 18

3.1.4 Alternative hypotheses (ζ-models) . . . . . . . . . . . . . . . . . . . . . . 19

3.1.5 Calculating power and comparison . . . . . . . . . . . . . . . . . . . . . . 20

3.1.6 General results of previous studies . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.1 Implementation (R) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.2 Results of the �rst comparison . . . . . . . . . . . . . . . . . . . . . . . . 25

4 Genetic Programming 29

4.1 GP and building blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2 Mutation and Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5 The experimental GP setup 37

5.1 Tasks for Stage 1 & 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.1.1 The parameter settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.1.2 Selection of candidates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6 Stage 1: Established balance indices as building blocks 42

6.1 GP results Stage 1 Task A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.2 GP results Stage 1 Task B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

7 Stage 2: Auxiliary functions as building blocks 47

7.1 GP results Stage 2 Task A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

7.2 GP results Stage 1 Task B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

7.2.1 Remark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

8 Comparison of new and established balance indices 53

9 Discussion and Results 56

References 60

I



Sophie J. Kersting - University of Greifswald

1 Introduction

�Cause trees grow that way. They're not

all perfect; they're like us.�

� Bob Ross, The Joy of Painting

For decades balance indices have been discussed as a tool to measure the degree of asymmetry

in trees like genealogies or phylogenies. This can give insights into diversi�cation rate variation

[48], in�uences like fertility inheritance and selection [5, 30] or e�ects of di�erent tree recon-

struction methods [22, 24, 44]. Up to this day, new innovative approaches or recently proven

properties of already established indices are frequently published.

With all their advantages as a quick measuring tool that summarizes the symmetry of a tree

in just a real number, their insu�ciencies have also been reported. Apart from not being derived

from some model of diversi�cation, Moore criticizes the following aspect [39, p. 6]:

�[T]hese indices appear to capture di�erent but poorly characterized aspects of tree

shape [...]. Consequently, any attempt to test for signi�cant diversi�cation rate varia-

tion with these tree-balance indices must grapple with the �agony of choice� between

myriad alternatives or opt to use all (or some subset of) the indices and endure issues

of multiple-test correction.�

This is precisely the problem that will be dealt with in this master thesis: Is there a way to

reduce the amount of indices that should be tested by �nding an optimized index (for a certain

task)?

The �rst idea is to compare indices that already exist. There have already been smaller

experiments (see Section 3.1) that each compared a handful of indices, but here we will generate

an overall comparison on a signi�cantly larger number, including new and well-known indices,

in addition to a wider range of alternative balance in�uencing tree models.

The main question, however, will be if a better performing index can be constructed using

genetic programming (GP). GP, an optimization strategy from the �eld of evolutionary algo-

rithms, was chosen because its strategy seems to reasonably �t the structure of the problem. A

balance index is seen as an individual that consists of di�erent building blocks that are linked

with di�erent functions which can be evolved using mutation and selection. Mutation will cause

a variation within a population of such individuals and selection will cause well performing indi-

viduals to produce more o�spring (balance indices that inherit substructures of their parent(s)).

Thus, GP o�ers a sensible way to travel across the space of all possible indices with the aim to

�nd the best performing. How well GP actually performs on this problem will be evaluated in

the end.

All in all, we will go along with the following steps and questions. The two main parts will

both have a theoretical part in which the theoretical and mathematical basics are described.

� Comparison of established balance indices.

� How similar are they? Are there groups of indices that perform similarly well?

� Can the list of balance indices be shortened?

1



Sophie J. Kersting - University of Greifswald

� Construction of optimized balance indices using genetic programming.

Stage 1: Using established balance indices as building blocks

Stage 2: Phylogenetic auxiliary functions as building blocks

� How much better are the newly constructed indices? Is a huge optimization even

possible?

� Are the resulting indices readable and understandable or are they only an arbitrary

combination of operations? Can they be simpli�ed by hand without dropping in

performance?

� Do the new indices contain novel ideas on measuring asymmetry?

� How well does genetic programming perform overall as a means for generating opti-

mized balance indices?

Remark

The algorithms used in this master thesis are implemented in the free programming language

R (version 4.0.0) [42]. The package rgp (version 0.4-1) [15, 16] with emoa (version

0.5-0.1.) [33] was used as the foundational structure for genetic programming. Other packages

used are ape (version 5.3) [40], phytools (version 0.7-20) [43] as well as data.table

(version 1.12.8) [14] for handling the tree data and microbenchmark (version 1.4-7) [32]

to test the run time. To parallelize calculations the doParallel (version 1.0.15) [12] as well

as the foreach (version 1.5.0) [34] package were used.

Due to the fact that the implementation of several algorithms, tree models and balance indices

is a signi�cant part of this thesis, some pseudo code and an overview of the scripts will be given

and explained for the main topics. The complete R-scripts can be found on the attached CD.

The �gures were made with R, GeoGebra and ClickCharts. The latter unfortunately does

not support LATEX-code for mathematical symbols and was therefore used for overviews that

presented normal text with only a few mathematical terms.

2



Sophie J. Kersting - University of Greifswald

2 Trees, tree models and balance indices

In this thesis balance indices will be applied on rooted binary trees T (V,E) with a �nite set of

vertices or nodes V and edges E. A tree is an acyclic connected graph. The degree of a node

is de�ned as the number of connected or incident edges. Connected nodes are called adjacent.

Nodes with a degree ≤ 1 are leaves V 1, the remaining vertices are called the inner nodes V̊ .

Similarly E̊ denotes the subset of E that contains all inner edges which are not incident to a

leaf. A path is a sequence of distinct nodes (a1, ..., am) with ai and ai+1 being adjacent for

i = 1, ...,m− 1. In a tree there is a unique path that connects each pair of nodes.

A tree is binary if all inner nodes have degree 3. Furthermore, a tree is rooted binary if there

additionally is exactly one distinct inner node ρ with only degree 2, which is the root of the

tree. As the introduction of a root induces a natural direction of the edges, trees are normally

depicted with the root at the top and all leaves at the bottom as shown in Figure 1 [49, p. 3-6].

A node v is an ancestor of node w (descendant) if v 6= w and v lies on the unique path of w to

the root. If v and w are additionally adjacent they are also called (direct) parent and (direct)

child. A pending subtree rooted in v is the subtree induced by v and all of its descendant nodes.

A phylogeny or phylogenetic X-tree T = (T, φ) consists of a tree T that is called the topology

or tree shape of T and a bijection φ from the set of labels or species X to V 1, the set of leaves

of T [46, p. 19].

Figure 1: Example of a rooted binary tree with n = 5 leaves. A possible phylogeny with an
assignment of the species x1, ..., x5 to the leaves is depicted as well.

Let T = (V,E) be a rooted binary tree with n leaves, then we have [49, p. 10]:

|V | = 2n− 1, |V̊ | = n− 1

|E| = 2n− 2, |E̊| = n− 2
(2.1)

Throughout this master thesis we will group tree shapes by their number of leaves n = |V 1| ∈
N, which we will also refer to as size of the tree. A tree is called larger than another tree, if it

has the larger size. Let RBn with n ∈ N denote the set of rooted binary trees (or trees shapes)

with n leaves.

Further de�nitions and functions on trees especially for the established balance indices will

be given in the following list for a quick overview.

3



Sophie J. Kersting - University of Greifswald 2.1 The Yule model

δ(x) The depth of a vertex x is de�ned as the number of edges on the unique path from x to the

root [46, p. 22].

κ(v) The number of descendant leaves of an interior vertex v. A leaf is sometimes seen as its

own descendant, thus for a leaf v, κ(v) is normally set to 1.

lcaT (v, w) The last common ancestor of two vertices v, w is de�ned as the vertex with the highest

depth that is on both unique paths from v and from w to the root.

s(T ) The number of symmetry nodes of T. An interior vertex v is a symmetry node if the two

pending subtrees rooted in the direct children of v have the same tree shape.

c(T ) The number of cherries of T . A cherry is a pair of leaves that have the same direct parent.

There are two special tree shapes that should be shortly mentioned. Let T catn denote the so-

called caterpillar tree with n leaves that is de�ned as the unique rooted binary tree shape with

only one cherry. Second, the fully balanced tree T balk , which is only de�ned for n = 2k with k ∈ N,
is characterized through the inner nodes that are all symmetry nodes and split their number of

descendant leaves in half. Thus, this tree shape is often considered the most symmetrical and

every leaf x has depth δ(x) = log2(n) = k.

2.1 The Yule model

Tree models de�ne a system of rules on how to generate a (binary) tree usually for a given

number of leaves n. There are di�erent approaches like gradual clustering of the leaves, splitting

the descendant leaves into two groups for every interior node starting with the root or building a

tree from a single node by splitting leaves successively into two new leaves. In this master thesis

we will use the latter approach, as we can use it e�ectively to create basic intuitive models for

evolutionary in�uences (further discussion in the corresponding paragraph in Section 3.1).

Remark. A huge �eld of application are phylogenies that represent the evolutionary history of

species. Therefore, we will also sometimes use the corresponding terms (e.g. �speciation event"

for the event of a leaf splitting into two new leaves). It goes without saying that all tree models

and explanations can also be applied to other topics like genealogies, family trees or search trees.

One important model which describes the easiest form of evolutionary development is the

Yule model. It models the idea that at any point in time there is a �nite number of species, with

one primordial species at time zero, and from time to time there are speciation events in which

a species splits into two di�erent species. The probability that a species is a�ected by such an

event is equal for all currently existing species.

De�nition 2.1 (Yule model). The Yule model � also known as the equal-rates-Markov-model

(ERM) or random branching � is based on a population development model that describes a

pure birth process with no deaths. The size of a population in this context is the number of

currently living species. Each species has birth rate λ (evolutionary rate) that illustrates how

likely the species will split up (see Figure 2 on the left).

One of various algorithms to generate a topology under the Yule model is the following: Start

with a single node (the root). Continuously choose a leaf from the currently existing leaves and

4



Sophie J. Kersting - University of Greifswald 2.1 The Yule model

Figure 2: Visualization of the Yule model as a population model with transition rates as well as
an example of tree construction under the Yule model.

split it into two new leaves until a determined number of leaves is achieved (see Figure 2 on the

right). Note that we will ignore the time until the �rst species splits and therefore the resulting

trees have a root of degree 2 without a so-called root edge.

The leaves represent the current individuals or species and every splitting event is seen as a

speciation event in which a species is split into two new daughter species [20, 25, 50].

(The implementation rtree() of the ape package is used [41, p. 313].)

Although we are only interested in tree topologies we can not fully ignore all aspects of tree

models regarding the waiting time until the next event. In order to create alternative models

that simulate an in�uence that causes a di�ering degree of asymmetry and a variation in the

evolutionary rates, we will use the following mathematical property [13, p. 55]:

Let s1, ..., sn denote the currently living species with evolutionary rates λ1, ..., λn. The waiting

time until the next speciation event is the minimum of the waiting times for a speciation event

for every single species (exp(λi)-distributed for si). It is also exponentially distributed with rate∑
1≤j≤n

λj . A species i is a�ected by this speciation event with probability

pi =
λi∑

1≤j≤n
λj
.

Thus, the evolutionary rate of a species (or its lineage) directly corresponds to the probability

to be a�ected by a speciation event. This will allow us to modify the evolutionary rates very

intuitively as they directly express the ratio of the probabilities. To characterize further tree

models we will use the vector λ = (λ1, ..., λn) containing the evolutionary rates and set the

default evolutionary rate to 1. Using the Yule model the evolutionary rates would always be

described with λ = (1, 1, ..., 1).

Example: After the �rst two splitting steps we have a tree shape with 3 leaves. For the

third step let the evolutionary rates be λ = (0.2, 1, 4) for these three leaves. This results in the

following probabilities of splitting p1, p2 and p3 for each leaf. We have p1 = 1
5 ·p2 and 4 ·p2 = p3;

the probabilities are in the proportions 0.2 : 1 : 4.

p1 =
0.2

0.2 + 1 + 4
=

0.2

5.2
≈ 0.038 p2 =

1

5.2
≈ 0.192 p3 =

4

5.2
≈ 0.769

5



Sophie J. Kersting - University of Greifswald 2.2 The ζ-models

2.2 The ζ-models

We can now introduce the ζ-models, a collection of various models simulating di�erent ways how

the evolutionary rates can be in�uenced. ζ denotes a positive (> 0) factor by which new leaves or

already existing leaves change their evolutionary rates and thereby their probability to speciate.

There are several possible ways how ζ can in�uence tree generation. These are the concrete

models that will be used as alternative models in this thesis. A visualization of these di�erent

models is shown in Figure 3. Furthermore, we will also have an example that explains the whole

process for one model step by step.

direct-children-only (DCO): In every step when a parent leaf was chosen, the direct children

get rate ζ, all other leaves are reset to rate 1.

This model resembles a very short timed in�uence as only the direct children are a�ected.

As later con�rmed it can already be expected that the DCO-model requires comparably high

ζ values in order to create an e�ect in tree asymmetry. Especially for 0 < ζ < 1 there will be

hardly any e�ect as new leaves are only excluded from the next step, but are allowed to speciate

in the following steps (see Section 3.2). Thus, the next models are introduced to simulate a long

term e�ect.

inherited-fertility (IF): The direct children inherit the rate of their parent modi�ed by ζ. All

other rates stay untouched. There are di�erent possibilities for these modi�cations, we will

use the following two.

both-children (IF-both): In every step when a parent leaf was chosen, both direct chil-

dren get rate ζ multiplied with their parent's rate. Thus, a leaf will have rate ζ to the

power of its depth.

children-di�erent (IF-di�): Let the parent have rate λ, one direct child gets rate 2ζ
ζ+1λ

and 2
ζ+1λ with ζ ≥ 1. The leaf rates are in the proportion 1:ζ with one rate being

higher and the other rate being lower than their parents rate. As both new leaves are

structurally equal it would be equivalent to take ζ ∈]0, 1] resulting in proportions like

1 : 1
2 or ζ ∈ [1,∞[ with proportions like 1 : 2, thus we decide to use ζ values ≥ 1.

It is obvious that both ζ-IF-models are more prone to produce imbalance than DCO as rates

are expected to grow (ζ>1) or decrease (ζ<1) exponentially over time. The next model describes

rates that change over time with every age or splitting step.

age-step-based (ASB): New direct children get rate 1. Every step (→ age+1) each other rate

is updated by multiplication with ζ resulting in a gradual increase (ζ>1) or decrease (ζ<1)

of rates over time.

Inspired by other literature [1, p. 867] we will also use a model called speciational Brownian

evolution. It di�ers from the ζ-models as ζ does not illustrate the rate proportions anymore

but the variance of normally distributed summands that change the rates. It is also known as a

trait-based model because the idea is that a trait changes over time and a�ects the �tness and

therefore the evolutionary rate of a species.

6



Sophie J. Kersting - University of Greifswald 2.2 The ζ-models

Speciational Brownian evolution (Brownian): Let the parent have rate λ, then new direct

children get rates λ1,2 = λ + c1,2 with c1,2 ∼ N(0, ζ) normally distributed with variance

ζ. As a default value the root gets rate 100. All other rates remain untouched. If rates

would fall beneath or on zero, they are set to 10−10 to ensure that the rates stay positive

and that the tree development does not stop due to the case of all rates being zero.

Figure 3: Visualization of the ζ-models described above as well as the Brownian model. For the
IF-di�-model ζ has been set to 2 and for the Brownian model to 10 (rates were rounded up to
one decimal place). The inner nodes are marked with their rates that were active when they
were chosen for the splitting event. The �ve leaves are marked with their rates after the �rst
four splitting steps. The process could continue from there by choosing a new leaf to split using
rate-depending probabilities as explained above.

Another idea would be to limit the alternative model to a subset of time steps. De�ne (ζ-

model)-tstart-tend as a model in which only in steps in [tstart, tend] the tree generation is a�ected

by ζ in one of the above mentioned ways. At the time tend+1 the parent is chosen using those

modi�ed rates, but after that all rates are reset to 1 and therefore follow the Yule model from

then on. If tstart and tend are not mentioned, the ζ-model is assumed to apply to the whole

process.

7



Sophie J. Kersting - University of Greifswald 2.2 The ζ-models

The idea is only mentioned here for the sake of completeness and to present an interesting

future research idea, but it is beyond the scope of this thesis. The fundamentals, however, are

already implemented in the R-script GenerateTrees.R with three variations: all, the �rst half

of or the second half of all time steps under ζ in�uence.

Figure 4: Example of tree generation under the ζ-IF-di�-model. All leaves are marked with their
respective evolutionary rates.

Example: To further clarify the process we will use the tree for the IF-di�-model in Figure

3 and explain its generation process step by step (see Figure 4). ζ is set to 2 and let λi denote

the vector of evolutionary rates that was created in step i − 1 and is valid at the beginning of

step i. Let pi denote the vector containing the corresponding probabilities of the leaves to be

chosen for the speciation event.

Initialization: We start with one leaf with rate 1, the root of the tree.

λ1 = (1), p1 = (1)

Step 1: As there are no other possibilities this single leaf is chosen and split into two new leaves.

Following the formula 2ζ
ζ+1λparent and

2
ζ+1λparent with λparent = 1 in this case, we get rate

4
3 and 2

3 for them. To keep it consistent the left leaf in the depiction of the tree will always

get the higher value, but note that the tree itself is still not ordered (no leaf order). It

can be seen that 4
3 is twice as high as 2

3 as desired with ζ = 2. There are now two leaves

available for selection. The �rst will be selected with probability 4
3 ·

1
2 = 2

3 and the latter

with probability 2
3 ·

1
2 = 1

3 . Again we can see that the �rst probability is twice as high as

the second.

λ2 = ( 4
3 ,

2
3 ), p2 = ( 2

3 ,
1
3 )

Step 2: Let us assume that the �rst more probable leaf is chosen and is split up into two new

leaves. These will have the rates 16
9 and 8

9 following the above mentioned formula with

8



Sophie J. Kersting - University of Greifswald 2.2 The ζ-models

λparent = 4
3 in this case. The sum over all rates in λ3 is 30

9 . Thus, the probabilities p
3 for

the next step will be 16
9 ·

9
30 = 16

30 ,
8
9 ·

9
30 = 8

30 as well as 6
9 ·

9
30 = 6

30 .

λ3 = ( 16
9 ,

8
9 ,

2
3 = 6

9 ), p3 = ( 16
30 ,

8
30 ,

6
30 )

Step 3: Let us assume that the least probable case occurs: The third leaf is chosen for a splitting

event. Its children get rates 8
9 and 4

9 with λparent = 2
3 . The sum over all entries in λ4 is 36

9 .

λ4 = ( 16
9 ,

8
9 ,

8
9 ,

4
9 ), p4 = ( 16

36 ,
8
36 ,

8
36 ,

4
36 )

Step 4: Let us again assume that the least probable case occurs: The fourth leaf is chosen for

a splitting event. Its children get rates 16
27 and 8

27 with λparent = 4
9 . Here the sum over all

rates of λ5 is 120
27 .

λ5 = ( 16
9 = 48

27 ,
8
9 = 24

27 ,
8
9 = 24

27 ,
16
27 ,

8
27 ), p4 = ( 48

120 ,
24
120 ,

24
120 ,

16
120 ,

8
120 )

Step 5: This process can be continued as shown in the steps before until the desired number of

leaves is reached. If a tree shape with i leaves is required we can stop after step i− 1.

The generalized process of the ζ-models also can be retraced using the following pseudo code

(see Algorithm 1). For that it should be shortly explained how for a rooted tree the tree format

phylo in R is structured: A tree consists of at least three elements: its number of inner nodes,

a vector that holds the leaf labels (its length gives the number of leaves) and an edge matrix,

which has a row with parent and child for each of the ((2n−2) if binary) edges of the tree. Thus

it is a (2n− 2)× 2-matrix for a binary tree.

Algorithm 1: Generating a tree using the ζ-model.

Data: n ← NUMBER_OF_LEAVES, ζ ← DEGREE_OF_ASYMMETRY

Result: tree generated under ζ-model

initialize edge matrix M ← empty (2 · n− 2)×2 -matrix ;

initialize vector of current leaves leaves ← root;

initialize vector of current evol. rates λ ← 1 ;

for step← 1 to (n− 1) do

iparent ← chooseNextParentIndex (λ) ; // λ gives ratio of probabilities

parent ← leaves[iparent];

Fill next 2 rows of M with edges (parent,child1) and (parent,child2);

Remove parent from leaves and add child1, child2;

updateEvolRates (λ, iparent, ζ, method);

// removes value of parent, adds values for children and modifies

values depending on the method

tree ← (M ,n);

9



Sophie J. Kersting - University of Greifswald 2.3 Balance indices

2.3 Balance indices

A balance index for rooted binary trees can be de�ned as a function φ : MRB → [0,∞) that

measures some aspect of symmetry in tree shapes. Commonly the fully balanced tree and

the caterpillar are seen as the most extreme tree shapes regarding symmetry and should have

extremal index values on the opposite sides of the spectrum. A lot of indices increase with a

higher degree of asymmetry, but there are exceptions. For our analysis this does not matter as

we use acceptance intervals that cover both low and high values as well as limits that will be

dynamically set by the evolutionary algorithm.

Overall, there are di�erent characteristics in which balance indices di�er that can sometimes

be important for their application [22, p. 1819]. One of these is the question if the index can deal

with polytomies or only with completely resolved binary trees. Unresolved nodes are normally

considered missing information rather than true multifurcative evolutionary development. Due

to that using a balance index for only binary trees will not always be disadvantageous as non-

binary trees will often be generally sorted out in advance. Furthermore, even indices that can

handle these trees normally skip unresolved nodes in their calculation. Nevertheless, there are

topics where it is rare to �nd resolved trees and one has to fall back on balance indices that do

not require a binary tree [5].

Figure 5: Some indices and their mean index values for 1000 trees per n generated under the
Yule model with n leaves. The corrected Colless index is an example for a normalized index,
that is still dependent on n, and the meanI ′ index is an example of an n-independent index.
One can see that the range of values is very di�erent for each index.

Furthermore, it should be noted that the comparison of trees with di�erent numbers of leaves

can be problematic. For many balance indices, even if they are normalized to [0, 1], an increase

in the number of leaves will lead to increasing or decreasing average index values (see Figure

5). These should be therefore used with caution [22, p. 1819], however there are indices using

10



Sophie J. Kersting - University of Greifswald 2.3 Balance indices

a value I ′ (see below) that have a constant expected balance index value over all tree sizes and

could thus be viable for such a comparison [5].

The following list shows a (after thorough research hopefully) complete list of currently ex-

isting balance indices for binary rooted trees. Due to the fact that a list of this extent cannot

be found in literature and some indices and their implementation will be commented regarding

their features or implementation this list will not be attached to the appendix but featured here.

Furthermore, it gives insights in the various approaches on how to measure balance or imbalance

in trees. All indices are described with their function names used in the R scripts. An example

can be seen in Figure 6 for the total cophenetic index.

Average leaf depth N̄ is de�ned as the average number of interior nodes between a leaf and

the root (including the root). This is equivalent to the average depth of the leaves [45].

AvgLeafDepI(T ) = N̄(T ) :=
1

n

∑
x∈V 1

δ(x)

Variance of leaf depth σ2
N is de�ned as the variance of the number of interior nodes between

a leaf and the root (including the root). Again this is equivalent to the variance of the

depth of the leaves [45].

V arLeafDepI(T ) = σ2
N (T ) :=

1

n

∑
x∈V 1

(
δ(x)− N̄(T )

)2
Sackin index The idea of the Sackin index is to look at the number of descendant leaves κ(y)

of an inner vertex y or in an equivalent de�nition at the depth δ(x) of leaf x. It therefore

is closely related to the average leaf depth [45].

SackinI(T ) :=
∑

y∈V̊ (T )

κ(y) =
∑

x∈V 1(T )

δ(x)

Colless index The Colless index describes a very intuitive approach as it compares for every

inner vertex v how many leaves are descendants of either v1 or v2, the direct children of v

[10].

CollessI(T ) :=
∑

v∈V̊ (T )

|κ(v1)− κ(v2)|

There also is a corrected version of the Colless index with values in the interval [0, 1] [22,

p. 1819].

corCollessI(T ) :=
2 · CollessI(T )

(n− 1)(n− 2)

Total cophenetic index Given a tree T with n leaves this index calculates the sum of the

depths of the lowest common ancestor lcaT (v, w) over all pairs of di�erent leaves v and w

[35].

TotalCophI(T ) :=
∑

1≤v<w≤n

δ(lcaT (v, w))

11



Sophie J. Kersting - University of Greifswald 2.3 Balance indices

Figure 6: Total cophenetic index of three trees with n = 5 leaves. The middle tree is the most
balanced of them according to this index.

Quartet index This index is also applicable to non-binary trees. It calculates the sum over the

value f(v1, v2, v3, v4) for all quartets (4-tupels) (v1, v2, v3, v4) of leaves of a tree T with n

leaves. The value f(v1, v2, v3, v4) quanti�es the level of symmetry of the subtree obtained

by restricting T to the leaves of the quartet. f is required to increase with the number of

automorphisms on this subtree as they indicate symmetry. The subtrees can have two (in

the case of a binary tree) or �ve (non-binary tree) di�erent tree shapes [11, p. 15].

QuartetI(T ) :=
∑

1≤v1<v2<v3<v4≤n

f(v1, v2, v3, v4)

In case of a binary tree they assign value 0 to the caterpillar tree and q3 to the fully

balanced tree (other qi-values for non-binary shapes). The authors suggest two possible

assignments: qi = i or qi = 2i, but as we are only di�erentiating between caterpillar and

fully balanced, we can set q3 = 1 which results in counting the number of quartet induced

subtrees that are fully balanced.

The implementation uses a comparison of the last common ancestor of each pair (i, j), (i, h)

and (i, k) in a quartet (i, j, h, k) with i being randomly chosen but �xed. In a fully balanced

tree shape, the oldest common ancestor will appear exactly twice, but in a caterpillar either

once or three times depending on the position of i.

R index (left-light rooted ranking) This measurement was originally not intended to be a

balance index. To every distinct tree shape with n leaves it assigns a value ranging from 1

to |RBn|. More symmetrical trees get higher values [18, p. 213]. Let TR and TL be the two

pending subtrees rooted in the children of the root with size r and s, respectively. Choose

TR and TL such that r > s or in the case of equality that R(TR) ≥ R(TL). Z(i) denotes

the number of unlabeled rooted trees with i leaves. Z(1) = Z(2) = 1 and Z(x) = 0 for

non-integer values x.

LLRRI(T ) := R(T ) =


∑s−1
i=1 Z(i)Z(n− i) + Z(r) (R(TL)− 1) +R(TR), if r > s∑s−1
i=1 Z(i)Z(n− i) − Z(s)

+R(TL)
(
Z(s)− 1

2R(TL) + 1
2

)
+R(TR), if r = s

12



Sophie J. Kersting - University of Greifswald 2.3 Balance indices

Z(i) :=

di/2−1e∑
j=1

Z(j)Z(i− j) +
1

2
Z(i/2)(Z(i/2) + 1)

B1 index This index is based on the interior nodes except the root (here node number n− 1).

For every other interior node i we look a the corresponding subtree rooted in i and calculate

the maximal number of interior nodesMi between i and the leaves of the subtree (including

i). Again we can use the depth of the leaves in order to de�ne Mi [47].

B1I(T ) :=

n−2∑
i=1

1

Mi
=

n−2∑
i=1

1

maxx∈V 1(Ti) δ(x)

B2 index For B2 we measure again the number of interior nodes on a path from every leaf to the

root including the root (equivalent to the depth of the leaf) and use the following formula

[47].

B2I(T ) :=

n∑
i=1

δ(i)

2δ(i)

I ′ index The idea of using I ′ has been developed by Fusco and Cronk (modi�ed by Purvis

et al.) [19] and has later been transformed into new indices [1]. I ′v is a value that can

be calculated for a fully resolved (i.e. it has two outgoing edges) vertex v with at least

4 descendant leaves. For this index we calculate the value only for the root of the tree

I ′ = I ′root.

I ′v =

Iv if n is even

n−1
n · Iv else

with Iv =
B −m
M −m

With n being the size of the subtree rooted in v, B being the the size of its larger daughter

clade (pending subtree rooted in a child of v), M = n− 1 being the maximum value for B

and m = dn2 e being the minimum value for B. It measures how equally the leaves are split,

with 0 indicating the most equal split possible and 1 indicating the most uneven split.∑
I ′ index For every interior node v ∈ V̊ that is fully resolved and that has more than 3

descendant leaves we calculate I ′v. Then we take the sum of these values
∑
I ′v. This index

is not suitable to compare trees of the same size that are resolved to varying degrees.

mean I ′ index For every interior node v ∈ V̊ that is fully resolved and that has more than 3

descendant leaves we calculate I ′v. Then we take the mean of these values mean I ′v

mean I ′10 index Only for the 10 oldest nodes I ′v is calculated. Then we take the mean of these

values.

Cherry index This index uses the number of leaves as an aspect to measure symmetry. There

are two di�erent versions, one that calculates the number of cherries c(T ) [31] and the

modi�ed version that counts all leaves that are not in a cherry.

CherryI(T ) := c(T ) modifCherryI(T ) := n− 2 · c(T )

13



Sophie J. Kersting - University of Greifswald 2.3 Balance indices

Symmetry nodes index This index uses the number of symmetry nodes in the tree. Again

we can state two versions with the second being the number of interior nodes, that are not

symmetry nodes.

SymNodesI(T ) := s(T ) modifSymNodesI(T ) := (n− 1)− s(T )

Weighted l1 distance This index is based on the empirical vs. the theoretical distribution

of subtrees of certain sizes under the Yule model. fn(z) denotes the observed and pn(z)

the expected frequency of subtrees with size z in the tree (percentage of inner nodes with

z descendant leaves). For n ≥ 2 we have pn(z) = n
n−1

2
z(z+1) if z = 1, 2, ..., n − 1 and

pn(n) = 1
n−1 if z = n [6, p. 145].

D(T ) :=

n∑
z=2

z|fn(z)− pn(z)|

The frequencies in itself can also be considered balance indices with the cherry index as

the best known example. They will later be used as building blocks in one version of the

genetic programming runs (see Section 7).

Metric based (Colijn) Recently there has been a metric introduced for tree shapes instead

of phylogenies. It follows a similar idea like Furnas' left-light rooted ranking and assigns

every topology a di�erent integer value. Whereas Furnas ranks trees in RBn separately for

each n ∈ N, Colijn's apporach enumerates all possible tree shapes with di�erent numbers

[9]. Let single leaves have enumeration 1 and let the pending subtrees of the root have

enumeration k and j with k ≥ j . Then the complete tree gets enumeration

φ(k, j) =
1

2
k(k − 1) + j + 1.

Thus, the enumeration can be recursively calculated. A numeric metric like the euclidean

distance can then be used on these enumerations or also on the vector of the enumerations

of all subtrees. This concept could potentially be used as a balance index if for example the

distance to the corresponding caterpillar with the same number of leaves was calculated.

After doing a run time comparison with the R package microbenchmark [32] for di�erent

numbers of leaves it was decided to exclude the quartet index (run time in Ω(n4)) and the left-

light rooted ranking (run time in O(n2) without precomputations) from the comparison and

especially from the genetic programming runs. Even for very small numbers of leaves (less than

30, the smallest n that will be used in these analyses), their run time was more than 1000 times

as high as the run time of the other indices (see Table 1). As there have to be several thousands

of trees measured for our comparisons and the indices' run time will further drastically increase

with higher n they had to be excluded.

Another index had to be omitted as well due to a di�erent reason. Although being fast to

calculate the Colijn-metric-based index has the disadvantage that even for small tree sizes e.g.

the caterpillar for 25 leaves the index values go beyond the standard range of numerical values

in R. Therefore it would not have been possible to use the distance from the caterpillar as any

14



Sophie J. Kersting - University of Greifswald 2.3 Balance indices

meaningful measurement. In future balance index comparisons it could be possible to include

this index if a new range for numerical values was introduced.

Table 1: Run time comparison of the balance indices for varying numbers of leaves n.

The approximate run time was averaged over 10 to 100 trees with microbenchmark using

<balance_index>(genPhylo(n)). All times are given in milliseconds.

n 20 25 30 100 200

other indices - - 6 ms 30-50 ms 70-150 ms

mean I ′10 - - 12 ms 50 ms 125 ms

sum I ′, mean I ′ - - 12 ms 100 ms 300 ms

TotCophI - - 77 ms 1660 ms 9,500 ms

QuartetI 4,000 ms 11,000 ms 39,000 ms - -

LLRRI 865 ms 28,000 ms - - -

15



Sophie J. Kersting - University of Greifswald

3 Comparison of established balance indices

3.1 Method of comparing the power of balance indices

Remark. In published literature balance indices have been used in two di�erent ways for phylo-

genetic applications:

The index values of di�erent groups of trees can be used as data and after overcoming some

problems with test requirements regarding distribution, an analysis of balance di�erences between

these groups is possible for example with an ANOVA [22, p. 1821].

The second usage common for the comparison of balance indices is to view a balance index

as a test statistic and therefore the basis for a statistical hypothesis test. This will be more

thoroughly explained in the next paragraphs, but it should be noted that in published articles

the term �con�dence interval� is often vaguely used to describe the �region of acceptance� [26,

p. 1174]. The con�dence interval gives information on how precisely the location of a parameter

was estimated, but the term is sometimes used instead of �region of acceptance� referring to the

interval in which the null hypothesis is not rejected (the complement of the critical region).

In this thesis we will use balance indices as non-parametric statistical tests. A hypothesis test

is a method to make the decision if observed data is consistent with a null hypothesis H0 or if it

di�ers too greatly such that the null hypothesis should be rejected because it is very improbable

that the results could have arisen by chance. In a non-parametric test these hypotheses cannot

be described using parameters. In general we calculate the value of a test statistic with a known

distribution for our observations and decide to reject H0 if the calculated value lies within a

critical region.

Such a test can make two kinds of errors: The �rst type of error is the false positive rate.

It occurs when the null hypothesis is wrongly rejected. The false negative rate, the second type

of error, occurs when the null hypothesis is wrongly not rejected. Normally there is a trade-o�

between these types of errors, such that a decrease in one will increase the other. Therefore,

the developers of a test have to �nd a region of acceptance for the test values that satisfy the

requirements which are set by their �eld of application.

In general the following steps are used for the application of a statistical test [7, p. 97-108]

[29, p. 147-152].

1.) De�ne the null hypothesis H0 as an initial research position and the alternative hypotheses

H1.

2.) Choose the appropriate test statistic T .

3.) Derive the distribution of T under the null hypothesis.

4.) Select a level of signi�cance, a probability threshold below which the null hypothesis will

be rejected. This gives an upper limit for the false positive rate.

5.) Choose a partition of the possible values of T into a region of acceptance (H0 not rejected)

and a critical region (H0 is rejected), such that the probability for a value in the critical

region under the null hypothesis is smaller or equal to the level of signi�cance.

16



Sophie J. Kersting - University of Greifswald 3.1 Methods of comparison

6.) Calculate the value of T based on the sample data.

7.) Reject H0 if the value lies in the critical region, otherwise we fail to reject H0.

The power is the true positive rate, e.g. how well the test can recognize the deviation from

the null hypothesis. With a limit for the �rst type error through the level of signi�cance we will

use the power as a measurement for the quality of a balance index.

Now, we want to have a look on the actual execution of these steps. Alongside this section

provides an overview and a summary of the methods and results of four comparisons of balance

indices that can be found in literature. Some ideas are commented to discuss their suitability to

be incorporated in the analyses in this master thesis. The already published results regarding

balance indices are summarized in Table 3. For sample sizes and further values of the previous

comparisons see Table 2.

3.1.1 Null hypothesis (Yule model)

With regard to tree imbalance the Yule model is normally used as the null hypothesis and will

also be used here.

Other models have been discussed as null hypotheses like two variations of the uniform model,

the proportional-to-distinguishable-arrangements-model (all phylogenies are equally probable)

and the equiprobable-types-model (all topologies are equally probable). Because both do not

model evolution sensibly and do not arise from a plausible population development, they are

mostly rejected and ignored [38, p. 36].

There have been e�orts to �nd a family of tree models (depending on one or two parameters)

that include the Yule and the uniform model for a certain parameter setting. For example the

beta-splitting model [2], the alpha-model [17] as well as the alpha-gamma-model [8]. For the �rst

two models the average parameters for reconstructed trees have been estimated and were shown

to lie between the parameters for the Yule and uniform model [4].

These families of tree models will also not be used for a parametric test in this master thesis,

because their processes are not directly linked to evolutionary development and the parameters

do not give an intuitive understanding of the nature of the model. The alpha model for example

uses a probability that a new leaf can arise from an interior edge, which has no real meaning in

evolutionary development as only current species are able split up.

Another null hypothesis used once was the �biogeographic null� model. With this null model

one can test if a local subphylogeny is signi�cantly more symmetric or asymmetric than expected

if a random phylogeny of the same size is picked from the overall supertree. This model yields

the advantage to be applicable to non-monophyletic trees (in contrast to the Yule model), as

we can choose a monophyletic1 subtree to be analyzed. Furthermore, geographical or climate

information can be taken into account [23, p. 108]. However, this model was not used for the

comparison of balance indices with simulated trees, but for the evaluation of real data. In this

model balance indices do not serve as statistical tests, but only as data producing measurements

that can be evaluated with further tests. Additionally this model does not apply to single trees

that are to be analyzed here. Thus, this model will not be used.

1A monophyletic subtree contains all taxa/nodes that share a common ancestry.

17



Sophie J. Kersting - University of Greifswald 3.1 Methods of comparison

3.1.2 Test statistics and their distributions (BI and distribution by sampling)

The test statistics that will be used and evaluated are of course the balance indices. Calculating

variances and distributions of balance indices analytically is too complex (or impossible for some

indices), therefore it is the common decision to obtain the distribution via sampling of trees (all

5 papers mentioned in the table below). The comparisons will be done for n = 30, 100 and

200 in order to be able to compare results with the latest comparison [6] and because it is to be

expected that reconstructed phylogenies with larger numbers of leaves will be more common as

technologies and methods advance.

We will simulate Nd = 104 for n = 30, 100 and due to run time issues Nd = 2 ·103 for n = 200

trees under the Yule model and calculate their index values to estimate the distribution.

3.1.3 Level of signi�cance and critical region (quantile-based)

Both a two-tailed (H1=deviation from Yule model, more balanced or asymmetric as expected

by chance) as well as a one-tailed test (H1=more imbalanced) have been used in previous com-

parisons. The former for a general analysis, the latter because observed trees are often more

imbalanced. As we want to explore the balance indices' power to recognize both more balanced

and more imbalanced trees, we will stick with a two-tailed test.

To stay comparable with other analyses we will set the level of signi�cance to 5%. Thus,

≤ 5% of trees constructed under the Yule model will be incorrectly accessed (�rst type error).

As in literature where they used the corresponding quantiles as critical values for a one-tailed

test, we will use the 0.025- as well as the 0.975-quantiles to create an acceptance interval I. This

method is shown in Figure 7 as well as 8 on the left and will now be clearly de�ned.

Figure 7: Visualization of mean and quantiles for some balance indices estimated based on 1000
Yule trees per number of leaves n.

18



Sophie J. Kersting - University of Greifswald 3.1 Methods of comparison

An empirical p-quantile with p ∈ [0, 1] for a sample X = {x1, ..., xn} sorted in ascending order
can be de�ned as [29, p. 70]

x∗p =

 1
2 (xnp + xnp+1), if np ∈ N

xbnp+1c, else.

Thus, at least p · |X| values are smaller or equal to x∗p. x∗p divides the values approximately

in a ratio p : (1 − p) if the distribution is su�ciently wide spread. We require I to contain at

least 95% of the values because the false positive rate would otherwise exceed 5%. Therefore, we

have to exclude the quantiles resulting in ]−∞, x∗0.025[ ∪ ]x∗0.975,∞[ as the critical region for the

0.025-0.975-quantile approach. For examples see Figure 7.

We will not use a di�erent critical region because with this we can do replicable two-sided

tests and any optimization of the critical region can only be based on a certain alternative

model or real data for every context that we want to explore. Furthermore, this should also give

information on the quality of the balance indices in a one-tailed test.

Figure 8: Visualization of the distribution and acceptance interval (0.025- and 0.975-quantile
marked with bold vertical lines) of the Colless index as well as the power for several values of
ζ under the ζ-IF-both-model (30 leaves, 10000 trees for the estimation of the distribution, 1000
per ζ for the calculation of the power).

3.1.4 Alternative hypotheses (ζ-models)

Di�erent examples for the alternative hypotheses H1 have been given. All ideas were integrated

in some form into the ζ-models that have been de�ned in Section 2.2.

� A model named biased speciation was directly adopted under the name IF-di� [26, p. 1177].

� A second version of the biased speciation model has been used as well. Let p ∈ [0, 1] be a

�xed value. Let a species with rate r split, then its direct children will have the rates p · r
and (1− p) · r. The other rates will not be reset. p = 0 or = 1 will lead to asymmetric and

p = 0.5 to more balanced trees [6, p. 149]. This model will not be used, as we have already

19



Sophie J. Kersting - University of Greifswald 3.1 Methods of comparison

integrated a version of inherited fertility with unequal in�uence of the daughter species and

it is not suitable to generate more asymmetric trees than under the Yule model, because

both children have rates lower or equal than their parent.

� Second, speciational Brownian evolution with speciation rates depending on the value of

evolved traits. One trait was expressed with a parameter X. For the root X was set to

100 and X was changed only at speciation events by drawing from a normal distribution

for both new lineages [1, p. 867] [37, p. 6]. This model will be used in this master thesis as

it provides a completely di�erent approach with �evolutionary noise�.

� Furthermore, a model was used with speciation rate λ of a lineage decreasing over time

since its last speciation event (age). As a formula λ = A · t−0.5 + 0.5 = A√
t

+ 0.5 with

t being the age of a lineage and A being a parameter for the level of in�uence. λ was

updated frequently as a continuous process was approximated instead of a discrete process

[1, p. 867] [37, p. 7].

In order to save computing time we will not directly adapt this model. However, we will

try to mimic the model using the ζ-ASB-model which is signi�cantly faster to calculate,

but lacks the frequent update of the rates.

After the overall comparison we will select interesting models as a basis for the genetic

programming runs.

Figure 9: Summary of the procedure to evaluate a balance index.

3.1.5 Calculating power and comparison

The power of a balance index can only be estimated for a given non-Yule model. For that we

will simulate Nζ = 103 (sample size per ζ) trees under the non-Yule model and calculate the

percentage of trees that have index values outside of the acceptance interval and are therefore

20



Sophie J. Kersting - University of Greifswald 3.1 Methods of comparison

considered not to be generated under the Yule model. The value of ζ in�uences the power

strongly. For ζ → 0 and ζ → ∞ the power increases under the DCO-, IF-both- and ASB-

model, resulting in a bathtub like curve (see Figure 8 on the right and 9). For IF-di�- and the

speciational Brownian model we will only observe increasing power with increasing ζ values.

Now, the approach has been clearly de�ned. The next section brie�y summarizes the already

published results and presents the two Tables 2 and 3 that contain the results concerning each

balance index as well as the methods of the previous comparisons. Then, the actual comparison

will follow.

3.1.6 General results of previous studies

� In general we can not assume that balance indices are normally distributed (shown for

i)− vi) see Table 3) [26, p. 1176].

� Balance indices i) − vi) see Table 3) are not able to work as statistical tests for n < 8

because their critical region is trivial in these cases [26, p. 1174].

� General observation: The ratio of speciation rates/leaf probabilities has to be large to be

noticed by balance indices. Therefore one can assume that an imbalance e�ect that is

noticed by these tests is likely to be large.

� The balance indices perform di�erently depending on the chosen alternative model. Thus,

the goal to construct an index that performs well on a mixture of various alternative models

should be taken into consideration as well. In reality there can be situations in which an

index that has an overall good power is useful because there is no assumption possible

based on other prior information. However, it is not clear how this mixture of alternative

models should be de�ned.

21



Sophie J. Kersting - University of Greifswald 3.1 Methods of comparison

Table 2: Null hypothesis, examples from H1 used for calculating power, method to construct

the critical region, values for number of leaves n and and sample size Nd and Nζ in published

comparisons.3

Source [22], 1992 [26], 1993 [1], 2002 [6], 2005 [23], 2007

H0 Yule Yule Yule Yule Yule & �bio-

geographic

null�

H1-ex - biased

speciation

trait

value-based

& age-based

rates

biased

speciation v2

-

test - two-tailed one-tailed

(H1=

imbalanced)

one- &

two-tailed

two-tailed

crit. values - (not

mentioned)

empirical

0.95-quantile

empirical

0.95-quantile

(not clear)

n 1,...,14 4 ∈ [8, 50] &

10,20,40

8,16,32,64 30,100,200 -

Nd 104 105 (5·)103 104 104

Nζ - 104 103 104 -

2For the sake of completeness it should mentioned that there has been an additional recent study that compared
balance indices as well. However, they used a di�erent method to assess the power, such that the results can not
be compared easily [21, p. 56].

4The authors tested the balance indices with reconstructed phylogenies based on real data. The number of
leaves n did not exceed 14 because the amount of such reconstructed phylogenies with that many leaves was too
small at that time to produce more insights.

22



Sophie J. Kersting - University of Greifswald 3.1 Methods of comparison

Table 3: Balance indices (BI) used in published analyses with short description of results. �n↑�
means �for higher numbers of leaves�, a-b and t-b refer to the age- and trait-based alternative

models.

Source [22], 1992 [26], 1993 [1], 2002 [6], 2005 [23], 2007

i) corCollessI X good best

(trait-based)

- X

ii) N̄ - weak best (t-b) - -

iii) σ2
N - good ok - -

iv) R - good - - -

v) B1 - di�erent,

best

good (n↑,
age-based),

weak (t-b)

- -

vi) B2 - weak weak - -

vii)
∑
I ′ - - good (n↑,

a-b), weak

(t-b)

- -

vii) meanI ′ - - good (n↑,
a-b), weak

(t-b)

- -

ix) I ′10 - - (weak) - -

x) SackinI - - - good -

xi) D - - - good -

xii) CherryI - - - very weak -

23



Sophie J. Kersting - University of Greifswald 3.2 Comparison

3.2 Comparison

As discussed in Section 3.1 we will use the following parameters with Nd = 20, 000 for n = 30,

Nd = 10, 000 for n = 100 as well as Nd = 2, 000 for n = 200:

n = 30, 100, 200 Nd = 2 · 104, 104, 2 · 103

Acrit =]−∞, x∗0.025[ ∪ ]x∗0.975,∞[ Nζ = 103

At �rst it had to be explored which values for ζ are suitable for each model. The goal was

to have the curves reach ≈80% on the sides for the best indices and lower values for others.

However, especially for the DCO-model, the values < 1 could not always be chosen to ful�ll this

criterion. The range of these ζ-values should be divided by 5-7 equidistant ζ values in total,

such that the development of balance index values depending on ζ can be retraced. Important to

add is that all balance indices are accessed on the same sample of trees. Thus, the confounding

in�uence of di�erent sample bases can be decreased.

3.2.1 Implementation (R)

Figure 10: Overview of the general process of the balance index comparison.

24



Sophie J. Kersting - University of Greifswald 3.2 Comparison

See Figure 10 for an overview of the R-scripts used to generate the comparison data (see

scripts_comp.zip on the attached CD). All balance index functions are written to apply to

trees of class phylo, the basic tree format of the ape package. As said before in Section 2.2 a

tree consists of at least three elements: its number of inner nodes, a vector that holds the leaf

labels (its length gives the number of leaves) and an edge matrix, which has a row with parent

and child for each of the ((2n− 2) if binary) edges of the tree.

Unfortunately, the methods to generate a tree under a ζ-model produce a di�erent node

enumeration than trees generated with ape methods. This had dramatic e�ects as trees would

change and sometimes not even be binary after saving it in a text �le and reloading it using

the standard ape functions write.tree and read.tree. An auxiliary function which assigned the

standard ape node enumeration was tested but discarded because it increased the run time by

the factor ≥ 80. To avoid this considerable elongation of the run time a new set of writing and

reading functions was implemented in the scipt GenerateTrees.R. For we are only dealing with

binary trees the number of leaves or inner nodes can be deducted from the number of rows of

the edge matrix. Thus, these functions only save the edge matrix. For multiple trees the writing

function combines the edge matrices. The reading function can than retrieve the single matrices

(two columns of the grand matrix each).

3.2.2 Results of the �rst comparison

In the following Figures 11, 12, 13, 14 and 15 the results of the �rst comparison are visualized. The

�gures for n = 100 have been excluded because they do not provide further insights. However,

the complete set of �gures as well as RData-�les of the data sets can be found on the attached

CD (firstcomp_results.zip).

As expected the average leaf depth and the Sackin index as well as the corrected version of

the Colless index and the Colless index itself delivered exactly the same results because they are

only scaled by a factor 1
n or 2

(n−1)(n−2) ,respectively. The scaling only compresses the range of

index values, but does not e�ect their function as a statistical test. Therefore, one index of each

pair � the average leaf depth and the corrected Colless in this case � was omitted to keep the

�gures more clear. The I ′root index was excluded as well because it was extremely weak (power

<5% regardless of ζ for n up to 60 leaves) and there still were three other indices included that

use the I ′ approach.

In accordance with our speculations the DCO-model required high ζ values to produce asym-

metric trees and even for considerably low ζ values the model has only little in�uence on tree

symmetry (see Figure 11).

How similar are the indices? Are there groups of indices that perform similarly

well? For the DCO-, IF-both-, IF-di�- and Brownian model there are mostly clear groups of

balance indices regarding their performance: The Sackin index, the Colless index and the variance

of leaf depths always have the highest power. Slightly below we have the total cophenetic index.

The cherry and the symmetry nodes index performed worst, the remaining indices were in the

middle range. For the ASB-model the ranking di�ered. The B1 index, the
∑
I ′ as well as the

meanI ′ index performed best (consistent for higher and lower ζ values). The cherry and the

symmetry nodes index performed signi�cantly better for higher numbers of leaves (near top tier

for 200 leaves). The best group mentioned above for the other models (Sackin index, Colless

25



Sophie J. Kersting - University of Greifswald 3.2 Comparison

index and the variance of leaf depth) are at best middle tier and falling o� for higher numbers

of leaves.

This drastic shift of groups from best to worst for di�erent models makes it clear that the

right choice of a balance index can have a serious impact. With prior knowledge on fertility

inheritance, trait-based fertility or age-based fertility di�erent groups of balance indices should

be recommended. This leads to the question if we can �nd a balance index that performs well

on both types of models (see Section 5.1).

Figure 11: Comparison of the power of balance indices regarding the ζ-DCO-model.

Figure 12: Comparison of the power of balance indices regarding the ζ-IF-both-model.

Can the list of balance indices be shortened? According to these comparisons it is never

bene�cial to choose the cherry or the symmetry nodes index over the B1 index, the
∑
I ′ or the

meanI ′ index because the latter have higher power for every ζ value of every tested alternative

26



Sophie J. Kersting - University of Greifswald 3.2 Comparison

model. However for the ASB-model both indices were more powerful than a large part of the

remaining established indices.

Figure 13: Comparison of the power of balance indices regarding the ζ-IF-di�-model.

Figure 14: Comparison of the power of balance indices regarding the ζ-ASB-model.

Are the results comparable with previous studies? According to Heard's paper [26] it

was expected for the B1 index to be the best, the Colless index and the variance of leaf depths

to be good and the average leaf depth ( Sackin index) as well as the B2 index to be weak for

the IF-di�-model. As only low numbers of leaves were investigated in that study we can only

compare it with our results for n = 30 (see Figure 13 on the left). Unfortunately, our data

contradicts these expectations. B1 is by far not as good as the Sackin and the Colless index,

which perform equally well for the IF-di�-model.

However, our index rankings are in complete agreement with Agapow's studies [1] for the

27



Sophie J. Kersting - University of Greifswald 3.2 Comparison

ASB-model (compared with the continuous-time version used in the paper) as well as for the

Brownian (trait-based) model. Furthermore, Blum's results [6] on a di�erent version of the IF-

di�-model ranking the Sackin index and the weighted l1 distance high and the cherry index very

low are comparable to our �ndings on our version of IF-di�.

Figure 15: Comparison of the power of balance indices regarding the Brownian model.

Are there consequences for genetic programming? Because of the high run time we

decided to use only a low number of leaves for genetic programming. We will use 25 leaves. The

performance of so found indices will afterwards be tested for higher numbers of leaves in order

to investigate if their power is robust to changes in tree size. Another consequence will be to

test only for a smaller amount of trees that were generated under an alternative model than

we did now with 5000-7000 trees. Furthermore, it was decided to exclude the DCO-model from

further investigations because it was the least interesting and showed a similar balance index

performance structure as the IF-models and the Brownian-model. Additionally, one range of ζ

values did not have any noteworthy e�ect at all and can thus not be used to di�erentiate the

performance of balance indices.

28



Sophie J. Kersting - University of Greifswald

4 Genetic Programming

In the �eld of evolutionary algorithms evolution with mutation and selection is simulated to �nd

and optimize a solution to a given problem. A population consisting of a set of individuals is

created, with each of these individuals representing a more or less good solution strategy. One

can di�erentiate between the genotype of an individual, which contains the information (e.g.

(2, 3, 5) binary coded as (0010|0011|0101) with 4 bits per number for a polynomial of degree

two) on how the individual is structured and can be a�ected by mutation operators, and the

phenotype, which is the actual expression of the genotype (e.g. p(x) = 2x2 + 3x+ 5) and can be

evaluated with regards to its performance in solving the problem. There are di�erent forms of

evolutionary algorithms like genetic algorithms, evolutionary strategies or genetic programming.

They mostly di�er in the way how they represent or �build� the genotypes of the population and

consequently how the mutation operators work.

The underlying optimization problem can be abstract and not analytically solvable, the only

thing needed is a �tness function f . This function assigns to each possible genotype a �tness

value (∈ R) describing how good the corresponding phenotype is in solving the problem [3,

p. 126]. The �tness value of an individual will then impact how likely it is that this individual

produces o�spring and that its solution will in some way prevail in the next generations. De�ning

f properly as a model of the problem is the key to obtaining solutions that really solve the problem

in the intended way.

For example, if you want to interpolate a di�cult function g using a number of interpolation

points (x1, g(x1)), (x2, g(x2)), ... one could take the least squares approach. The �tness function

f would be equal to the sum of squares of the residuals g(xi)−ind(xi) with ind being the function

that is represented by an individual [3, p. 128]. Now we can see this as a minimization problem

and select individuals with small residuals to produce o�spring.

In robotics it is for example possible to train the parameters of a neural network for steering

a robot using evolutionary algorithms. The di�culty lies in the well thought-out de�nition of the

�tness function that punishes unwanted behavior. If the aim is a far and fast driving 2-wheeled

robot then f should include a value for the speed of its wheels. If f was kept like that some robots

may only spin on one spot without getting any distance from the starting point. To punish such

behavior one could either let the length of the covered track be a positive factor of the �tness

function or one could use the di�erence of speed between the two wheels as a negative factor.

Individuals that drive more or less straight most of the time would have better �tness values and

therefore be more likely to produce o�spring [3, p. 363]. Finding a good de�nition of the �tness

functions is a creative process that sometimes needs to be revisited if there is unwanted behavior

that should be excluded.

As the rgp package, which is used in the GP runs, assumes a minimizing problem with lower

�tness values being favored, we will use minimization problems in our examples or use the term

�better� �tness values. Better can then refer to either the lower or higher �tness value depending

on the problem. As our �tness function should assess the power of the balance indices we will

use f(i) = 1− power(i) or a slightly modi�ed version.

But how does the whole process look like? In general generation based or generational evo-

lutionary algorithms can be summarized as follows [3, p. 134].

29



Sophie J. Kersting - University of Greifswald 4.1 GP and building blocks

1.) Initialize a population of solving strategies and calculate their �tness values.

2.) Create a new generation by sequentially generating new individuals through crossover and

mutation of parents that were selected depending on their �tness values.

3.) Calculate the �tness of the new individuals and check if a termination criterion is ful�lled.

If this is not the case return to step 2.). Otherwise give out the best individual(s).

A lot of this, like the representation and structure of an individual or the selection and

mutation processes, is not yet clear. Thus, we will now have a closer look how these points are

de�ned and executed in genetic programming, which is the form of evolutionary algorithms that

will be used here.

4.1 Genetic programming and its building blocks

Genetic programming (GP) is the subcategory of evolutionary algorithms that aims to evolve

computer programs or functions and was recognized, developed and studied by Koza [27, 28].

Like other evolutionary algorithms it needs a �tness function for the given problem. This problem

should be possible to be divided into subproblems for GP to be e�ective.

For GP it is common to use a (rooted) tree representation as many programming languages

represent or interpret programs in this way [3, p. 113]. Similar to the Newick tree format, nested

parentheses are converted into a tree shape. The program then represents the genotype of an

individual and the phenotype is the behavior of the program and how it executes on given input.

The tree consists of building blocks set by the user. They can be divided into the terminal set

TS for the leaves of the tree and the function set FS for the inner nodes [3, p. 109]. The former

contains all constants and input parameters that do not require any arguments, while the latter

contains a set of functions that can operate on the given input symbols. It is di�cult to choose

the right size of these sets. The function set should contain the most important functions or

terminal symbols to be su�cient to represent a proper solution to the problem, but on the other

hand it should not be too large as this increases the search space and can make the problem

harder to solve.

The terminal set can contain a �nite set of constants, but it is also possible to include

intervals or other sets with (in-)�nite elements. For that placeholders have to be introduced

into the terminal set for every sensible domain e.g. TS = {D1, D2, x} with D1 = [−1, 1] and

D2 = {1, 2, ..., 100}. If a certain domain is chosen for a terminal symbol a constant will be

drawn from it at random. They are called random ephemeral constants. A constant drawn for

an individual will not change except under mutation and exactly this value can be inherited by

the individual's o�spring. There will not be a roll for a new D1 value for the child individual [3,

p. 109].

The R package rgp that will be used for our GP experiments uses so-called constant factories

that resemble the domains. They are functions that return a value of the corresponding domain.

The user has the option to introduce any probability distribution. Commonly the uniform

distribution is used and will also be used here. However, we will round values to two decimal

places at least. More detailed information is given in the respective parameter descriptions for

the GP stages.

30



Sophie J. Kersting - University of Greifswald 4.1 GP and building blocks

Figure 16: Examples of the tree representation of GP individuals.

Example: Let the building blocks be TS = {1, 2, x} and FS = {+,−, ·, /} and let the goal be
to create functions e.g. for an interpolation problem. With these sets there are in�nite possible

combinations, for example i1(x) = (2·x)·((x−1)+x) = 4x2−2x, i2(x) = (((x+x)+x)/2)·2 = 3x

or simply i3(x) = 1/2 if we randomly choose functions and terminal symbols. Of course FS can

also contain functions that have more or less input variables. An example with trigonometric

functions and the ifPositive-function can be seen on the right. The function ifPositive (iP)

executes the second branch if the �rst value is positive, and the third branch else. The example

thus represents the function i4(x) = x + sin(sin(x)) for x > 0 and i4(x) = x + sin(cos(x)) for

x ≤ 0. The tree representations of these functions can be seen in Figure 16.

For this small problem we can derive at least three questions: First, how do we handle

problems like dividing by zero e.g. in case of 1/(x − x)? Second, how do we handle functions

with di�erent input and output values? Balance indices for example will take a tree as input and

return a numerical value. And third, how can the �rst generation be initialized?

Closure of the function and terminal set

The general goal is to have a set of functions that work no matter the input value. This is called

the closure property [3, p. 112]. New versions of functions are introduced that return a default

value if the input is not appropriate. For example there is protected or safe division that returns

zero in case of dividing by zero. Similarly, one can use a protected version of the square root or

the logarithm that uses the absolute value of its input to not have errors due to negative values.

This entails that every function that is introduced to the FS has to be ensured not to produce

errors that could stop the whole process of GP. The scripts AuxiliaryPhylFunctionsForGP.R

and GPParams*.R thus contain modi�cations that remove stop commands and instead have

default values returned. Some functions will be mentioned in the respective stage parameter

descriptions, but for detailed information on the modi�cation of each function please inspect the

scripts on the attached CD.

31



Sophie J. Kersting - University of Greifswald 4.1 GP and building blocks

Strongly typed genetic programming

Strongly typed genetic programming or sometimes only typed genetic programming is a GP version

in which we can use functions with di�erent in- and output types [36] [3, p. 298]. In our various

GP runs we will use numeric, integer and boolean values, trees of format list as well as sets

of nodes of the new de�ned format numeric vector. For the program to know how to build

individuals and how to connect each function with the �tting parameters, each function in FS

has to be extended by a de�nition of its in- and output types.

The rgp package includes this option. For example an arbitrary balance index would be

de�ned like

“NameOfBalanceIndex”% :: %(list(st(“list”))%− > %st(“numeric”))

indicating that it turns a tree into a numeric value. Note that trees are of type ��list (list of

edge matrix, number of inner nodes, leaf labeling, ...) and as it is the only parameter of this

type, list will be synonymous for tree here. For a more complex example we look at the function

vectorOver, which resembles a for-loop by saving the result of a given function for several given

input values in a vector. With

“vectorOver”% :: %(list(st(“nodes”), st(“list”), st(“character”))%− > %st(“numericV ector”))

it can be declared that the function needs a set of nodes (integer vector), a tree and a character

vector as input and will then return a vector containing numeric values. In the de�nition of the

function it can be assumed that the incoming parameters will �t these types. The character

should be the name of a function which is using a single node as an input in addition to the

tree. For this a constant factory was used that returned di�erent function names. In vectorOver

a vector will be created containing the value of this function over all given nodes. E.g. a

vector containing the depth of every leaf of a tree can be created with a function call similar to

vectorOver(getLeafNodes(tree),tree,�depthNode�).

Similar to the functions all constants and the input have to be marked with their correspond-

ing type as well.

Creating the initial population

There are di�erent ways on how to create the individuals for the �rst generation. The three most

common methods require the user to set a desired depth for the individuals' tree representation

[3, p. 118] [27]. Then the initialization goes as follows for these three methods (see Figure 17):

i: The full method starts from the root and uses elements of the function set until the desired

depth -1 is reached, then only terminal symbols are attached. This creates a tree with

equal depth for every leaf.

ii: The grow method starts from the root and uses functions or terminal symbols. At the

desired depth only terminal symbols are used. This creates a tree with a certain maximal

depth of the leaves, but leaves are allowed to have a smaller depth.

32



Sophie J. Kersting - University of Greifswald 4.2 Mutation and Selection

iii: The 50-50-rule also known as ramped-half-and-half creates half of the trees with the �rst

and the second half with the second method.

If there are several desired depths the population will be commonly divided into equal parts

for each depth value. Then one of the above mentioned methods is applied to each subset.

Figure 17: Initialization of trees with maximal depth 3 using method i and ii. In the second

method not all leaves have that maximal depth.

For our GP runs with the rgp package we will use the �ramped-half-and-half� method with

the default maximal depth of 8. Although the default implementation of the full method tries

to reach the given depth, it will in our case often produce trees containing leaves with smaller

depth when it has no choice but to use a terminal symbol. For example if it uses a balance index

as a function symbol the direct child will always have to be a terminal symbol (e.g. the input

tree) because there are no other functions available that have a tree as output. The program

would not replace the balance index with another function symbol as this could cost a lot of time

and would not guarantee success. However, this behavior of the program is bene�cial for us as

it keeps the individuals less complex.

4.2 Evolutionary operators: mutation and selection

Now, with the de�nition of the building blocks done, we go over to the evolutionary or genetical

operators. Again these have to be modi�ed for typed genetic programming, to only build sensible

programs with matching types.

If we have a population of individuals and assume that their �tness has already been calcu-

lated, the next step is to create new individuals for the next generation. For that a mutation

operator has to be chosen with each operator having a given probability to be chosen. There

normally are two di�erent forms, crossover and repeated point mutation, although the latter is

often referred to only as mutation. Either of these operations require at least one parent indi-

vidual. And this parent has to be chosen from the already existing population via selection that

favors individuals with better �tness values.

Selection

Let (f1, f2, ..., fnpop) be the �tness values of a population of size npop. Then there are di�erent

methods on how to select an individual based on its �tness [3, p. 129]. For example the �tness

proportional selection where each individual has a probability equal to its proportion of the

total �tness of the population fi/
∑
j fj . There are some similar versions in which the in�uence

of chance is lowered by giving each individual its rounded down expected number of o�spring

33



Sophie J. Kersting - University of Greifswald 4.2 Mutation and Selection

bfi/
∑
j fj · nc. The remaining free places of the next generation are then selected again by a

modi�ed �tness proportional selection or by a ranking. However, all of these methods have two

disadvantages in common. First, they need positive �tness values and second if all �tness values

are more or less equally high e.g. (999,997,1002,996,...) the pressure of selection is nulli�ed

because it is equal to a random selection under a uniform distribution. All these disadvantages

could be avoided by scaling or other modi�cations of the �tness function, but there is a di�erent

form of selection that does not need further modi�cations of the �tness function:

The tournament selection method relies on the comparison of the �tness values of a small

group [3, p. 132]. An example can be seen in Figure 18. A given number of individuals (tourna-

ment size ntour) are drawn randomly from the given population. These individuals compete and

the one with the best �tness value will be selected. This method does not su�er from the above

mentioned disadvantages, but it is vulnerable to an unlucky draw that did not include the best

individuals.

Figure 18: Example of tournament selection for a minimization problem with tournament size
3. Each individual is depicted with its �tness value.

Thus, this method (or other methods as well) is often linked with an elite selection. The elite

will contain the nelite best individuals and is updated for every new generation. Therefore, there

will not be a loss of good performing individuals.

In our GP runs we will use tournament selection in combination with an elite that will here

be called archive with size narc. Only the non-archive part of the generation will be replaced

with npop − narc new individuals in every step (see Figure 20 later with explanations).

Crossover

The crossover of two individuals is an exchange of subtrees and is shown in Figure 19. Every

node of the �rst individual's tree has a probability to be a�ected by a crossover. If that happens a

random subtree of the second indiviudal's tree is chosen to replace the subtree rooted in this node.

The replacement can be any subtree ranging from the complete tree of the second individual to

a single leaf. For typed genetic programming it has to be additionally ensured that this subtree

has the same output type as the �rst one. The modi�ed version of the �rst individual will then

be returned as the result of the crossover [3, p. 122].

34



Sophie J. Kersting - University of Greifswald 4.2 Mutation and Selection

Figure 19: Example of a crossover of two indiviudals. The roots of the subtrees chosen for the
crossover are marked.

Due to the partition of the population into archive and non-archive we will use two di�erent

forms of crossover. The two forms will only di�er in the population pool from which the parent

individuals will be drawn. For the �rst form we select one archive individual and one arbitrary

and the second form uses two arbitrary individuals from the complete population. The former

is the default crossover method in the rgp package and will get a higher probability because it

prioritizes the better archive individuals. However, the latter version was additionally introduced

to provide more variety as it makes it possible that a crossover happens to two non-archive

indiviudals as well as that a non-archive individual will gain a subtree of an archive individual.

The probability to choose these crossover operators for the creation of the next new individual

are pcross-arc and pcross-noarc, respectively.

We will use the default crossover probability of the rgp package of 0.1 for every node in Stage

1 and 3. The rgp crossover function terminates the crossover of a chosen node, if the output

type of the subtree that is randomly picked in the second tree does not match the output type

of the chosen node, because a search for a �tting subtree could take too long. Therefore, we

will increase the node crossover probability to 0.2 for Stage 2 to compensate for the signi�cantly

larger function set that has a wider range of output types which therefore makes a crossover

termination more probable.

Mutation

Mutation refers to the modi�cation of one single individual to create a new o�spring individual [3,

p. 125]. Every node of the individual will mutate with a given probability. The mutation replaces

the subtree rooted in this node with a newly constructed tree (see initialization of individuals).

This new tree must have the same output type for typed genetic programming [3, p. 122]. The

probability to choose mutation as a genetical operator for the creation of the next new individual

is pmut.

In the rgp package each node has a default probability of 0.1 to be mutated and the replace-

ment tree has a maximal depth of 5. These settings were used for the GP runs in Stage 1 and

3. Similar to the crossover the rgp mutation function tries to build a replacement tree with

35



Sophie J. Kersting - University of Greifswald 4.2 Mutation and Selection

the same output type, but if it fails it will terminate the mutation of the chosen node. Thus,

for Stage 2 the node mutation probability was increased to 0.2 because the number of functions

and their range of types was higher, leading to a higher chance of building un�tting replacement

trees.

Reproduction and further operators

Reproduction refers to returning an unmodi�ed copy of the selected parent individual [3, p. 126].

As in our case crossover and mutation both have a probability to not modify the individual at all

and as we additionally use an elite that saves the best individuals, it is not necessary to introduce

reproduction as a further evolutionary operator.

There are more operations that can be applied to GP individuals. However, we will here

only use the standard set of operators (crossover, mutation as well as indirectly reproduction)

because we want to explore if a simple genetic programming setup can already be successful.

36



Sophie J. Kersting - University of Greifswald

5 The experimental GP setup

The rgp package provided the basic structure for the genetic programming process. For the

initialization and the evolutionary operators prede�ned functions could be chosen. We will use

the archive-based GP version in our experiments. Its general process was provided as well, but

it was further modi�ed and enhanced by

� installing safety measures (data backup of archive individuals and their �tness values for

the current generation) and a recording of development statistics (minimal, average and

maximal �tness),

� introducing a second crossover operator with two random individuals as mentioned in

Section 4.2 (the �rst crossover operator was given by default)

� and by implementing a parallelization of the �tness calculations for all new individuals.

The complete process of the archive-based genetic programming can be seen in Figure 20 or in

the scripts GPParams*.R. All settings not yet de�ned will be explained in Section 5.1.1.

Figure 20: An overview of the procedure of archive-based genetic programming used in this

thesis. The genetical operators will be chosen with probability pcross-arc, pcross-noarc and pmut,

respectively. Modi�cations are marked with dotted lines.

37



Sophie J. Kersting - University of Greifswald 5.1 Tasks for Stage 1 & 2

5.1 Tasks for Stage 1 & 2

In order to investigate how good genetic programming is in developing new balance indices we

will use two tasks that explore di�erent aspects of the balance index optimization problem. There

obviously is a huge variety of possible applications, but the number of tasks will be limited to

two in order to keep everything clear as they are later also used for both stages.

(A) Best BI for both ASB and IF & Brownian: In the comparison of established indices

in Section 3.2 we could see that there was a shift in the performance of certain balance

indices depending on the model type. Due to that the �rst task is to �nd a balance index

that performs well on both the ASB-model and the IF- and Brownian models. In lack of an

established mixture we will generate half of the trees under the ASB-model and the other

under a uniform mixture of the IF-both, the IF-di� and the Brownian model.

(B) Best BI for IF-di�: In contrast to the �rst task we also wanted to see how good GP is

in optimizing balance indices for only one speci�c model. The IF-di�-model was selected

because it showed a clear distinction in the performance of di�erent indices that did not

vary for increasing numbers of leaves and because it has already been used in literature.

Furthermore, the IF-di�-model does not produce more asymmetric or symmetric trees for

di�erent ζ values, such that we will only have to test for one range of ζ. A mixture of trees

for two di�erent ζ values was used.

In order to provide the data on which the �tness calculations can be based on we �rst

generated 10,000 trees for every ζ of every model in the composition. Then we created 100 �les

containing 2400 (or 1200 for the �rst trial runs) trees, each according to the composition in Table

4. For every evolution step in GP one of these 100 �les will be drawn at random as a data set.

This should serve as a compromise between time e�ciency and preventing over�tting if the data

set does not change at all.

Table 4: Tree composition for Task A and B (
∑

= Nζ = 2400). For every model it will be listed

how many trees will be generated for the corresponding ζ value.

A B

ASB 600, ζ = 0.76 600, ζ = 1.24

If-both 200, ζ = 0.55 200, ζ = 0.45

If-di� 400, ζ = 2.5 1200, ζ = 2.5 1200, ζ = 3

Brownian 400, ζ = 80

The �tness of an individual i was then calculated using

f(i) = 1− powercomp(i)

with powercomp(i) being the percentage of alternative trees of one data set for which H0 was

rejected ( a weighted mean of the powers for the di�erent models and ζ-values ). As we use a

38



Sophie J. Kersting - University of Greifswald 5.1 Tasks for Stage 1 & 2

composition of di�erent tree models we cannot directly link the percentage of times H0 is rejected

to a certain model. Thus, we will have to see in the end how well the newly constructed indices

actually perform for each single model.

5.1.1 The parameter settings

To explore the functionality and to �nd weaknesses in the performance a �rst set of GP runs (I)

was used. The goal was to use the experiences gained in Set (I) to optimize the execution of the

second set of GP runs (II). Here is a description of the parameters of each set:

Set (I) This set of runs was incomplete in the parameter settings with a mutation function with

a very low probability to a�ect an individual and di�erent probabilities for the genetical

operators were tried out as well. Furthermore, it did not make use of small added features of

the rgp package. Sensible restart conditions could only be implemented after the �rst runs:

Every tenth generation is tested if the standard deviation of the �tness values falls below a

threshold of 0.019. A small variance within the �tness values indicates low diversity within

the population which often shows that the population is stuck in one area of the space of

possible balance indices � a situation in which a restart can help to increase diversity and

with that the chance of �nding new well performing individuals. The aim was to make

restarts possible, but not to have them happen too often. The threshold of 0.019 was �rst

chosen randomly for both Task A and B from the range of the standard deviations of the

�rst �nal generations ( Ai) 0.017 and Aii) 0.014 as well as Bi) 0.017 and Bii) 0.021), but

proved to be a good choice in the following runs of both stages. All in all, the following

parameters were used in Set (I):

n = 25, max. duration = 68 h

Nd = 2000, Nζ = 1200,

pcross-arc = 0.7 or 0.5, npop = 50,

pcross-noarc = 0.24 or 0.25, , narc = 10,

pmut = 0.06 or 0.25, , ntour = 3 (2 or 3 for archive).

Set (II) We used the following parameters for all stages for set (II). Extinction prevention5 was

activated and the developed restart conditions were copied from Set (I).

n = 25, max. duration = 68 h

Nd = 4000, Nζ = 2400,

pcross-arc = 0.6, npop = 60,

pcross-noarc = 0.16, narc = 10,

pmut = 0.36, ntour = 3 (2 for archive).

5If the feature �extinction prevention� is activated in the rgp package, the algorithm prevents the introduc-
tion of duplicate individuals during the initialization of the �rst generation by successively adding only distinct
individuals.

39



Sophie J. Kersting - University of Greifswald 5.1 Tasks for Stage 1 & 2

We discovered that all of the runs progressed extremely di�erently, more depending on a lucky

seed than on variations in the parameter settings, such that results from (I) were sometimes as

good or even better than runs from the second set. As a consequence we will combine the results

of both sets to gain access to all well performing individuals, although it will lead to a longer list

of runs that have to be described and examined.

All GP runs had the time limit of 68 hours as a termination criterion because the run time

was limited to 72 by the university's computing network. 4 hours were considered a safety margin

because depending on the complexity of the population the calculation of new generations can

take a half up to several hours. It showed to be necessary and sometimes even too small as some

runs could not �nish completely. For these cases the above mentioned safety measures were

installed such that no results were lost.

5.1.2 Selection of candidates for the �nal comparison

How much does a �tness value tell about the power of the actual index? To answer this the

�tness values of the best established balance indices were calculated. As can be seen in Figure

21 quality di�erences can certainly be detected using these �tness values, however there still is

a variance.

Figure 21: Boxplots for di�erent established balance indices based on 50 �tness values each using

the �tness function of Stage 1 Task A and B. GP individuals that have a �tness of less than 0.44

or 0.285 for Task B (dotted line) will be selected for the �nal comparison.

40



Sophie J. Kersting - University of Greifswald 5.1 Tasks for Stage 1 & 2

All individuals that have a �tness of less than 0.44 for Task A or 0.285 for Task B will be listed

for the respective runs. However, only individuals that present a new idea on measuring tree

balance will be enumerated as a1, a2, ... or b1, b2, ... and used in the �nal comparison, excluding

individuals that consist only of one established balance index (with or without a factor or constant

summand). The thresholds of 0.44 and 0.285 have been determined such that at most the ten

best individuals will be selected for the �nal comparison. This ensures that the comparison with

the best established indices will not be overloaded. Furthermore, we wanted more candidates for

Task A as it seemed more promising.

The archive data of all runs can also be found on the attached CD (archive_data.zip).

41



Sophie J. Kersting - University of Greifswald

6 Stage 1: Established balance indices as building blocks

In this �rst approach we will use the established balance indices and the number of leaves as

building blocks that can be linked with a simple set of numerical functions. We thereby extend

the idea of a previous study that compared the performance of linear combinations of pairs of

balance indices [21, p. 56]. The building blocks are de�ned as follows. Please check the scripts

GPMainStage1.R as well as GPParamsStage1.R for more detailed information.

Terminal symbols TS: Constant sets for [0, 1] and [1, 5] rounded to 2 decimal places as well

as {10, 11, ..., 100} combined with the input parameter tree. A uniform distribution will be

used to draw constants from each domain. As the rgp package also requires a constant for

the type �list� (tree) another constant factory was added that only returns the T cat3 , but it

was modi�ed by a probability weight 0 to not be chosen over the input tree.

Function set FS: The standard operations +,−, · additional to safe versions of division, square
root, natural logarithms as well as the exp-function. Furthermore, a function that returns

the number of leaves of a tree and the list of balance indices that was used for the com-

parison (CollessI, SackinI, TotalCophI, VarLeafDepI, B1I, B2I, SumII, MeanII, MeanI10I,

WeighL1Dist, CherryI and SymNodesI). The cherry and symmetry nodes index were not

excluded to be able to explore if they could still be useful in combination with other indices.

We will here give an overview of the runs and their development and statistics (see Figure

22 and 23). The minimal �tness of each run is rounded to three decimal places. The global

minimum is 0.419 for Task A as well as 0.257 for Task B. Its proximity was reached by multiple

runs of both Set (I) and (II) for Task A, but only runs of Set(I) got near the global minimum

for Task B. All in all, this stage provided a number of promising candidates.

Although the run time was the same for all runs their number of calculated generations

di�ered greatly sometimes. This can partly be ascribed to the complexity of the individuals as

the �tness calculation of complex formulas takes longer, but for some drastic di�erences � less

than hundred generations in comparison to more than thousand � the reason was the number of

available computing cores.6

6.1 Results of the GP runs for Task A (Stage 1)

For Task A both sets provided a total of �ve candidates. They are simply structured, using three

di�erent balance indices at most and only the standard operations +,− as well as ·.

Set (I) Four runs were started and ran on 15 cores (except Repetition 2 on 47 cores). As

mentioned above only after the �rst two runs a sensible restart condition was introduced

because then it was possible to measure the standard deviation of the �tness values. For A

i) produced better values and it was restarted with the new restart criterion (Repetition 1).

The process of loading the trees for the �tness calculation was later further optimized and

thus the second repetition was launched as well and reached signi�cantly more evolution

steps (Repetition 2).

6It was not possible to in�uence on which nodes of the university's computing network BRAIN the runs were
started due to limited accessibility. Thus, the runs used either 15 or 47 cores. To keep this in�uence transparent
the number of cores will be listed for each run.

42



Sophie J. Kersting - University of Greifswald 6.1 GP results Stage 1 Task A

Figure 22: Development of �tness values over time for Task A. The global minimal value of each

set is marked with a dashed line. (I): Note that the x-axis was cut for visualization purposes and

does by far not show the total number of steps of Repetition 2. The minimal value of Repetition

2 stays nearly constant from step 40 onward and does not reach the global minimum.

i) Finished with 131 evolution steps and 0 restarts during the process (on 15 cores).

Minimal Fitness: 0.419, BI candidates:

a1(T ) = SackinI(T ) + CollessI(T ) ·MeanI10I(T )

a2(T ) = SackinI(T ) + SackinI(T ) ·MeanI10I(T )

ii) Finished with 137 evolution steps and 0 restarts during the process (on 15 cores).

Minimal Fitness: 0.433, BI candidates:

a3(T ) = MeanI10I(T ) · CollessI(T )

43



Sophie J. Kersting - University of Greifswald 6.2 GP results Stage 1 Task B

Repetition 1) Finished with 70 evolution steps and 5 restarts during the process (on 15

cores). Minimal Fitness: 0.437, BI candidates: a3

Repetition 2) Finished with 1393 evolution steps and 137 restarts during the process (on

47 cores). Minimal Fitness: 0.436, BI candidates: WeighL1Dist(T )

Set (II) The second set contains four runs as well, the last two with the correct I ′ implemen-

tation.

i) Finished with 782 evolution steps and 17 restarts during the process (on 47 cores).

Minimal Fitness: 0.461

ii) Finished with 300 evolution steps and 2 restarts during the process (on 47 cores).

Minimal Fitness: 0.431, BI candidates:

a4(T ) = SackinI(T ) + SumII(T ) · getLeaves(T ) · 0.14

= SackinI(T ) + SumII(T ) · n · 0.14

i*) 7 Finished with 210 evolution steps and 0 restarts during the process (on 47 cores).

Minimal Fitness: 0.424, BI candidates:

a5(T ) = SumII(T ) + (SackinI(T )−B1I(T ))

ii*) Finished with 738 evolution steps and 24 restarts during the process (on 47 cores).

Minimal Fitness: 0.454

6.2 Results of the GP runs for Task B (Stage 1)

The runs for this task also provided some candidates. Their list is shorter though because many

possible candidates were omitted as the were only normal established balance indices. Interesting

is the individual b2 of Set (II) i*) as it uses the exp-function. This could provide problems for

di�ering numbers of leaves as the index value ranges will vary as well. Therefore, we will have a

closer look at this candidate in the �nal comparison.

Set (I) The runs of this set are similar to Set(I) for Task A. For Task A we could not see any

improvement in the repetition runs, however, for this task we can see in Figure 23 that the

global minimum was only reached by the optimized fourth run (Repetition 2).

i) Finished with 140 evolution steps and 0 restarts during the process (on 15 cores).

Minimal Fitness: 0.268, BI candidates:

b1(T ) = MeanI10I(T ) + CollessI(T )

ii) Finished with 152 evolution steps and 0 restarts during the process (on 15 cores).

Minimal Fitness: 0.285, BI candidates: CollessI(T )

7Runs marked with * used the corrected implementation of I′. For more detailed information see the Remark
7.2.1.

44



Sophie J. Kersting - University of Greifswald 6.2 GP results Stage 1 Task B

Repetition 1) Finished with 86 evolution steps and 2 restarts during the process (on 15

cores). Minimal Fitness: 0.287

Repetition 2) Finished with 1443 evolution steps and 107 restarts during the process (on

47 cores). Minimal Fitness: 0.257, BI candidates: CollessI(T )

Figure 23: Development of �tness values over time for Task B. The global minimal value of each

set is marked with a dashed line. (I): Note that the x-axis was cut for visualization purposes

and does by far not show the total number of steps of Repetition 2.

Set (II)

i) Finished with 160 evolution steps and 0 restarts during the process (on 47 cores).

Minimal Fitness: 0.292

ii) Finished with 410 evolution steps and 5 restarts during the process (on 47 cores).

Minimal Fitness: 0.286

45



Sophie J. Kersting - University of Greifswald 6.2 GP results Stage 1 Task B

iii) Finished with 424 evolution steps and 1 restart during the process (on 47 cores).

Minimal Fitness: 0.294

i*) Finished with 188 evolution steps and 0 restarts during the process (on 47 cores).

Minimal Fitness: 0.284, BI candidates:

b2(T ) = 3.61 ·MeanII(T ) + exp(CollessI(T )−MeanII(T ))

ii*) Finished with 755 evolution steps and 12 restarts during the process (on 47 cores).

Minimal Fitness: 0.298

All in all, for both tasks the individuals were very simply structured and there was no need to

do simpli�cations by hand. As explained in Section 4.1 small individuals can be created during

the initialization or even just a single balance indices. Due to the fact that a lot of balance

indices already are quite powerful for both tasks it is not improbable for them to become archive

individuals. In that case they will more likely be a template for new individuals and thereby give

rise to o�spring that are less complex on average � an in�uence that could explain the observation

atleast partly.

46



Sophie J. Kersting - University of Greifswald

7 Stage 2: Auxiliary functions as building blocks

This second stage uses auxiliary functions as building blocks to potentially construct new balance

indices. This requires a considerably more complex set of building blocks. Please check the scripts

GPMainStage2.R as well as GPParamsStage2.R for more detailed information.

Terminal symbols TS: Constant sets for [0, 1] and [1, 5] rounded to 2 decimal places as well

as {10, 11, ..., 100} combined with the input tree T . A uniform distribution will be used to

draw constants from each domain.

As the rgp package requires a constant for each di�erent in- or output type more constant

factories had to be added. As in the �rst stage T cat3 was returned for type �list�. Fur-

thermore, three constant factories were introduced that each returned function names as

type �character� of di�erent sets of functions: operations that modify two vectors, a single

vector as well as operations that use a single node as input.

A few further constant factories had to be added. All constant sets containing values that

should not actually be used for individuals were modi�ed with a probability weight of 0.

This worked well for all but the constant factory for type �list� as T cat3 was built into several

individuals.

Function set FS: The function set is signifcantly larger than for Stage 1. There are more

functions that operate on a larger range of in- and output types.

The standard operations +,−, · additional to safe versions of division, square root, natural
logarithms as well as the exp-function were used as in Stage 1. Decision making functions

like ifPositive or if were available. All of the auxiliary functions of the balance indices (see

script AuxiliaryPhylFunctions.R) additionally to a function that measures the distance

of two nodes (number of edges on the unique path between the two nodes) were added as

well.

The aim was to be able to construct every established balance index using these building

blocks. Due to the fact that all indices collect the results of a function for several nodes,

the function vectorOver was introduced (see Section 4.1). As it creates a numerical vector

as output functions have been introduced that can modify single or pairs of vectors as well

as safe versions of sum, mean, median and variance. As node sets were required to not

be predetermined, we use functions that dynamically retrieve either the root, all nodes, all

interior nodes or all leaves from a given tree.

With all these functions at our disposal nearly all established balance indices can be recre-

ated with only slight di�erences. For example

SackinI(T ) = sum(vectorOver(getInnerNodes(T ), T, “NumberOfDescLeaves”)).

7.1 Results of the GP runs for Task A (Stage 2)

By comparing the Figures 24 with the corresponding �gures of Stage 1 it becomes apparent that

the GP algorithm performed signi�cantly worse. It was most probably overwhelmed with the

amount of functions available. Even �nal �tness values did not reach the minimum from Stage

1 and were too high to indicate a viable candidate. Although being a promising approach be-

47



Sophie J. Kersting - University of Greifswald 7.1 GP results Stage 2 Task A

cause there could have potentially been new ideas and connections between established auxiliary

functions, it does hold up to the �rst stage.

It could potentially be more successful with a longer run time and a greater population. These

plans can not be realized within the time limit of this master thesis and with the computing

resources available. Additionally, the function set could be reworked to sort out at least a few

functions e.g. some vector modi�cations or the exp function.

Nevertheless, genetic programming proved to be actually successful in constructing sensi-

ble measurements. The �nal individuals for Task A with the best �tness were all sensible e.g.

mean(getDistSet(getAllNodes(T ), T )) the average distance of all pairs of nodes, just not pow-

erful enough to keep up with the results from Stage 1. Some of these interesting results will be

listed below even though they are no candidates for the �nal comparison.

Figure 24: Development of �tness values over time for Task A. The global minimal value of each

set is marked with a dashed line. (I): Note that the x-axis was cut for visualization purposes and

does by far not show the total number of steps of run iii). The minimal �tness of run iii) stays

constant and at around step 2300 falls to its minimum 0.476. (II): Note that this x-axis was cut

as well and does by far not show the total number of steps of run ii).

48



Sophie J. Kersting - University of Greifswald 7.2 GP results Stage 1 Task B

Set (I) i) Finished with 53 evolution steps and 4 restarts during the process (on 15 cores).

Minimal Fitness: 0.459, best individual: mean(getDistSet(getAllNodes(T ), T ))

ii) Finished with 95 evolution steps and 1 restart during the process (on 15 cores).

Minimal Fitness: 0.576, best individual: maxDepthLeaf(T, getRoot(T ))

iii) Finished with 2413 evolution steps and 17 restarts during the process (on 47 cores).

Minimal Fitness: 0.478, best individual: var(getDistSet(getAllNodes(T ), T ))

Set (II) i) Finished with 39 evolution steps and 0 restarts during the process (on 47 cores).

Minimal Fitness: 0.485, best individual: var(getDistSet(getAllNodes(T ), T ))

ii) Finished with 1477 evolution steps and 0 restarts during the process (on 15 cores).

Minimal Fitness: 0.459, best individual:

mean(vectorOver(getInnerNodes(T ), T, “depthNode”))

iii) Finished with 59 evolution steps and 0 restarts during the process (on 47 cores).

Minimal Fitness: 0.468, best individual: mymean(getDistSet(getInnerNodes(T ), T ))

i*) Finished with 70 evolution steps and 0 restarts during the process (on 47 cores).

Minimal Fitness: 0.460, best individual: myvar(getDistSet(getInnerNodes(T ), T ))

ii*) Finished with 20 evolution steps and 0 restarts during the process (on 47 cores).

Minimal Fitness: 0.474, best individual: mymean(getDistSet(getAllNodes(T ), T ))

Astoundingly run ii) from Set (II) completed signi�cantly more evolution steps than the other

runs despite having less computing cores. This was double checked. A possible explanation could

be that all other runs used the function getDistSet which gets the distance of every pair of the

input nodes and thus has squared run time in comparison to vectorOver used in run ii) with

linear run time. The real reason will remain speculative because an overview of all individuals

over the generations would be needed to explore this assumption instead of only the currently

available archive of the last generation.

7.2 Results of the GP runs for Task B (Stage 2)

The results for Task B were rather disappointing either because the solutions did not reach a

low enough �tness value to consider them for the �nal comparison or because even the best

solutions did not use sensible node sets. As the nodes could be arbitrarily labeled a �xed set of

concrete node labels (e.g. getLeafNodes(T cat3 ) = {1, 2, 3} which many individuals contained)

is equivalent to drawing random nodes. For the node enumeration from the ζ-models used here

it is common that the leaves are not labeled with 1, ..., n and thus it cannot even be ensured

that predetermined nodes belong to a certain node set like the interior nodes or the leaves. It

is not clear why the genetic programming algorithm so often used the constant tree T cat3 , which

had a zero probability weight as well, instead of the input tree T for this task as it proved to

be no problem for Task A. Anyhow, there were individuals with �tness values falling below the

threshold of 0.295. They are listed below with their simpli�cations and reasons why they will

not be used in the �nal comparison. As it is interesting to see other results as well several more

indices are listed below.

49



Sophie J. Kersting - University of Greifswald 7.2 GP results Stage 1 Task B

Figure 25: Development of �tness values over time for Task B. The global minimal value of each

set is marked with a dashed line.

Set (I) i) Finished with 100 evolution steps and 0 restarts during the process (on 15 cores).

Minimal Fitness: 0.422

ii) Finished with 80 evolution steps and 5 restarts during the process (on 15 cores).

Minimal Fitness: 0.357

Repetition 1) Finished with 40 evolution steps and 0 restarts during the process (on 47

cores).

Minimal Fitness: 0.307, best individual: mysum(getDistSet(getAllNodes(T ), T ))

Set (II) i) Finished with 1204 evolution steps and 0 restarts during the process (on 15 cores).

50



Sophie J. Kersting - University of Greifswald 7.2 GP results Stage 1 Task B

Minimal Fitness: 0.270, BI candidates:

b3(T ) = sum(modNumV ec(“− ”, vectorOver(getAllNodes(T cat3 ), T, “depthNode”)))

= sum(modNumV ec(“− ”, vectorOver({1, 2, 3, 4, 5}, T, “depthNode”)))

= sum(vectorOver({1, 2, 3, 4, 5}, T, “depthNode”))

b4(T ) = sum(mNV (“rmZeros”, vectorOver(getAllNodes(T cat3 ), T, ”depthNode”)))

= sum(modNumV ec(“rmZeros”, vectorOver({1, 2, 3, 4, 5}, T, “depthNode”)))

= sum(vectorOver({1, 2, 3, 4, 5}, T, “depthNode”))

In the simpli�cation we used the following properties: the node set of a T cat3 will

normally be {1, 2, 3, 4, 5}, the function modNumV ec returns the unchanged vector if

the modi�cation operator is inappropriate like �−� and for a sum it does not matter if

the zeros are sorted out beforehand. Both of these candidates are in fact partly Sackin

indices. The Sackin index sums up the depths of all leaves, here both candidates

sum only over �ve predetermined nodes (which will often, but not always be leaves

depending on the node labeling). This is not sensible or transferable to other tree

generation functions. Furthermore they do not present novel ideas on tree balance

and if we replaced T cat3 with T we would have the normal Sackin index again. Thus

both of these individuals will not be used in the �nal comparison.

ii) Finished with 42 evolution steps and 0 restarts during the process (on 47 cores).

Minimal Fitness: 0.314, best individual:

mean(getDistSet(getlcaSet(getlcaSet(getAllAncestors(

T, getlca(T cat3 , getRandomNode({1}), getRandomNode({1}))), T ), T ), T ))

= mean(getDistSet(getlcaSet(getlcaSet(getAllAncestors(

T, getlca(T cat3 , 1, 1)), T ), T ), T ))

= mean(getDistSet(getlcaSet(getlcaSet(getAllAncestors(T, 1), T ), T ), T ))

This function collects all ancestors of the predetermined node 1, then collects the last

common ancestors of each pair of this set, repeats this with the new set and �nally

calculates the average distance of node pairs of this last node set.

i*) Finished with 60 evolution steps and 0 restarts during the process (on 47 cores).

Minimal Fitness: 0.295, best individual: myvar(getDistSet(getLeafNodes(T ), T ))

The variance of the distances between all pairs of leaves.

ii*) Finished with 40 evolution steps and 0 restarts during the process (on 47 cores).

Minimal Fitness: 0.309, best individual: equal to best individual of run ii)

7.2.1 Remark

It was only discovered after the �rst runs of the second set that there was a small mistake in

the implementation of I ′. n was used as the number of leaves of the complete tree instead of

as the number of leaves of the subtree for the factor n−1
n , resulting in a factor that was still <1

51



Sophie J. Kersting - University of Greifswald 7.2 GP results Stage 1 Task B

but larger than intended. For indices like the
∑
I ′ and meanI ′ this lead to a higher weight of

subtrees with odd size. Thus, two further runs were started for each stage and each task with

the correct implementation. These runs will be listed under (II) as they use the same parameters

but will be marked with a star (*). All of the old runs have to be treated carefully as I ′-indices

are indeed part of their best individuals. We will here include these individuals in the �nal

comparison but use the correct I ′ implementation there.

Another error was found regarding the weighted l1 distance (the case z = n for pn(z) was

missed out and fz did not portray the relative but the absolute frequency). Both the �rst and

�nal comparison have been repeated with the correct implementations for both indices. Only

the GP runs cannot be redone. Astoundingly, the comparisons showed that the power of the

correct implementation of the weighted l1 distance was less powerful for a lot of ζ values than its

�awed version. Therefore, it could be interesting to test variations of the weighted l1 distance

in future projects to develop the indices' full potential. Especially this balance index provides a

lot of possibilities for modi�cations like the weights of the summands or the choice of the norm.

52



Sophie J. Kersting - University of Greifswald

8 Comparison of new and established balance indices

Here we will compare the best established balance indices with the best individuals from genetic

programming using the same method as before in Section 3.2. The candidates are individuals

with a �tness of less than 0.44 for Task A and 0.285 for Task B. b3 and b4 were omitted because

they represented a weaker or insensible version of the Sackin index as shown in Section 7.2.

a1(T ) = SackinI(T ) + CollessI(T ) ·MeanI10I(T )

a2(T ) = SackinI(T ) + SackinI(T ) ·MeanI10I(T )

a3(T ) = MeanI10I(T ) · CollessI(T )

a4(T ) = SackinI(T ) + 0.14 · n · SumII(T )

a5(T ) = SumII(T ) + SackinI(T )−B1I(T )

b1(T ) = MeanI10I(T ) + CollessI(T )

b2(T ) = 3.61 ·MeanII(T ) + exp(CollessI(T )−MeanII(T ))

For the best established balance indices the Colless, the Sackin, the variance of leaf depths,

the B1, the
∑
I and meanI index as well as the weighted l1 distance were chosen because they

proved to be among the best indices for each model for each tested n. Below in the Figures 26,

27, 28 as well as 29 the results of the comparisons are visualized. All �gures including the ones

for n = 100 can be found on the attached CD (finalcomp_results.zip).

As expected one of the newly found indices, namely b2, seems to be a�ected by over�tting

as it performs well for a lower number of leaves, but is extremely ine�cient for n = 200. It can

thus be discarded. The other indices are less a�ected by di�ering numbers of leaves.

Figure 26: Comparison of the power of balance indices regarding the ζ-IF-both-model.

Regarding Task B, b1 is expected to perform well on the IF-di�-model. However, nearly

all constructed balance indices � regardless of the task they were made for � have the same

high power for this alternative model. b1 could be replaced e.g. by the Sackin index without a

53



Sophie J. Kersting - University of Greifswald

noticeable loss in performance. Nevertheless, the task can certainly not be considered a failure

as b1 is the best balance index for 30 leaves and among the best for higher n.

Figure 27: Comparison of the power of balance indices regarding the ζ-IF-di�-model.

Figure 28: Comparison of the power of balance indices regarding the ζ-ASB-model.

Task A was to �nd an index that performs well on both the ASB and the other models. Here,

54



Sophie J. Kersting - University of Greifswald

genetic programming seems to have discovered a new �allrounder� with a4. For the IF-models

and the Brownian model a4 is always among the top. For the ASB-model it is by far the best

index apart from the B1,
∑
I and meanI index, which are specialized on this model and perform

signi�cantly worse on the other alternative models. This can be most clearly seen in Figure 28

for n = 100 and n = 200. a5 seems to show a similar behavior as a4, but not as distinct. Some

other indices perform better for the ASB-model as well, but only for 30 leaves. They should not

be preferred over the Colless or Sackin index for n ≥ 100 according to this data.

Figure 29: Comparison of the power of balance indices regarding the Brownian model.

With established balance indices as building blocks genetic programming did not succeed in

creating indices that could perform signi�cantly better than the established ones for a single

alternative model. Possibly there is not much more improvement feasible, but this cannot be

con�rmed with only these limited approaches. However, genetic programming proved to be

viable by �nding an overall suitable index that could potentially be used if no prior information

is available.

55



Sophie J. Kersting - University of Greifswald

9 Discussion and Results

The results concerning the best choice of balance indices made in this thesis should not necessarily

be seen as direct advise. Sometimes the choice of a balance index has to be made on the basis

of other required features, e.g. using an I ′-based index for comparing trees of di�erent sizes, but

even for cases in which these discoveries may apply8 it should be kept in mind that they were

obtained only on a selection of alternative models. It is save to say that the results in this thesis

show that there are indeed di�erent asymmetry patterns which can be created with di�erent

models and that prior information can lead to a better choice of a balance index. However, for

further investigations well thought-out alternative models have to be used that have been shown

to produce realistic trees for the given context e.g. phylogenetics. A �rst step could be to replace

the ζ-ASB-model with its continuous age-based version [1, p. 867] to explore if the results are

also transferable for higher numbers of leaves or to further introduce global-time-based models

[37, p. 8].

Regarding genetic programming the possibilities have not yet been exhausted. Although not

every run was successful, the results show that GP can be a viable optimization strategy. Some

ideas were collected that could be experimented with in future GP projects on this topic:

� Even though the seed seemed to have more in�uence on the success of a GP run than the

parameters it could be useful to try di�erent parameter settings or evolutionary operators.

� Further improvements could be possible if there was no archive, only an elite that holds the

best individuals but is not used as part of the population. Thus, the whole population could

be replaced at a restart, which would prevent the archive from steering the population into

the same composition again and again. As a result a single run would have the chance for

several fresh starts.

� Going along with these two points a modi�cation of the restart condition could prove

bene�cial as well. Instead of on the standard deviation of the �tness values (this encourages

diversity) the condition could be based on the progress (of the minimal �tness values) of

the last m generations. Thereby one can restart runs that are stuck for a longer period of

time.

� Seeing that Stage 1 with the smallest function set showed the most useful results lead to

the idea that it could be useful to restrict the function set further. It could be useful for

similar approaches as done here, but it would also be possible to �ne-tune already found

balance indices like SackinI(T ) + 0.14 · n · SumII(T ) and optimize only their numerical

factors.

� From GP Set (I) to (II)Nd andNζ have already been doubled, but of course the higher these

values are the more precise the calculated �tness will be. Thereby one could avoid having

a lot of actually bad individuals which luckily got a better �tness value than expected.

� The balance indices as building blocks could be uni�ed to only increase or decrease with

a higher level of asymmetry. Normalized versions could be replacements as well, even

8Analysis of single trees with the Yule model as null hypothesis (as described in Section 3.1).

56



Sophie J. Kersting - University of Greifswald

though they are not always available. Although genetic programming is capable of adjusting

di�erent indices in a way that they work well together in an individual on its own, both

of these changes could simplify the task as it is not required to unify the balance indices'

value ranges at the same time anymore.

� Another completely di�erent GP experiment would be to detach from the idea of using

the quantile-based approach for balance indices as test statistics and to aim for a logi-

cal expression that tells directly if a tree is more (a-)symmetric than expected under the

null hypothesis. The result could therefore be a shortcut avoiding the time-consuming

estimation of the balance indices' distributions and quantiles. Balance indices would

still serve as building blocks and could form individuals like e.g. (SymNodesI(T ) >

TotalCophI(T )) ∨ (B2I(T ) > SumII(T )). It could be explored if such logical expres-

sions with high power and limited �rst error rate exist and if they can compete with the

quantile-based method (q∗0.025 > Balance Index(T )) ∨ (Balance Index(T ) > q∗0.975).

Summary of the results

Next to the Yule model as the null hypothesis several di�erent alternative models have been

introduced: the ζ-models including the DCO-model (only direct children are a�ected by factor

ζ), the IF-models simulating longterm inherited fertility and the ASB-model simulating age-based

fertility as well as the Brownian speciational model which simulates a trait-based fertility. In the

�rst comparison we explored the di�erences of a large number of established balance indices on

this set of alternative models.

The most notable insight was the di�erent performance of groups of balance indices for the

ζ-ASB-model on the one hand and for the ζ-DCO-, ζ-IF- and Brownian model on the other

hand. The group di�erences got more distinct for higher numbers of leaves. Depending on prior

information on either trait-based fertility and fertility inheritance or age-dependent fertility it

could therefore be advisable to select a di�erent balance index in order to achieve the highest

power. In case of information about the former it could be sensible to choose the Colless or

Sackin index, but in case of the latter the B1 index should be preferred (see Figure 30 on the

left).

Furthermore, we could show that the cherry and the symmetry nodes index should not be

chosen over the B1 index, the
∑
I or meanI for this set of alternative models atleast. Neverthe-

less, both indices do not always perform worse than all other indices: For the ASB-model they

nearly reached the power of the best indices.

In the second part of the thesis we set up two di�erent genetic programming approaches:

the �rst uses the established balance indices itself as building blocks and the second uses their

auxiliary functions. Both were challenged with the two tasks A) to �nd an overall good balance

index that performs well on all alternative models and B) to �nd an optimal balance index for

the IF-di�-model. After trial runs to explore possible parameter settings, a second set of runs

was started with modi�ed parameters and further features. However, the success of the single

runs was found to be more depending on a lucky seed than on di�erences in the parameters.

Thus, the results of both the trial and the second set of runs were used.

In the �rst approach for Task A we discovered a potentially useful index that performs well

57



Sophie J. Kersting - University of Greifswald

on all of these models � a feature all of the tested established indices did not have to this extent

30 on the right). There even was a second candidate that performed worse than the �rst but

would still be a better �alrounder� than all of the tested established indices. For Task B no index

was found that was signi�cantly better than the already existing ones.

The second approach yielded no astounding results. Nevertheless, the individuals created in

the GP process for Task A were all sensible constructions that just could not hold up with the

power of already established balance indices.

All in all, we could show that genetic programming can be a viable optimization tool for this

topic. A lot of experiences have been made and the resulting ideas on improvements of the GP

process are all listed in the Discussion.

Figure 30: Summary of the most notable discoveries.

58



Förderhinweis

Die Masterarbeit wurde im Rahmen des Forschungsprojektes DIG-IT! angefertigt. Die Förde-

rung des Projektes erfolgt aus Mitteln des Europäischen Sozialfonds (ESF) im Rahmen des Qual-

i�kationsprogrammes �Förderung von Nachwuchswissenschaftlern in exzellenten Forschungsver-

bünden - Exzellenzforschungsprogramm des Landes Mecklenburg-Vorpommern�. (ESF/14-BM-

A55-0017/19).



References

[1] Paul-Michael Agapow and Andy Purvis. Power of Eight Tree Shape Statistics to Detect

Nonrandom Diversi�cation: A Comparison by Simulation of Two Models of Cladogenesis.

Systematic Biology, 51(6):866�872, December 2002.

[2] David Aldous. Probability Distributions on Cladograms. In Avner Friedman, Willard Miller,

David Aldous, and Robin Pemantle, editors, Random Discrete Structures, volume 76, pages

1�18. Springer New York, New York, NY, 1996.

[3] Wolfgang Banzhaf, Peter Nordin, Robert E Keller, and Frank D Francone. Genetic pro-

gramming. Springer, 1998.

[4] Michael G. B. Blum and Olivier François. Which Random Processes Describe the Tree of

Life? A Large-Scale Study of Phylogenetic Tree Imbalance. Systematic Biology, 55(4):685�

691, August 2006.

[5] Michael G. B. Blum, Evelyne Heyer, Olivier François, and Fréderic Austerlitz. Matrilineal

Fertility Inheritance Detected in Hunter�Gatherer Populations Using the Imbalance of Gene

Genealogies. PLoS Genetics, 2(8):e122, 2006.

[6] Michael G.B. Blum and Olivier François. On statistical tests of phylogenetic tree imbalance:

The Sackin and other indices revisited. Mathematical Biosciences, 195(2):141�153, June

2005.

[7] Jürgen Bortz and Christof Schuster. Statistik für Human- und Sozialwissenschaftler.

Springer-Lehrbuch. Springer, Berlin Heidelberg, 7., vollständig überarbeitete und erweit-

erte au�age edition, 2010. OCLC: 845714518.

[8] Bo Chen, Daniel Ford, and Matthias Winkel. A new family of Markov branching trees: the

alpha-gamma model. arXiv:0807.0554 [math], July 2008. arXiv: 0807.0554.

[9] C. Colijn and G. Plazzotta. A Metric on Phylogenetic Tree Shapes. Systematic Biology,

67(1):113�126, January 2018.

[10] Donald H. Colless. Review of "Phylogenetics: The Theory and Practice of Phylogenetic

Systematics" by E. O. Wiley. Systematic Zoology, 31(1):100�104, March 1982.

[11] Tomás M. Coronado, Arnau Mir, Francesc Rosselló, and Gabriel Valiente. A balance in-

dex for phylogenetic trees based on rooted quartets. Journal of Mathematical Biology,

79(3):1105�1148, August 2019.

[12] Microsoft Corporation and Steve Weston. doParallel: Foreach Parallel Adaptor for the

'parallel' Package, 2019. R package version 1.0.15.

[13] J. L. Doob. Topics in the theory of Marko� chains. Transactions of the American Mathe-

matical Society, 52(1):37�37, January 1942.

[14] Matt Dowle and Arun Srinivasan. data.table: Extension of `data.frame`, 2019. R package

version 1.12.8.



[15] Oliver Flasch. A friendly introduction to RGP. 2014.

[16] Oliver Flasch, Olaf Mersmann, Thomas Bartz-Beielstein, Joerg Stork, and Martin Zae�erer.

rgp: R genetic programming framework. 2014.

[17] Daniel J. Ford. Probabilities on cladograms: introduction to the alpha model.

arXiv:math/0511246, November 2005. arXiv: math/0511246.

[18] George W. Furnas. The generation of random, binary unordered trees. Journal of Classi�-

cation, 1(1):187�233, December 1984.

[19] Giuseppe Fusco and Quentin C.B. Cronk. A new method for evaluating the shape of large

phylogenies. Journal of Theoretical Biology, 175(2):235�243, July 1995.

[20] E. F. Harding. The probabilities of rooted tree-shapes generated by random bifurcation.

Advances in Applied Probability, 3(1):44�77, 1971.

[21] Maryam Hayati, Bita Shadgar, and Leonid Chindelevitch. A new resolution function to

evaluate tree shape statistics. PloS one, 14(11):e0224197, 2019.

[22] Stephen B. Heard. PATTERNS IN TREE BALANCE AMONG CLADISTIC, PHENETIC,

AND RANDOMLY GENERATED PHYLOGENETIC TREES. Evolution, 46(6):1818�

1826, December 1992.

[23] Stephen B. Heard and Graham H. Cox. The Shapes of Phylogenetic Trees of Clades, Fau-

nas, and Local Assemblages: Exploring Spatial Pattern in Di�erential Diversi�cation. The

American Naturalist, 169(5):E107�E118, May 2007.

[24] John P. Huelsenbeck and Mark Kirkpatrick. DO PHYLOGENETICMETHODS PRODUCE

TREES WITH BIASED SHAPES? Evolution, 50(4):1418�1424, August 1996.

[25] David G. Kendall. On the Generalized "Birth-and-Death" Process. The Annals of Mathe-

matical Statistics, 19(1):1�15, March 1948.

[26] Mark Kirkpatrick and Montgomery Slatkin. SEARCHING FOR EVOLUTIONARY PAT-

TERNS IN THE SHAPE OF A PHYLOGENETIC TREE. Evolution, 47(4):1171�1181,

August 1993.

[27] John R Koza and John R Koza. Genetic programming: on the programming of computers

by means of natural selection, volume 1. MIT press, 1992.

[28] JohnR. Koza. Genetic programming as a means for programming computers by natural

selection. Statistics and Computing, 4(2), June 1994.

[29] Udo Kuckartz, Stefan Rädiker, Thomas Ebert, and Julia Schehl. Statistik: eine verständliche

Einführung. Lehrbuch. Springer VS, Wiesbaden, 2., überarbeitete au�age edition, 2013.

OCLC: 861967528.

[30] Leonardo P. Maia, Alexandre Colato, and José F. Fontanari. E�ect of selection on the

topology of genealogical trees. Journal of Theoretical Biology, 226(3):315�320, February

2004.



[31] Andy McKenzie and Mike Steel. Distributions of cherries for two models of trees. Mathe-

matical Biosciences, 164(1):81�92, March 2000.

[32] Olaf Mersmann. microbenchmark: Accurate Timing Functions, 2019. R package version

1.4-7.

[33] Olaf Mersmann. emoa: Evolutionary Multiobjective Optimization Algorithms, 2020. R

package version 0.5-0.1.

[34] Microsoft and Steve Weston. foreach: Provides Foreach Looping Construct, 2020. R package

version 1.5.0.

[35] Arnau Mir, Francesc Rosselló, and Luc�´a Rotger. A new balance index for phylogenetic

trees. Mathematical Biosciences, 241(1):125�136, January 2013.

[36] David J Montana. Strongly typed genetic programming. Evolutionary computation,

3(2):199�230, 1995. Publisher: MIT Press.

[37] A. Mooers, Luke Harmon, Michael Blum, Dennis Wong, and Stephen Heard. Some models

of phylogenetic tree shape. pages �. 2007.

[38] Arne O. Mooers and Stephen B. Heard. Inferring Evolutionary Process from Phylogenetic

Tree Shape. The Quarterly Review of Biology, 72(1):31�54, March 1997.

[39] Brian R. Moore, Kai M. A. Chan, and Michael J. Donoghue. Detecting Diversi�cation

Rate Variation in Supertrees. In Andreas Dress and Olaf R. P. Bininda-Emonds, editors,

Phylogenetic Supertrees, volume 4, pages 487�533. Springer Netherlands, Dordrecht, 2004.

Series Title: Computational Biology.

[40] E. Paradis and K. Schliep. ape 5.0: an environment for modern phylogenetics and evolu-

tionary analyses in R. Bioinformatics, 2018.

[41] Emmanuel Paradis. Analysis of phylogenetics and evolution with R. Use R! Springer, New

York, 2nd ed edition, 2012. OCLC: ocn774538542.

[42] R Development Core Team. R: A Language and Environment for Statistical Computing,

2008.

[43] Liam J. Revell. phytools: An R package for phylogenetic comparative biology (and other

things). Methods in Ecology and Evolution, 3:217�223, 2012.

[44] F. James Rohlf, W. S. Chang, R. R. Sokal, and Junhyong Kim. ACCURACY OF ESTI-

MATED PHYLOGENIES: EFFECTS OF TREE TOPOLOGY AND EVOLUTIONARY

MODEL. Evolution, 44(6):1671�1684, September 1990.

[45] M. J. Sackin. "Good" and "Bad" Phenograms. Systematic Biology, 21(2):225�226, July

1972.

[46] Charles Semple and M. A. Steel. Phylogenetics. Number 24 in Oxford lecture series in

mathematics and its applications. Oxford University Press, Oxford ; New York, 2003.



[47] Kwang-Tsao Shao and Robert R. Sokal. Tree Balance. Systematic Zoology, 39(3):266,

September 1990.

[48] Ed Stam. DOES IMBALANCE IN PHYLOGENIES REFLECT ONLY BIAS? Evolution,

56(6):1292�1295, June 2002.

[49] M. A. Steel. Phylogeny: discrete and random processes in evolution. Number 89 in CBMS-

NSF regional conference series in applied mathematics. Society for Industrial and Applied

Mathematics, Philadelphia, 2016.

[50] G. Udny Yule. II.�A mathematical theory of evolution, based on the conclusions of Dr.

J. C. Willis, F. R. S. Philosophical Transactions of the Royal Society of London. Series B,

Containing Papers of a Biological Character, 213(402-410):21�87, February 1924.


