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Zusammenfassung

Die Vorlesung gibt eine Einfiihrung in die Mathematik gewohnlicher Differential-
gleichungen.

Das Skript geht zuriick auf die Veranstaltung von Prof. Volkmar Liebscher im
Jahre 2007. Vielen Dank an Sybille Diihring fiir das Tippen des Skriptes. Diese
Version enthilt Modifikationen und Ergiinzungen durch Prof. Roland Pulch.
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Kapitel 1
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1.1

Literaturempfehlungen

H. Heuser: ,,Gewohnliche Differentialgleichungen® (5. Aufl.) Teubner 2006

B. Aulbach: ,,Gewohnliche Differentialgleichungen® (2. Aufl)
Spektrum 1997

O. Forster: ,,Analysis 2: Differentialrechnung im R", gewohnliche Diffe-
rentialgleichungen® (11. Aufl.) Springer Spektrum 2017

L. Griine, O. Junge: ,,Gewohnliche Differentialgleichungen: Eine Einfiih-
rung aus der Perspektive der dynamischen Systeme* (2. Aufl)
Springer Spektrum 2016

. M. Braun: ,,Differentialgleichungen und ihre Anwendungen* (2. Aufl.)

Springer 1991

. W. Strampp, V. Ganzha: , Differentialgleichungen mit Mathematica*

Vieweg 1995

A.D. Poljanin, V.F. Zajcev: ,,Sammlung gewohnlicher Differentialgleichun-
gen* Thun 1996

K. Strehmel, R. Weiner, H. Podhaisky: ,,Numerik gewohnlicher Differen-
tialgleichungen: Nichtsteife, steife und differential-algebraische Gleichun-
gen* Vieweg & Teubner 2012



1.2 Zum Begriff

Motivation Die erste Ableitung einer Funktion beschreibt die Anderungsgesch-
windigkeit der Funktion, die 2. Ableitung die Beschleunigung. Oftmals ist es ein-
facher einen Zusammenhang zwischen der unabhdngigen Variablen, deren Funk-
tionswert und gewissen Ableitungen herzustellen, als die Funktion direkt zu be-
stimmen. Deshalb sind solche Zusammenhdnge niitzlich, um reale Sachverhalte
mathematisch zu modellieren.

Definition 1.1 Eine gewohnliche Differentialgleichung ist eine Gleichung der
Form

y" = flayy .y ™), (1.1)
wobein € N, f: Q — R, Q C R". n heift Ordnung der Differentialgleichung.

Anmerkungen

1. Dies ist einfach ein formaler Begriff.

2. Q) ist typischerweise eine Menge mit vorteilhaften Eigenschaften (z.B. zu-
sammenhdngend oder sogar konvex).

3. Es gibt auch den Begriff der impliziten Differentialgleichung:

F(:E7 y? y/7 st 7y(n)) = 0

Dann heifst[(1.1)| explizite Differentialgleichung.

Definition 1.2 Seienn € N, Q C R, f: Q — R, dann heifty : I — R, I C
R ein Intervall, Losung von|(1.1)|in I, falls das Folgende gilt:

1. yistin I n-mal differenzierbar.
2. Fiiralle x € I ist (z,y(x),y'(z),...,y" V(x)) € Q.

3. fiir alle x € I gilt y™ (z) = f(z,y(x),y' (), ...,y V(2)).

Anmerkungen Das Intervall I ist Bestandteil des Losungsbegriffs.



1.3 Beispiele

Beispiel 1.1 Fiir eine stetige Funktion f : R — R betrachten wir die gewohnliche
Differentialgleichung
y = f(x). (1.2)

Wir suchen also eine Stammfunktion zu f. Ist xg € R, ¢ € R, so stellt
y(xr) =c+ /f(t)dt (1.3)
xo

eine Losung zu[(1.2) dar, mity : R — R.

Dies fiihrt zu zwei interessanten Beobachtungen:

1. Das Losen einer Differentialgleichung hingt eng mit der Integration von
Funktionen zusammen. Deshalb hat sich auch der Begriff ,, Integration einer
Differentialgleichung “ fiir das Losen derselbem eingebiirgert.

2. Die Losung einer Differentialgleichung ist selbst bei fixiertem Intervall |
nicht eindeutig bestimmt.

Beispiel 1.2 Wir betrachten|(1.2)fiir f : R — R,

_ 1 fiir x>0,
f(x)_{ —1 fiir = <0.

Dann ergibt|[(1.3)mit xy =0, ¢ =0

x fiir x >0,
y(x):|x|:{ —T ]fciir a:zO.

Dies ist im strengen Sinne von Definition (l.2 auf der vorherigen Seite| keine Lo-
sung von|(1.2)] Das heifst: Eine Differentialgleichung muf} keine Losung haben!

Beispiel 1.3

Fiir jedes c € Risty : R — R, y(x) = ce™z eine Losung dieser Differential-
gleichung.




Beispiel 1.4 ' = —y hat die (allgemeine) Losung:

y(x) = ey sin(z) + co cos(z) .

Beispiel 1.5 Eine Funktion u : R?> — R mit
O*u(s,t) N 0?u(s,t)
0s? ot?
heifst harmonische Funktion. [(1.4)] ist keine gewohnliche Differentialgleichung,
sondern eine partielle Differentialgleichung.

=0 (1.4)

Definition 1.3 Unter der Voraussetzung von Definition |1.2 auf Seite 4| heifit y :
I — R Losung des Anfangswertproblems

y™ = flz,y. 0,y ),
y(zo) = ao, ¥ (z0) = ar,...,y" (xo) = an1 (1.5)
fiirxzg €1, ag,...,a,_1 € R, falls y eine Losung von|(1.1)|ist und|(1.5)| gilt.

Beispiel 1.6 (siehe auch[Bsp. 1.4)
y'=-y
y(0) =0, y'(0) =1
y(z) = sin(z)

ist Losung dieses Anfangswertproblems.

Beispiel 1.7 Wir betrachten die Newtonsche Gleichung

my" = F(z,y,y),

wobei m die Masse, y" die Beschleunigung eines Massepunktes sowie F die auf
ihn wirkende Kraft beschreibt.

Die Bahnkurve eines Teilchens lost das Anfangswertproblem mit y(0) = yo, dem
Startpunkt, und ' (0) = vo, der Anfangsgeschwindigkeit.

Ein anschauliches Beispiel ist die Gleichung fiir die eingespannte Feder:

1

y = —ky

Das heifst, die Kraft ist proportional zur Auslenkung der Feder. Dies ist eigentlich

Bsp 6



Definition 1.4 Ein System gewohnlicher Differentialgleichungen wird durch eine
Gleichung der Form

y(n) = f(x7 y? y/’ R 7y(n_1))

beschrieben, wobein € N, k € N, Q CR x R¥ x --- x RFund f : QO — R,
n heifst Ordnung der Differentialgleichung, k Dimension.

Anmerkungen FEs gibt analog auch Definition |1.2 auf Seite 4| und|1.3 auf den
vorherigen Seite| fiir Differentialgleichungssysteme. Die Ableitungen werden in
diesem Zusammenhang komponentenweise verstanden

/

Beispiel 1.8 Volterra-Lotka Réiuber-Beute-Modell

b = ab— Brb Beute

/

r" = ~rb— or Rduber
mit Konstanten «, 3,~, > 0. Zur Definition[l.4| passen

n=1 k=2

(= 0))- ()

Transformation 1.1 (Differentialgleichung zu einem System von Differentialglei-
chung 1. Ordnung)

sowie

Seiy : I — R Losung der Differentialgleichung y™ = f(x,y,y/,...,y" )
(1.1)\|fiir f : Q C R — R. Dannist z : I — R"



Losung der Differentialgleichung

/

21 &%)
%) <3
= : : (1.6)
Zn—1 Zn
Zn f(iU7Zl,...,Zn)

Ist umgekehrt z : I — R" eine Losung von so lost z1 (1.1l Die Zuordnung
Yy <> z ist eineindeutig.

Anmerkungen
1. Dieses Verfahren ist wichtig, weil viele Softwaresysteme nur Differential-
gleichungen 1. Ordnung losen.

2. Das Verfahren funktioniert genau so gut fiir Differentialgleichungssysteme
hoherer Ordnung.

Beispiel 1.9 siehe|Bsp. 1.4 auf Seite 6|und|Bsp. 1.6 auf Seite 6]

y'=—y wirdzu z; = 25, 25 = —2

Definition 1.5 Ein System von gewohnlichen Differentialgleichungen im Sinne
von Definition (1.4 auf der vorherigen Seite| heifit autonom, falls f nicht von x
abhdngt.

Anmerkungen Dies bedeutet, dass die Dynamik des Systems nicht von der Zeit
abhdingt.

Transformation 1.2 Differentialgleichungssystem 1. Ordnung zu autonomes Dif-
ferentialgleichungssystem 1.Ordnung

Seiy : I — R* Losung der Differentialgleichung
y' = f(z,y) (1.7)

Dann ist z - I — R mit



Losung der Differentialgleichung

/ 1
21 %
. = . 1.8
) f 21, ( )

k41 Zh
Lost z : I — R*! umgekehrt|(1.8)] so ist
2 ()
y(x) =
Zpr1(2)

Losung von Die Zuordnung 1y < z ist eineindeutig.

Beispiel 1.10 (siehe|Bsp. 1.3 auf Seite 5|)

1.4 Offene Fragen

Welche Fragen bleiben offen?

1. Hat eine Differentialgleichung eine Losung?
2. Ist die Losung eines Anfangswertproblems eindeutig?
3. Hingt diese Losung stetig von den Anfangswerten ab?

4. Wie erhilt man eine Losung?



Kapitel 2

Losungsverfahren fiir
eindimensionale
Differentialgleichungen

Motivation Um ein Gefiihl fiir Differentialgleichungen zu bekommen, behandeln
wir zundchst einige elementar losbare Typen von Diferentialgleichungen 1. Ord-
nung.

2.1 Differentialgleichungen mit getrennten
Variablen

Wir behandeln Anfangswertprobleme der Form

y = f(x)g(y) (2.1)
y(wo) = Yo

Rezept 2.1 Wir schreiben

)
1

Fe) dy = f(z) dz

/ﬁdy:/f(:c) dz.

10



Ist nun G eine Stammfunktion zu é und F eine Stammfunktion zu f, dann gilt

G(y) = F(z) + ¢
y =G (F(x)+c).

Die Konstante c ergibt sich dann aus der Anfangsbedingung:

G(vo)

F(xg) + ¢
G(yo) — F(xo).

Offene Fragen:

1. Was passiert fiir g(y) = 0, insbesondere wenn g(yy) = 0?

2. Gibt es weitere Losungen?

Satz 2.1 Seien I, J C R offene Intervalle mit xy € I, yg € Jund f : I - R, ¢g:
J — R stetige Funktionen.

1. Ist g(yo) = 0, dann hat das Anfangswertproblem|(2.1)|die Losung
y(x) =yo fiirrel.

2. Ist g(yo) # 0, so gibt es ein € > 0 und eine Losung y :|xo — €, 19 + €|— J

von

Sei G(z) = [ ﬁdy. Dann ist G in einem offenen Intervoll J C J mit yo € J

Yo
invertierbar und jede Losung § : I — R, I Clxg — €,z + €| hat notwendig die
Gestalt

j(z) =G / f(t)de]. (2.2)

Anmerkungen Im Fall 1. haben wir keine Eindeutigkeitsangabe, siehe dazu Bei-
spiel Bsp. 2.3 auf Seite 17
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Beweis:

1. Seiy(x) = yo. Dann gilt

y'(r) =0
f(@)g(y(z)) = f(z)g(yo) = 0
y(xo) =%o-

Damit 16st dieses y((2.1)

2. Es gilt g(yo) # 0. Da g stetig ist, gibt es also ein 6 > 0, so dass g(z) # 0
fur alle z €]y — 9, yo + I].

Folglich ist

z

G(z) :/ﬁ du

Yo

im Intervall |yo — 0, yo + [ streng monoton. Dadurch ist das Bild
G(lyo = 0,50 +0) ={GY) : o -0 <y <w+6} =K
ein offenes Intervall und G ist auf K invertierbar mit G~1(0) = yo. Da 0 ein
innerer Punkt von K ist, gibt ein € > 0 mit der Eigenschaft, dass
/f(t) dt e K fir alle = €]zg — €,z + €.

Zo

Wir definieren nun y :|z¢ — €, 2o + ¢(— R durch[2.2)] d.h.
y(z) = G ( j £(1) dt> . 2.3)
Wir erhalten i
y(wo) = Gl(?f(t)dt) =G70) =w.
Deswegen erhalten wir aus
Gly(x)) = ]f(t) dt.
o

12



Da G :|yo — d,yo + d[— K differenzierbar ist, gilt nach der Kettenregel

(G(y()) = G'(y(=))y'(x)

Andererseits ist mit obiger Formel
Gl = ( [ £ ) = 5(o)

Zusammen folgt

fiir alle = €|xg — €, 79 + €|. Damit 16st y das Anfangswertproblem |(2.1)

Sei nun

@JN—”R, I =]zg — p, 20+ 1|

mit 0 < p,n < € eine Losung von [(2.1)] Wegen g(7(zo)) = g(yo) # 0 und
der Stetigkeit von g sowie ¢ gibt es wieder ein # > 0 mit g(g(z)) # 0 fiir
alle x €|xg — 0,z + 0. Wir setzen 6 < e voraus.

Oben wurde bereits (G(y(x))) = f(z) gezeigt. Ebenso folgt hier
Gla@) = [ 10 at) = s(o)

Gleichsetzen liefert (G(y(x))) = (G(g(x)))'. Da die Anfangsbedingung
tibereinstimmt, d.h. G(y(z9)) = G(g(xo)), gilt mit dem Hauptsatz der
Differential- und Integralrechnung sogar

G(y(z)) = G(y(x)) firalle © €]zg — 0,20 + 0].
Anwendung der Umkehrfunktion zeigt somit y(z) = g(x) fir alle z €
]iL’o — 9,950 + 9[

Angenommen es gilt §(z) # y(z) fir ein x mit xy < x < x¢ + 1. Dann
setzen wir

s =inf{z € (vo,r0 + 1) : y(x) # ()}
Die Existenz dieses Infimums ist sichergestellt mit zo + 6 < s < 2y + <. Es
isty(z) = y(z) fir alle x € [xg, xo+ ). Die Stetigkeit der beteiligten Funk-
tionen garantiert y(s) = g(s). In jeder Umgebung von s gibt es Punkte x

13



mit y(z) # y(z). Wenn wir jedoch das Anfangswertproblem statt bei x( bei
x = s betrachten, dann erhalten wir wieder ein offenes Intervall um diesen
Anfangswert auf dem y und y iibereinstimmen. Durch diesen Widerspruch
gilt y(x) = gy(x) fir alle z € [xg, o + 7).

Analog konnen wir bei g(z) # y(z) fir ein x mit xg — p < x < xg
argumentieren. Es folgt y(z) = g(x) fir alle x € (¢ — u, xo).

Dadurch ist der Beweis vollstiandig gefiihrt. ®

Beispiel 2.1
y =y — py?
A >0
y(0) =40 >0

Diese Differentialgleichung heifst logistische Differentialgleichung oder Pearl-
Verhulst Gleichung.

Zur Berechnung der Losung:

dy
Ay — py?

dy /
—— = [dr=x+c
/Ay—qu

Ay — py? = y(A — py)
1 A B
—2:_+
ANy —py* Yy A—py
1= A\ —py) + By
= AN+ (B —pA)y

=dz

Nebenrechnung:

1
A==
AT
o
B="=C
A
I 1
Xy —py? Ny A(A—y)
dy 1 A ‘
_— y——ln——y +c
/Ay—ﬂy A oyl 1

14



Folglich muss gelten:

1 In |y 11 A N
—Inlyl —~Injly——|=x+c¢
AR S LY
In 1y T = AT+
ly — ;|
Yy Ax+c
x| ="
Yy=u
Y - = CeM fiirein C € R\{0}
o
y=CeM(y—2)
= Ce)‘“y - ﬁC’ e
A
= ZCeM =y(Ce —1)
1
AC M
_ M
Y=o 1
Wir passen die Anfangswerte an:
y(0) = vo
b __cM=c
Yo — 4
A yo)\ Az
Hyo—=
y(r) = <
)\e - 1
Yyo—y
ﬁyoe’\x

yeed + 3 — Yo
A
Y0

Cwt (ﬁ — Yo)e "

A
Fiir x — 0o gilt e — 0 und y(z) — o

lder néichsten Seite|bildlich dargestellt.

= % Die Losung ist in|Abb. 2.1 auf

15
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Abbildung 2.1: Losungen von ¢’ = y — y? im Intervall [0, 10]
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Beispiel 2.2

y =-2
Y
ydy = —x dx
2 2
y _ v
2~ 3 "¢
2 2
y: a2t
2 T3 ¢
F e = o= g+ ad
y ==ty +ad— a2 xe[— ys 4 2k, + y8+x%]
y(zo) = wo
= Yo = /U5

= £yol
also  y(z) = sign(yo) - \/y2 + 22 — 22.

Fiir yo = 0 ist die rechte Seite der Differentialgleichung nicht erkldrt.
Das Richtungsfeld ist inlAbb. 2.2 auf der ndchsten Seite|zu sehen.

Beispiel 2.3

v =3y

y(0) =0

Das Richtungsfeld ist in|Abb. 2.3 auf Seite 19, eine Losung in|Abb. 2.4 auf Seite 20|
zu sehen.

Sowohl y(x) = 0 als auch y(x) = x> losen die Differentialgleichung.

1. ist klar
2.
Y () = 32°
= 3V/ab
= 33/1?

= mehr als eine Losung

17



Richtungsfeld von y' =-x/y
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Abbildung 2.2: Richtungsfeld von y’ = — % im Intervall [—1, 1]
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Richtungsfeld von y’
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Abbildung 2.3: Richtungsfeld von ¢y = —3+{/y? im Intervall [—1, 1]
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Abbildung 2.4: Richtungsfeld von ¢y’ = —3+{/y? im Intervall [—1, 1] und eine
Losung (rote Kurve)
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Fiir y(xo) # 0 ist dieses Rezept problemlos durchfiihrbar.
dy
3/ y?
1
[t ar=aee

. 1
sign(y) ly|* =z +c
y=+(c+x)?

=1dx

Durch ,,Zusammenstecken “ bekommen wir eine mehrdimensionale Menge an Lo-
sungen.
Folgerung: Eine Differentialgleichung muss keine eindeutige Losung haben.

2.2 Homogene Differentialgleichungen

Homogene Differentialgleichungen sind Gleichungen der Form

y =h(2) (2.4)

T

mit den Anfangswerten
y(z0) = Yo, To # 0.

Transformation 2.1 Homogene Differentialgleichung wird umgeformt zu Diffe-
rentialgleichung mit getrennten Variablen.

Seiy Losung von[(2.4)} Dann lést

z(x) = y(r)
2= i(h(z) —2). (2.5)

Die Zuordnung z <> y ist eineindeutig.

Satz 2.2 Die Transformation[2.1]ist korrekt.
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Beweis:

Sei y Losung von[(2.4)] Nach der Quotientenregel gilt dann:

) = (&’))’ _ Y(@)r —y(z)

x 2

h() =
= (

h( (:v)> y(%))

X

Nun sei umgekehrt z Losung von [(2.5) Wir finden dann mit der Produktregel:

Y'(z) = (z2(2))" = 2(2)

Dadurch ist die Behauptung gezeigt. ®

Beispiel 2.4

Transformation 2.1 auf der vorherigen Seitel

é(l +2z—2)
_ !
2(z) =Inlz| +¢
y(w) = w2(x)

=zln|z|+ cx
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wegen xo > 0 konnen wir nur Losungen fiir x €0, 0o| suchen.
y(x) =Inz + cx

Anfangswert einsetzen

yozy(l)
=Ilnl+c
=c

y(x) =xlnz + yox

Die Losungen sind in|Abb. 2.5 auf der ndchsten Seite| zu sehen.

2.3 Lineare Differentialgleichungen 1. Ordnung

Wie betrachten nun Differentialgleichungen der Form

y' = f(@)y + h(z) (2.6)
y(ll?o) = Yo-

Differentialgleichungen dieses Typs heiflen auch lineare Differentialgleichungen
1. Ordnung. Linear, weil die rechte Seite fiir feste x eine lineare Funktion in y ist.

Beispiel 2.5
y' = flx)y 2.7)

y(xo) =%,

das heifst h = 0 verschwindet in Gleichung (2.7)| ist eine Gleichung mit
getrennten Variablen. Wir wenden Rezept|2.1 auf Seite 10| an.

d—; = f(z) dz

In|y| = F(z) + ¢
y(z) = cef @ fiir ein c € R\{0}
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:1+X
X

Ldsungen von y'

A

Abbildung 2.5: Losungen von ' = 1 + ¥ im Intervall [0, 4]
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Rezept 2.2 Variation der Konstanten, Joseph Lowis Lagrange
1. Schritt: Anstelle von losen wir zundichst[(2.7)] d.h.
y(z) = cef'@ (2.8)
2. Schritt: Wir machen den Ansatz, dass c in eine Funktion von  ist:
Y (x) = (2)ef@ + c(z)e" @ F'(2)
x) e

)
— ()" + c(w)e" ™ f(x)
f(@)e(2)e™™ + h(z)

f(@)y(x) + h(z)
Damit erfiillt y die Differentialgleichung [(2.6)| genau dann, wenn

d(x)ef® = h(z)
d(x) = h(z)e '@

clx) = /h(az)eF("’”) dz +c,
Hinweis: Man merke sich die Rechenschritte, nicht die Schlussformel.

3. Schritt: Anfangswerte:

c(xo) = ¢
Also gilt
y(wo) = yo = cel’(@o)
¢ = yoe F'@0)
y(r) = (/h(u)eF(u) du+yoeF(zo)>eF(I)
@0
speziell

h =

= y(z) = yoeF @-F@o),
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Beispiel 2.6

Y
e _—
-
dy dw
y T
Injy| =In|z|+¢
y = *c-[z]
Wegen der Differenzierbarkeit von y gilt also y(x) = cx mit ¢ € R beliebig.
2. Ansatz:
y(r) = c(z)z
y'(x) = d @)z + c(x)
ya) __ew)r
x x
=c(x)—x
Also erhalten wir
d(x)r = —u
d(x)=-1
clr)=—-x+c
3. Einsetzen der Anfangswerte:
y(x) = c(x)z
=(—z+c)z
= 2?4 cx



Da die rechte Seite der Differentialgleichung fiir x = 0 nicht erkldirt ist, ist
die Losung des Anfangswertproblems nur auf 0, co| giiltig.

2.4 Bernoulli-Differentialgleichung

Diese Differentialgleichungen haben die Gestalt:

y' = f(x)y + h(z)y" (2.9)

fiir ein £ € R. Wir konnen zwei Spezialfille 16sen:

1. k = 1: lineare Differentialgleichung 1.0rdnung (getrennte Variablen)

2. k = 0: lineare Differentialgleichung 1.0rdnung (allerdings ohne getrennte
Variablen)

Transformation 2.2 Bernoullische Differentialgleichung zu linearer Differenti-
algleichung 1.0rdnung im Fall k # 1.

Seiy : I — R\{0} Losung von|[(2.9)] Dann ist
2T = R\{0},  z(2) =y(a)' ™",
Losung der Differentialgleichung
2= (1-k)(f(x)z+ h(x)) (2.10)

Ist umgekehrt z : I — R\ {0} eine Losung von|2.10)| so list

die Differentialgleichung|(2.9)

Satz 2.3 Die Transformation [2.2]ist korrekt.
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Beweis:

Die Kettenregel ergibt

2(2) = (y(a) Y
= (1 - k)y(x)' ™y ()
= (1= ) (@) + b))
= (1= B)(F(x)y(x) " + h(a)
= (1= B)(f(x)2(x) + h(x))

Dadurch ist die Losungseigenschaft nachgewiesen. ®

Beispiel 2.7

Y =-y+tay
mit y(zo) = yo >0

1. Differentialgleichung fiir z aufstellen:

1
k= 3 flx)y=—=1, h(zx)==z

2(a) = y(a)' 2

= y(x)?

= Vy(e)

Wir finden 2 = (1 — %)(—z + )
= —12 + 19(:
2 2
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2. Homogene lineare Differentialgleichung losen:

1
L R
¥ =5z
dz 1
—~__- 14
z 2 / o
In|z| = “Z4e
|z| — e 27T¢
z=ce 2
3. Variation der Konstanten:
2(z) = e(z)e 2
2 (x) = d(x)e™® +c(z) (—3) e
1 1 1 1
_§Z(I) +or= —Ec(a:)e_§ +37
/ -2z 1
= dx)e2=_x
2
1 =
/ _ = x
d(z) = 5 e
T
— [ Ze3d
c(x) / 5erde
x 1 x
— %93 —/—262dx
2
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4. Riickeinsetzen und Anfangswerte anpassen:

=z —2+4ce
z(wo) = v y(20)
Yo
und z(xg) = xg — 2+ ce 7

c=e7 (Vo — o +2)
z(x):x—2+e2(\/%—xo+2)e_%

2.5 Riccati-Differetialgleichungen

Wir betrachten Differntialgleichungen der Form

y = f(@)y® + g(x)y + h(z). (2.11)
Dies ist die allgemeine quadratische Differentialgleichung 1. Ordnung.
Spezialfille:

1. Falls h = 0, dann haben wir wieder eine Bernoullische Differentialglei-
chung vom vorigen Abschnitt (Exponent £ = 2).

2. Falls f = 0, dann haben wir eine lineare Differentialgleichung.
3. Falls ¢ = 0 und / = 0, dann liegt eine Differentialgleichung in getrennten

Veranderlichen vor.

Im Allgemeinen gibt es keine geschlossene analytische Darstellung der Losungen
von|(2.11)| Es hilft aber enorm, wenn wir eine Losung raten konnen.

Transformation 2.3 Riccatische Differentialgleichung + eine Losung zu
Bernoullische Differentialgleichung
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Seieny,y : I — R Losungen von|[2.11)} Dann lost die Differenzfunktion
z: 1 — R, z(x) = y(x) — y(x) die Differentialgleichung
¢ = (2f(x)y(z) + g())z + f ()2’ (2.12)

Lisen umgekehrt z = I — R[212)und § : I — R[2.11)] so lost die Summe
y: I =R, y(xr) =y(x) + z(z) auch|2.11)

Anmerkungen Das Verfahren kann man also so beschreiben: Eine Losung der
Riccatischen Differentialgleichung und alle Losungen der Bernoullischen Diffe-
rentialgleichung ergeben alle Losungen der Riccatischen Differentialgleichung.

Satz 2.4 Die Transformation 2.3 auf der vorherigen Seite|ist korrekt.

Beweis:

Seien y,y : I — R Losungen von[2.1T)]und z = y — . Dann gilt:

Die Umkehrung verléduft analog. ®

Beispiel 2.8
1
V=—y+y——  yl)=2

1. Raten einer Losung der Riccati-Dgl.:

y(x) = — st spezielle Losung
1
y(x) = T2
1 1 1 1 1
__ 2 _—,— T —— T —
y(x)” +y(x) T 2 r x 72



2. Transformation 2.3 auf Seite 30| :

o) =yla) 1 fibrta (f(r) = ~1,9(s)

Z = (2(—1)§ + 1)z + (=1)2?

2
:<1——>z—z2
x

3. Bernoulli-Dgl. losen:

= 1)

. Homogene lineare Dgl. losen:

-2
/'“ /——1@

In|ul =2In|z| —x+c¢
lu| = cr’e™™
Wegen der Anfangsbedingung xo > 0, yo > 1 also auch

u(zo) = yo,lL =

=1 > 0 konnen wir u

(x) = cx?e™" annehmen.
z0

. Variation der Konstanten:
u(z) = c(x)r’e™

u'(z) = d(x)r*e™™ + c(z)(2we™"

(—1 — %) u(z)+1= (—1 — %) c(x)x?
= c(r)(2ze " — 2?

—z%e™)
e’ +1

e ) +1
Wir finden ¢ (z)x?e™™ =

d(z) = ;ex /—e dz .

Dieses Integral ldisst sich nicht geschlossen losen. Immerhin hilft diese Dar-
stellung eventuell bei der numerischen Losung
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Beispiel 2.9

/ 2 2 1
==y +y+—5+-=
T T

y(1) =2

Wir haben eine Riccatische Differentialgleichung mit

fla)=-1
g(x) =1
(CRFA

1. Raten einer Losung der Riccati-Dgl.:

y(x) = —— ist eine Losung.
x

2. Transformation 2.3 auf Seite 50| :

(o) = y(@) +

fiihrt auf Transformation 2.3]
2
2 = (——|—1>2—22
x
3. Bernoulli-Dgl. losen:
1 y .
u(z) = ) fiihrt nach Transformation 2.2 auf
2(x

u’:—<—+1>u+1.
T

DO —

4. Homogene lineare Dgl. losen:
2
-G+
d
/ 4 / —— —1dx

In|ul=—=2In|z|—x+c¢

1

u(z) = cPe_I
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5. Variation der Konstanten

u(z) = c(m)%e_z
u'(x) = %e_m + c(x)( — % - —

—(%—l—l)u(m)—i—l :c(x)(—ﬁ — —>e7x+1
Me_:”:l

Damit gilt 5
x

d(z) = 2"
clx) = /a:Qe’” dz
= %" — /Qxex dx
= 2%e” — 2xe” + / 2e” dx
= (2° — 27 + 2)e" + c.
6. Riickeinsetzen

u(z) = c(:c);e””

((2* = 2z +2)e" +¢) ie_z

22
1
x2e”
- (22 — 2z 4+ 2)e* + ¢
1
@) = 2(a)  +
x2e”

(22 —20+2)e* +¢ x
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7. Anfangswert fiir Bestimmung der Konstante

Losung des Anfangswertproblems:

x2e”

(@ 1
Y\r) = - 5
(22 —2r+2)e” — e T

Transformation 2.4 lineare Differentialgleichung 2.Ordnung zu Riccatische Dif-
ferentialgleichungen

Losty : I —]0, o] die Differentialgleichung

y' = f(x)y' + g(x)y,

so lost z(x) = % die Differentialgleichung|(2.12)

=22 f(x)z + g(x). (2.13)
Wenn umgekehrt z : I — R|(2.13)|1ost, so lost
y(m) _ Cefz(at)d:c

fiir ein beliebiges c € R die Gleichung|(2.12)

Anmerkungen Die zusdtzliche freie Konstante riihrt daher, dass die Differen-
tialgleichung fiir y von der Ordnunng 2 ist und entsprechend 2 Parameter (An-
fangswerte fiir y,1’) bendtigt. Die Differentialgleichung dagegen hat die
Ordnung 1 und nur einen freien Parameter.

Satz 2.5 Die Transformation [2.4|ist korrekt.
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Beweis:

y 16se die Differentialgleichung 2. Ordnung. Es folgt

o (32)

y(@)
= f(a)z(2) + g(z) — 2(2)*(=[213)) -
Zur Umkehrung 16se z Dann finden wir fiir

y(x) _ Cefz(x)dz

(z) = cz(x)e) @
y//(g;) = Czl(m)efz(x)dx + CZ(:L‘)2efz(x)dx
()

y'(x) = f(2)y (x) — g(x)y(x) = cel "D (' () + 2(2)* — f(2)2(z) — g(x))
0 weger{ZT3]

Damit sind die Losungseigenschaften nachgewiesen. ®

2.6 Exakte Differentialgleichungen

Definition 2.1 Sei Q C R? eine offene Menge. Dann sagen wir, dass die partielle
Ableitung %—f einer Funktion H : Q — Rin (xq, yo) € (Q existiert, falls

H(zo + h,yo) — H(xo, y0) OH

}llli% A =: %@07%)

o .o OH
existiert, analog existiert By falls

H(zo,yo +h) — H(zo,y0)  OH

}ng[l) Y =: a—y(éﬂo,yo)
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existiert. Wir sagen, dass H in ) zweimal partiell stetig differenzierbar ist, falls

%—Ij, %—I;ﬁir alle (xg,yo) € Q2 existiert, sowie a%(%—g), %(%—I;), (%(%—I;) und a%(%—];)

fiir alle (o, o) € ) existieren und stetig von (xq, o) abhdingen.

Symbole:
O?’H 0 (OH
o2 %(%)
FH _ 0 ity
Oxdy Oz \ Jy
O’H 0 0H
Oy? B 8_y<8_y>

Ein Satz der Analysis sagt, wenn H : (2 — R zweimal partiell stetig differenzier-
bar ist, so gilt fiir alle (xg, yo) €

% (%—5) (%0, Y0) = %(%) (0, o) - (2.14)

Grund: Taylor Formel
H(xo 4 ha,yo + ha) = H(zo, yo) + H| (o, yo)h1 + Hy (0, y0) o
+ H} (w0, yo)h? + Hiy (0, Yo)haho
+ H3y (0, yo)h5 + o(hi + h3)
Wir betrachten im Folgenden (halb)implizite Differentialgleichungen der Form:

p(x,y) +q(z,y)y = 0. (2.15)
Formal ist diese Differentialgleichung dquivalent zu (unter Annahme g # 0)
I _p(ﬂf, y)
q(z,y)
Losungsbegriff und Anfangswertproblem dehnen wir in der offensichtlichen Art

und Weise auf aus.

(2.16)

Definition 2.2 Seien I,J C R offene Intervalle und p,q : I x J — R partiell
stetig differenzierbare Funktionen. Dann heifst die Differentialgleichung |(2.15)
exakt falls eine zweimal partiell stetig differenzierbare Funktion H : [ x J — R
mit

oH oH
%(moyyo) = p(z0, Y0) 8_y(x0’y0) = q(xo,Y0) fiiralle xg € 1,yo € J

existiert. H heifst dann Potential fiir[(2.15)]
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Satz 2.6 Seien I,J C R offene Intervalle und p,q : I x J — R.

1. Dann ist die Differentialgleichung [(2.15)| genau dann exakt, wenn p und q
einmal partiell stetig differenzierbar sind und

Ip

Ay

_ %
(x,y) = %(x, Y) (2.17)

fiirallex € I,y € J.

2. Unter diesen Bedingungen erfiillen alle Potentiale von [(2.15)| fiir x* € I
und y* € J die Beziehung

T Yy

H(z,y) ZH(x*,y*)Jr/p(s,y*) d8+/q(x7t) dt (2.18)

x* y*

fiirallex € I,y € J. Erfiillt H : I x J — R umgekehrt[2.18)} so ist H ein
Potential fiir[(2.15)]

3 Ist] C I ein offenes Intervall undy - [ — J eine Losung von|(2.15)} so ist
die Funktion x — H(x,y(x)) auf I konstant.

Beispiel 2.10 Wir betrachten die Differentialgleichung in getrennten Variablen

r o,
f@) + ok 0
1
q(z,y) = @
Wir iiberpriifen|(2.17)
dp

0
(r,y) =0= —q(x,y) = ist exakt

('9_y ox
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Andere Variante:

1
—9W) + =y =0
W )
p(z,y) = —g(y)
Ip /
8_y =—4'(y)
1
aQ\r,Y) = <
0= )
a4 [l
e~ )
(2.17)| gilt nur, wenn g’ und JJ:—; konstant sind und zudem g’ = Jf—; ist.

Die Exaktheit einer Gleichung ist daher extrem von der Transformation abhdiingig.

Beispiel 2.11

(z+y)y +y+2z+1)=0 auf RxR,
y(0) =2

plr,y) =x+y+1
q(z,y) =r+y

1. Ist die Differentialgleichung exakt ?

dp
_— = 1
8y(fL’,y)

0
8—z(x,y) =1 = Dgl ist exakt

2. Potential bestimmen

M%QIM%wH/ﬂmN®+/%MNt

T* y*

39



3. Auflosen des Potentials
H(x,y) = H(xo,y0) = H(0,2) = 2
2=2 fay+la? 1o
0=y + 20y + 2%+ 20 —4
Y12 = —r+ Va2 -2 —2x+4

=—x++v4- 2z

4. Benutzung des Anfangswertes
2=y(0)=—-0+v4—-2=42 = +istrichtig.
Folglich ist die Losung y(x) = —x + /4 — 2z nur fiir v < 2 erkldrt.

Beweis:

1. i) Wir zeigen, dass aus der Exaktheit die Bedingung [(2.17)| folgt.

Sei H ein Potential fiir die Differentialgleichnung [(2.15)] Wir benutzen
Dann finden wir
dp 0 (OH
dy 0y (%)
_0°H  0°H
© Oydx  0xdy
0 (0H
= a: (%)
_ 94
=
Damit ist[(2.17)|notwendig fiir die Exaktheit von [(2.15)]
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ii) Wir zeigen umgekehrt, dass die Bedingung die Exaktheit der Dif-
ferentialgleichung impliziert.

Zu beliebigen stetig differenzierbaren Funktionen p, ¢ und einem beliebi-
gen Punkt z*, y* definieren wir die Funktion / iiber|(2.18)l Differentiation
liefert

x Y
OH ) ) 0
o ) o .

(.

-~

-~

y
J 99 (4 t)dt ,da %(x,t) stetig ist.

x

= p(l’,y*) +p($,y) —p(l’,y*) = p(x,y)

T*

T Yy
OH 0 . 0
8—y(x,y) = a—y/p(s,y ) ds +a—y/q(x,t) dt
NG y*

-~

=0
=q(z,y).
Es e>?istieren ‘9;7[3, %271;{’ g;—g;, %ﬁ; ur}d sind §tetig, dap, q gtetig d'ifferenzic'ar-
bar sind. Also ist H zweimal stetig differenzierbar. Damit ist // ein Potential
von[(2.15)l Nach Definition 2.2]ist die Differentialgleichung exakt.

. Sei H ein beliebiges Potential fiir [(2.15)] Dann gilt

~ ~~

}J %—Zl(xi)dt } %—g(s,y*)ds
y* 2%
Yy x
— [awydat+ [ o) s,
y* x*

Dies ist
Dass umgekehrt eine Funktion [(2.18)| ein Potential darstellt, wurde bereits
in Teil 1 (i1) gezeigt.
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3. Seiy : I — J eine Losung von [(2.15). Wir finden nun fiir ein z € I und
¢ € R hinreichend klein, dass = + € € I, nach der Taylorformel

H(x+e,y(r+¢e) = H(x+eyx)+y(x)e+ ole))
~ H(zy( >>+58—H<x y(@))
+ (0 + ofe) S (0 9(2) +ofe)
+o(y'(x)e + o(¢))

= o) + < (D) @ )

+o(e )ay (2, y(x)) + o(e) + o(y'(x)e + o(€))

N J/

-

=o(e)
= H(z,y(z)) +e(ple,y(x)) +y'(@)q(z, y(2)) ) + o(e)

TV
=0 ,da y Losung von[Z.I3)]ist

= H(z,y(x)) + o(e).
Wir erhalten also, dass

Hx+eylr+e)) — H(z,y(x)) 0(5)'
€ €

Im Grenziibergang folgt

. H(z +e,y(x+e¢)) — H(z,y(x))
al—I>I[1) £ e=0 ¢

Daher ergibt sich fiir die Ableitung

d -
d—H(x,y(x)) =0 firalle z € I.
x

Damit ist die Abbildung = — H (z,y(z)) auf I konstant.

Der Bewetis ist jetzt vollstindig. ®
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Anmerkungen

1. Die Exaktheit einer Differentialgleichung wird durch die Bedingung
abgepriift.

2. Ist H ein Potential von|(2.15), dann ist H = H + ¢ auch ein Potential fiir
beliebiges c € R.

3. Lisungen eines Anfangswertproblems y(xo) = yo einer exakten Differen-
tialgleichung konnen mit einem Potential H aus der algebraischen
Gleichung H(x,y(x)) = H(xo,yo) durch Auflésen nach y(x) bestimmt
werden.

Was machen wir, wenn [(2.15)| nicht exakt ist, oder [(2.16)| nicht mit den richtigen
Funktionen p, ¢ geschrieben ist?

Definition 2.3 Eine nirgends verschwindende Funktion m : I x J — R heifit
integrierender Faktor (auch: Euler Multiplikator) fiir [(2.15)] falls die Differen-
tialgleichung

m(x, y)p(x, y) + m(m, y)Q<x’ y)y/ =0

exakt ist.

Beispiel 2.12 Wir betrachten die Differentialgleichung

(22%y +y) +ay =0
) =1
) =22y +y
)=z

1. Die Differentialgleichung ist nicht exakt.

dp 5 Jq
Lo 141=
oy v+l ox
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2. Wir raten

1
m(x,y) = — ist ein integrierender Faktor
1Y
p(x,y) = m(z, y)p(r, y)
1
=2r + —
x
q(z,y) = m(z,y)q(z,y)
1
Y
Op 0q
P _o=1 = exake
oy ox

3. Wir berechnen ein Potential.

Anfangspunkt sei x* = y* = 1.

xT

y
1 1
H(x,y):/25+gds+/¥dt:s2+ln|s|

1 1

@ v
+ln|t|‘ +c
1 1

=2 —1+Injz|+Inly|+c
c € R ist beliebig. Sei daher c = 0.

4. Auflosung des Potentials
H(z,y) = H(xo,y0) =0
Iyl =1—2*—In|z|

_ 1-2?—Inz

x,y>0: y(x) =e = —e

Anmerkungen Wie findet man einen integrierenden Faktor?
Wir iiberpriifen [2.17)| fiir p, §
op  O(mp) om dp
dy oy Jy dy
oG O(m om 0
Ox Ox Ox Ox
m ist integrierender Faktor genau dann,wenn
om om ( dp  0Oq >
— —p—=m|=— - =—).
Tor dy Jdy Ox
Dies ist eine partielle Differentialgleichung, die meist viel schwerer zu losen ist

als Es ist also besser zu raten.
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Kapitel 3

Differentialgleichungssysteme
(Allgemeine Losungstheorie)

3.1 Motivation

Bis jetzt haben wir Ansitze kennengelernt, Differentialgleichungen explizit ana-
lytisch zu 16sen. Dabei blieb natiirlich offen, ob es noch weitere Losungen geben
konnte, man vergleiche aber|Satz 2.1 auf Seite 11jund[Bsp. 2.3 auf Seite 17| Diese
Liicke werden wir im Folgenden schlieBen. Dank Transformation
brauchen wir dies nur fiir Differentialgleichungs-Systeme 1.0rdnung zu tun.

3.2 Existenz und Eindeutigkeit

3.2.1 Das Polygonzugverfahren und Existenz einer Losung

Die Grundidee aller Theorien zur Existenz und Eindeutigkeit von Losungen von
Differentialgleichungen ist die Folgende.

Satz 3.1 Sei QO C R¥! und f : Q — RF stetig. Dann lést eine stetige Funktion
y : I — R* das Anfangswertproblem

y/ = f(x7y) ) y(aj()) =Y (31)
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fiir (xo,y0) € Q genau dann, wenn (x,y(x)) € S fiir alle x € I sowie die
Beziehung

mw=m+/ﬂmm»a (3.2)

fiir alle x € I erfiillt ist.

Beweis: ,, = ““ Sei y eine Losung von [(3.1)] Dann ist sicher y stetig und nach dem
Hauptsatz der Differential- und Integralrechung gilt fiir alle x € I

T

M@—ymﬁ=/y®dt
:/fwwmdt

mm:m+/ﬂmm»w

Also 16st y[(3.2)]
,» < “ Sei[(3.2) erfiillt: Wir erhalten fiir z = x

y@w=%+/fmywnﬁ=%

N—————
=0

Da y stetig ist, istauch ¢t — f(t,y(t)) stetig. Nach dem Hauptsatz der Differential-
und Integralrechnung ist damit die linke Seite von|[(3.2)]differenzierbar und es gilt

Y (z) = fl,y(x)).

Mithin 16st y [(3.1)] ®

Anmerkungen

1. Die Implikation (3.1)| = ((3.2)| gilt praktisch immer. In|Bsp. 1.2 auf Seite 5|
sahen wir schon, dass|[(3.2)|=>[(3.1)|nicht immer gelten muss.
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2. Wir konnen mit diesem Satz ein allgemeines Prinzip produktiv machen: In-
tegration ist eine glittende Operation. So kann man die Integralgleichung

(3.2)|zum Beispiel durch Integration losen.
3. Die Integration in [(3.2)| erfolgt separat in jeder Komponente der Funktion
f:Q— R
Im Folgenden sei

Iyl = llyllee = max |y firy e R*.

.....

Wir bendétigen noch eien vorbereitenden Satz zum Beweis der Existenz einer Lo-
sung.

Definition 3.1 Sei I C R ein Intervall und ( f,,)nen eine Fuktionenfolge mit f,,
I — RF*. Die Funktionenfolge heifst gleichgradig stetig in xy € I, falls
Ve>036>0VneNVeel: |[z—xo <= |fu(z)— fulzo)] <€ (3.3)

(fn)nen heift kurz gleichgradig stetig, falls dies fiir alle xy € I gilt.
Die Funktionenfolge heifst gleichmdpf3ig beschrdnkt, wenn

IM>0YneNVael: |fula)] <M.

Anmerkungen f ist stetig in x( genau dann, wenn

Ve>03d>0Veel: |z—x<d = |flx)— flz)] <e.

Lemma 3.1 (f,), .y mit f, : [a,b] — R sei gleichgradig stetig. Dann gilt:
Ve>036>0VneNVz,a €la,b] : |[v—2'| <= fulz) = fu(z)| < e

Beweis: Wir fithren den Beweis indirekt, d.h. wir nehmen an, es giibe ein € > 0,
so dass fiir alle m € N jeweils z,,,, 2], € [a, b] existieren und n,, € N mit

1
|l‘m —I‘fm| < E und ||fnm(xm) - fnm(x;n)“ > €.

Nach dem Satz von Bolzano-Weierstral3 existiert eine Teilfolge (2, ) .y, Welche
gegen ein xy € [a, b] konvergiert. Wegen

= Xg -

1
/ . : !/
| Tm, — T, | < - gilt  lim z,,

{—00
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Nach Definition der gleichgradigen Stetigkeit finden wir ein 6 > 0, so dass
€

VneNVeel: |z—wm|<d = |ful2) = falw)l <3

Wir wihlen ¢y € N derart, dass fiir ¢ > ¢, gilt
[ Zm, — 0] <0 und |z}, — x| < 6.

Dann gilt
€

1 one ) = Fonp@o)l| < 5 und || f (20,) = fong(20)]| < 5

Die Dreiecksungleichung liefert

[ Fone (@) = Fone (@0,)]| < €

Dies fiihrt zu einem Widerspruch. ®

Satz 3.2 (Satz von Arzeld-Ascoli) Die Funktionenfolge (fy), oy mit fy : [a,b] —
R¥ sei gleichgradig stetig und gleichmdifig beschrinkt. Dann existiert eine Teil-
folge (fn,) ey Welche gleichmdfig konvergiert.

Anmerkungen

1. Die Bedingung ist auch notwendig.

2. Die Bedingung formuliert ein Kompaktheitskriterium in C ([a, b|, Rk).

Beweis:

1. Sei J = QnNJa,b], dann gilt J = {ry, 7, ...} fiir eine Folge (r;),.y - Dann
ist (f,(r1)),ey € R beschrinkt. Es gibt dann eine Teilfolge (m}),.y

sodass < S (r1)> konvergiert. Nun ist ( fon (r2)> C R* beschrinkt.
¢ LeN ¢ LeN

Sei (f,2(72))een eine konvergente Teilfolge. Induktiv finden wir fiir jedes

q € N eine Teilfolge (m?)sen von (m? )sen, sodass (fma (7)) een kon-

vergiert. Wir setzen nun iy, = mj. Da fiir geniigend groBe ¢ dann i, eine
Teilfolge von mj ist, gilt fur alle ¢, dass ( f5,(r,))sen konvergiert.
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2. Sei € > 0 vorgegeben. Wir wihlen ¢ > 0 nach [Lemma 3.1 auf Seite 47|
sodass

VneNVaa €lab] : |v—2'| <8 = ||fulz) — ful@)]| <§. (3.4)

Wir finden ¢i,...,q; € J, so dass fir alle z € [a,b] einp € {1,...,5}
existiert mit |z — ¢,| < 6.
Aus 1. erhalten wir ein £y € N, sodass fiiralle ¢/, ¢ > foundp € {1,...,j}

| fre (@) — frp (a0)]| < (3.5)

Wl m

Wir bekommen nun fiir ein beliebiges € [a, b] mit einem g, einen Abstand
|z —q,| < dund{, ¢ > {, derart, dass

5 (@) = fa, (@)
= Hfﬁz(x> - fﬁe(qp) + fﬁe(Qp) - fﬁ[/ (Qp) + fﬁg/(qp) - fﬁg/(x)H

< Ufﬁe(aj) - fﬁe<q10)|| +Ufﬁe(qp) - fﬁzl(Qp)U"’ Hfﬁgl(qiv) - fﬁgl(m)u .
< <5l <s0

Es gilt also fiir alle ¢, ¢’ > (¢ und = € [a, b]

Hfﬁe(aj) - fﬁe,(@H <E€.

(fa,)een ist somit eine Cauchyfolge beziiglich der Supremumnorm.
Damit konvergiert ( f7,)sen gleichmiBig.

1. und 2. liefern den Beweis. ®

Folgerung 1 Erfiillt (f,)nen, [n @ [a,b] — R gleichmiifig eine Lipschitz-Be-
dingung, das heift es existiert eine Konstante L > 0 mit

VneNVaea €la,b] : |fulz) = ful@d)| < Lz — 2,

und (f,)n € N ist gleichmdiflig beschriinkt, dann existiert eine gleichmdifig kon-
vergente Teilfolge ( f,,)en.

Beweis: Die Funktionenfolge ( f,,),ecn ist gleichmiBig stetig. Man wihle 2’ = zg
und 0 = 7 in Definition 3.1 auf Seite 47} [Satz 3.2 auf der vorherigen Seite] zeigt
das Verlangte. ®
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Satz 3.3 (Satz von Peano) Seien 2 C R¥™! offen und f : Q — R stetig.
Fiira, >0, 9 €R, yy € RF sei

D = [zo, 20 +a] x {y : [ly —wol| < B} C Q.

Wir setzen
M =sup{| f(z,y)| : (z,y) € D}

und vy = min{a,% .

Dann existiert eine Losung des Anfangswertproblems

Y = f(x,y), ylzo) = yo

im Intervall [zy, xo + 7.

Anmerkungen

1. Es gilt eine analoge Aussage fiir das Intervall [xo — v, x).

2. Supremum M < oo, weil f stetig und D eine kompakte Menge ist.

Beweis: Wir zeigen den Satz von Peano.

1. Wir definieren eine Folge (i, )nen von Funktionen ¢, : [zo, 2o + 7] — R
Dazu seien Punkte x durch 2}’ = 2o + 41 fiiri = 0, ..., n definiert. Damit
setzen wir induktiv

(SL’) _ { Yo + (3j - 'TO)f(QJOvyO) fir z € [xg,x’f],

Offenbar ist ¢, (x) fiir x € [x], 27, ] korrekt definiert, wenn ¢, (x]') korrekt
definiert ist und

lon (@) = yoll < 5.
2. Durch Induktion zeigen wir fiir alle i € {0,...,n — 1} fiir welche
len(a) —woll <8 firalle i' <,

dass fiir alle © € [z, 27" 4]
on(2) = yo + / @@L @y on(Tl, ) dt (3.6)
xo
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mit i, (t) = Ln(t $°)J gilt.
Induktionsanfang:

x € [z, 27] = in(t)=0 fir alle t € [z, 2]
und es gilt

m+/f2nv% D&—m+/f%wdwwﬁ

zo

= yo + (z — o) f(%0, Yo)
= gpn([B)

Induktionsschritt (i — 1 — 4): fiir © € [x¢, 2] ist nichts zu beweisen.
te o), x| istin(t) =i,
Deshalb finden wir

%+/fz@%x DM—%+/fz@¢AMMMt

/f n(T7 1)) dt
/f T}, on(@

= @n(}') + (x — 2) [ (27, en(27))
= ¢n(z).
3. Aus|(3.6)|erhalten wir, wenn ||, (z) — yo|| < 3, dass
Tt
e = wll = || [ #at el o)
zo
221
< [ Mt et at
o <M
< (xiy —x0)M <M

<
SB

M = 8.
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Damit ist ¢,, auf ganz [xg, o + 7] wohldefiniert.

4. Folglich gilt auch|(3.6)|fiir alle = € [z, zo + 7.
Wir erhalten fiir z, 2" € [z, xo + 7] mit z < 2/, dass

[on () — @n(@)]| = /f(ﬁn(t)»%(x?n(t)))dt— /f(fﬂ?n(t)»@n(x?n(t)))dt
fy) o

= —/f(x?n(t)v%(x?n(t)»dt

g/Hf(x?n(t)#n(if?n(t)))”dt

< (2" —2)M, (3.7)
d.h. eine gleichmiBige Lipschitz-Bedingung. Analog leiten wir her

lon(@)] = |lvo + / FE2 ) ula o))t
zo

X
< llyoll + / S pnlal o)t
zo

< lyoll + 8. (3.8)

5. Wegen|(3.7){und |(3.8)|erfiillt die Folge (¢, ),en die Voraussetzung der Fol-
gerung aus [Satz 3.2 auf Seite 48| Damit gibt es eine gleichmifig konver-

gente Teilfolge (¢, )sen mit dem Grenzwert ¢ : [xg, 2o + 7] — R

6. D ist kompakt. Also ist f gleichmdBig stetig. Das heilit fiir jedes € > 0
finden wir ein 0 > 0 mit

V(z,y), (@,y)e D :

/ / A €
[z —a'] <0, [ly—yll<dé = IIf(w,y)—f(x,y)||<%- (3.9)

7. Sei € > 0 beliebig aber fest gewihlt. Damit gibt es ein 0 < ¢ < 7, sodass
(3.9)| gilt. Da ¢ gleichmiBig stetig ist gibt es ein 6 > 0 mit § < 9, sodass
fur alle z, 2’ € [zo, zo + 7]

! < / 4
g2 <d = @) - @) < 5
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Wir wihlen ¢ so groB3, dass fiir alle ¢ > ¢

sup  |ln, (t) — @(t)[| <
te€lzo,z0+7]

N S

und <(5

8. Seinun x,(t) := xlne )"

Dann gilt fiir alle ¢ € [z, 2o + 7], dass |z4(t) — t| < 4. Dies impliziert

[on, (@e(t)) — (t)]
5 5 (3.10)
2

< Nl (2e(t)) = @)l + llolze(t)) — (Ol <5 +5 =9

9. Mit|(3.9) und|(3.10)| finden wir fiir z € [zg, 20 + ] und ¢ > ¢,

m—%—/}mamw

< g (@) = Pu (@) + ||ione (2 m—/f

<5+ /f@ﬂ%%ﬂm@ﬂﬁ—/f@

< 5+/||f(:ve(t)790n[(we(t))) — [t @) dt

€
< —dt = — — < _
_5+/27dt (H—(:E xO)Z'y 5+727

:5—|—§<e.

Da ¢ > 0 beliebig war, ergibt sich fiir alle = € [z, 2o + 7]

o) =+ [ flt.o0) dt

Da ¢ stetig ist, ist ¢ nach [Satz 3.1 auf Seite 45| also eine Losung des An-
fangswertproblems [(3.1)]

Dadurch ist der Beweis vollstiandig erbracht. ®
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Beispiel 3.1 (siehe auch|Bsp. 2.5 auf Seite 17)

Y =3vy?*, y(0)=0

a=p0=1
= M=3
===

773

1
on(x) =yo + (x — x0) f (w0, y0) fiirx € I mit [ = [xo,xo—i- %} = [0,3—n]
=0+ (z—20)-0=0

Induktiv sieht man
en(z) =0  fiiralle z € [0,1].

Damit ist
p(x) =0  fiiralle z € [0,3].

Das heif3t wir erhalten nach dieser Methode nur die Nulllosungen, nicht die an-
deren.

3.2.2 Der Satz von Picard-Lindel6f und Eindeutigkeit der Lo-
sung

Im Folgenden bendtigen wir das folgende niitzliche Resultat:

, 00| eine stetige Funktion fiir
bl — [0, 00| existieren, sodass

D) <ot / f(t)g(t) dt

Dann gilt fiir alle x € [a, b] mit der Notation e* = exp(x)

Satz 3.4 (Lemma von Gronwall) Sei f : [a,b] — [0
welche ein ¢ > 0 und eine stetige Funktion g : |a,
fiir alle x € [a, b]

x

f(z) < ¢ exp / o(t) dt

a
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Anmerkungen Wenn Gleichheit (,,=*) gilt, dann zeigt|{Satz 5.1 auf Seite 45|dass

f(z) = f(x)g(z), fla)=c.

Diese Gleichung in getrennten Variablen hat genau die Losung

T

f(z) = ¢ exp / g(t) dt

a

Wir behandeln also eine Art Differentialgleichung.

Beweis: Sei h : [a,b] — [0, oo[ durch
h(z) =c+ /f(t)g(t) dt

gegeben. Dann gilt laut Voraussetzung f(z) < h(z) fir alle x € [a,b], sowie
0 < ¢ < h(z). AuBerdem ist h nach dem Hauptsatz der Differential- und Integral-
rechnung differenzierbar und es gilt

h(x) = f(x)g(x) < h(z)g(z) .

Fall ¢ > 0: Mit h(a) = c erhalten wir fiir beliebiges x € [a, b]

In @ =Inh(z) —Inh(a)
= /(lnh)’(t)dt
_ (R
-

a
x

< /g(t)dt

a

oy < o ([ ooy

a

und damit gilt diese obere Schranke auch fiir f(z).
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Fall ¢ = 0: Nach Voraussetzung gilt dann fiir beliebiges ¢ > 0 auch
fy e+ [ 1o ar
fiir alle = € [a, b]. Es folgt

Oéf(x)ééeXp(jg(t)dt)-

a

fiir € [a, b]. Der Grenziibergang ¢ — 0 fiir festes x zeigt f(x) = 0 fir z € [a, b].
Insbesondere ist somit die Ungleichung 0 = f(z) < cexp(---) = 0 fiir alle
x € [a,b] im Fall ¢ = 0 korrekt. ®

Folgerung 2 Seien f, g : [a,b] — [0, oo[ stetig und es gelte
flz) < ]f(t)g(t)dt fiiralle x € [a,b].
Dann gilt f(x) = 0 fiir allz x € [a,b].
Diese Folgerung 146t sich aus dem Beweis von im Fall ¢ = 0 ersehen.
Definition 3.2 Sei f eine Abbildung f : Q — R mit Q C R**! offen. Dann heifst

f Lipschitz-stetig beziiglich y mit Konstante L > 0, fallsV (x,y), (z,7y) €

1f(z,y) = flz, )l < Llly =9l -

| heift lokal Lipschitz-stetig beziiglich y in Q, falls fiir alle Paare (z,y) € () eine
Umgebung U von (x,y) in S existiert, sodass f |U Lipschitz-stetig beziiglich v ist.

Satz 3.5 Sei QO C R¥! offen. f : QO — RF sei stetig beziiglich x und Lipschitz-
stetig beziiglich y mit Konstante L > 0. Sind p, : I — R* | @y : I — RF zwei
Lisungen von y' = f(x,y) zu den Anfangswerten

@1(z0) = Y1, P2(T0) = Y2,
so gilt fiir alle x € 1

L|z—x0|

lo1(z) — wa(@)]| < [lyr — w2lle

Anmerkungen Wir wissen also, dass die Losung stetig von den Anfangswerten
abhdingt.
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Diese Stetigkeit ist wichtig an vielen Stellen:

1. fiir die Numerik (Anfangswert ist nicht exakt darzustellen),
fiir die Modellierung,

fiir die Ingenieuranwendungen: Stabilitit des Systems,

Sl

Ein analoges Resultat gibt es auch fiir die stetige Abhéngigkeit von der rech-
ten Seiten.

Beweis: Ohne Beschrinkung der Allgemeinheit sei x > xy. Wir definieren

h(t) = llea(t) — w20)]] -
Nach [Satz 3.1 auf Seite 45| gilt jetzt fiir xo <t < zx

h(t) = [le:(t) — @2 (D)

= ||y +/f(s,gol(s)) ds — <y2+/f(s,g02(s)) ds)

t

R / (5, 01(5)) — F(5, pa(5)) dls

o

< [lyr = 2|l +/Hf(3a801(5)) — f(s,2(5)) | ds

t

<l = el + [ Lllor(s) = pals)] ds

o
t

— s = well + [ Li(s) ds.

Z0

Es gilt also
t
h(t) < llyr = well + [ Lh(s) ds.

o

Das Lemma von Gronwall [Satz 3.4 auf Seite 54| mit ¢ = ||y1 — y2|| > 0 und
g(t) = L > 0 sagt nun

h(z) < |ly1 — y2| exp (f L ds> N )

zo

und mit der Definition von h folgt die Behauptung. ®
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Satz 3.6 Sei QO C R¥! offen, f : Q — R* sei stetig beziiglich = und lokal
Lipschitz-stetig beziiglich y. Sind I, I offene Intervalle und

@15]1—>]Rk, @2:]2_>Rk

zwei Lisungen des Anfangswertproblems yv' = f(x,y), y(xo) = yo mit einem
Anfangswert (o, yo) € €, dann gilt

901 1Nz = 4'02‘[1(7[2 :
Beweis:

1. Ohne Einschrinkung der Allgemeinheit betrachten wir
I = (I, N 1) Nxg, o0,

da ein analoger Beweis auch fiir < x gefiihrt werden kann.

2. Wir betrachten die Menge
S={zel:p(z) # (@)} .

Annahme: S # ()

Sei z = inf S.

Falls # = x( gilt, dann folgt

©1(2) = o1(0) = Yo = w2(20) = P2(2) .

Falls > x gilt, dann haben wir fiir groBe n € N

1 1 1 1
'i__¢57 i‘__zx()a 801(@——>:902(f——>
n n n n

Da ¢, und ¢, stetig sind, liefert Grenzwertbildung

. . 1
p1(z) = lim ¢ <35 - —)
n
) R 1
= lim ¢o <x — —>
n—oo n

= ().

In jedem Fall ist 1 (Z) = ¢2(Z) und daher ¢ S.
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3. Wir wissen somit ¢1(Z) = ¢o(Z). Da f lokal Lipschitz-stetig beziiglich y
ist, finden wir eine Umgebung U von (&, ¢4 (2)) und ein L > 0, sodass f ’U
Lipschitz-stetig mit Konstante L ist.

Sei € > 0 nun so gewdhlt, dass
(t, f(t,pi(t))) €U furi=1,2 und t € [2,2 + €.

Es sind 1, @9 beides Losungen des Anfangswertproblems ¢y’ = f(z,vy),
y(Z) = ¢1(2) = pa(). Aus dem vorigen folgt nun fiir diese ¢

lp1(t) — wa(B)|| < [l1(2) — @a(@)| XD = 0.
Daraus ergibt sich
p1(t) = @o(t) fir 2 <t <i+e.
Das widerspricht £ = inf S.

Der Beweis ist damit indirekt erfolgt. ®

Anmerkungen Ist f(x,y1,. .., yx) partiell nach y; fiiri = 1, ..., k differenzier-
bar und die partiellen Ableitungen aiyif(:c, Y, - .-, Yx) Stetig auf ganz Q2. Dann ist
f lokal Lipschitz-stetig beziiglich y. Das bedeutet, dass diese Eigenschaft hinrei-
chend fiir die Eindeutigkeit der Losung ist. Diese stetige Differenzierbarkeit ist oft
erfiillt.

Satz 3.7 Sei Q) C R¥ offen, f : Q — RF stetig und lokal Lipschitz-stetig beziig-
lich y und (9, o) € 2. Sei
b = sup {a > 0 : Es gibt eine Losung ¢ : 1o, 1o + a] — R* von @]} )
Dann existiert b > 0 oder b = +00 und es gibt eine eindeutig bestimmte Losung
¢ : [w0, 10 + b[— RF von[(3.1)

zusdtzlich gilt fiir b < oo

QN ([zo + b, 00[xR) N {(z, p(x)) : & € [wo, 10 + b[} = 0.

Beweis:

1. Wegen [Satz 3.3 auf Seite 50| existiert eine Losung von [(3.1)] das heift die
Menge ist nicht leer und das Supremum b > 0 existiert.
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2. Wir fixieren fiir alle @ mit 0 < a < b eine Losung ¢, : [xg, 7o + a] — R*
von|(3.1), Dann definieren wir ¢ : [zg, 2o + b[— R* durch ¢(z) = ¢, (z).
Aus dem letzten folgt fiir

ro<z<zot+a<zot+b, o) =v:(x) = PryralT).

Damit 16st ¢ auch |(3.1)|auf [z, 2y + a]. Da a beliebig ist, 16st ¢ |(3.1)| auf
ganz [xg, xo + b[. Gemill dem vorigen [Satz 3.6 auf Seite 58|ist ¢ eindeutig
bestimmt.

3. Sei

(z1,91) € QN [xo + b, o[ xR N {(t, (1)) : t € [x0, 20 + b[}.

Das heiit ;7 > x¢ + b und es gibt eine Folge (t,)nen, tn € [To,xo + b],
sodass
xy = lim t, <zo+b, y; = lim p(t,).
n—00 n—o0

Folglich ist x; = x + b. Nun existieren ein ¢ > 0 und L > 0, sodass f
Lipschitz-stetig mit Konstante L auf

U= {(l’,y) : ||(l’,y) - (mlayl)” < 26} g Q
ist. Die Menge
K ={(z,y) - (z,y) = (z, )| ey U CQ

ist kompakt, also

M = sup {|[f(z,y)| : (x,y) € K} < o0.

Wir setzen 1
€
0= - mi {,—}>0
5 min-< e i
4. Es gilt

('Th yl) S {<t7 Sp(t)) e [1’07350 + b[} :
Folglich gibt es zu ¢ aus 3. einen Punkt

(z2,92) € {(t, (1)) : t € [v0, 70 + [}
mit ||(z1,y1) — (72, y2)|| < 0. Damit ist auch 25 < 21 = 29 + b. Sei
€
D= [asma+0] x {y: ly—wmll <5} C K.

Nach|Satz 3.3 auf Seite 50| (setze o = d und 3 =
damit eine Losung @ : [z, 79 + §] — R¥ von

5»dann § < 577) existiert

Y = f(x,y), y(r2) =y2 = @(2)
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5. Wir setzen
5(w) = o(x) fir z € [xg, 20+ b]
PAIZ Bla) fiir o € 20, 20 + 3.

 ist wohldefiniert nach [Satz 3.6 auf Seite 5§|

S0|[x2,x0+b] - ¢‘[12,$0+b[

Folglich ist ¢ : [zg, 2o + 0] — R* eine Losung von |(3.1)L Wegen der Ab-
schitzung [z, — 23| < § < § und 7, < x; folgt

LE2+(5>I1:$0+[)

und damit Widerspruch zu Definition von b.

Dies schlieBBt den Beweis ab. ®

Anmerkungen Zur Bedeutung von

QN [xg + b, 0o xRF N {(t, () : t € [wg, 20 + D[} =0
siehelAbb. 3.1.
y ; y

X g X X g X

Abbildung 3.1: Die Losung wird fiir t — ¢ := xq + b gegen den ,,Rand* von (2
,getrieben®. Beschriinktes Gebiet € (links) und €2 = R*¥*! (rechts).

Satz 3.8 (Picard - Lindeldf) Sei Q C R¥*! offen, f : Q — R* stetig und lokal
Lipschitz-stetig in y, sowie (o, yo) € §2. Dann gibt es Zahlen x_ < xq < xy und

eine Losung o :Jx_,x.[— R¥ von|(3.1)| sodass fiir jede Losung ¢ :|a, b[— R,
sowohla > x_,b < xy als auch ¢ = ¢ Ja.b| gilt.

Anmerkungen ¢ wird auch als maximale Losung von|(3.1)|bezeichnet, maximal
wegen Maximalitdt des Intervalls.
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Beweis: x, sei xg + b mit den Bezeichnungen des vorigen Satzes. Analog setzen
wir x_ fiir die umgekehrte Richtung fest. Entsprechend gibt es dann eine Losung

@),z [~ RF

von[(3.1)| Ist

@ Ja, b[— R*
eine andere Losung von((3.1)} so ist fiir alle € > 0 auch ¢
[(3.1)] Nach Definition von ¢ ist

eine Losung von

[xo,b—¢€]

Ve>0: b—e<ux,y,

das heifit b < z. Analog finden wir @ > x_.[Satz 3.6 auf Seite 58| zeigt nun, dass

Plasre ot = Plasiie st = Pl =9
gilt. ®

Beispiel 3.2 Wir betrachten das Anfangswertproblem
y=y'+1, y(0)=0.
Losung durch Trennung der Variablen.

dy
y?+1

dy
/y2+1:/dx

arctany = x + ¢

=dz

y = tan(x + ¢)
Anfangswerte:
arctany(0) =c=c¢=0
Losung:
y(x) = tan(x)
Es gilt

lim tan(z) = £o0.
r—+%

Die Losung explodiert also, das heift
T +7r
T_=——, 1 =+—.
27 7T T

Wann gibt es eine ,,globale“ Losung auf der ganzen Zeitachse?
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Satz 3.9 Seien a < b (a = —oo und/oder b = 400 moglich) und
f :]a, [ xRF — R*
stetig und lokal Lipschitz-stetig in y. Zusdtzlich gebe es zwei stetige Funktionen
09,01 :Ja, b[— [0, oo],

sodass
1 (z,9)l| < oo(z) + o1(2) [ly]] 3.11)
fiir alle  €]a, b und alle y € R* gilt.

Dann existiert fiir alle xo €)a, b[ und alle iy € R* eine eindeutige Lisung

¢ :Ja, b[— R¥ von

Anmerkungen Das heifst v = a und x = b mit den Bezeichnungen des vori-
gen Satzes.

Beweis: Es sei , yo fest und ¢ :]z_, v, [— R* die maximale Losung von [(3.1)]
Im Folgenden zeigen wir indirekt, dass z_— = a, x; = b, das heillt ohne Be-
schrankung der Allgemeinheit nehmen wir an, dass z; < b. Wir betrachten nun
die Funktion

h: [wo, 24 [= [0, 00, h(z) = [lp()] -

Jetzt erhalten wir aus [Satz 3.1 auf Seite 45|und |(3.11)|fiir alle = € [x¢, x4
h(z) = [lp(x)

l
::%+/ﬂmm»a
gmm+/wmwmuw

< Il + [ (on(t) + 0) 0]

zo

= ||yo| +/00(t)dt~|—/01(t)h(t) dt
<l + [ anttrae+ [ (oo a.
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Das Lemma von Gronwall [Satz 3.4 auf Seite 54]ergibt

T4 T4

h(x) < | llooll + / oo(t) dt | | exp / o (1) dt

zo L0

Das heif3t, es gibt ein M > 0 mit
Vi€ lrgal: o) <M.

Wir betrachten die Folge w,, = x; — % fir n € N. Es gilt zp < u,, < x4 fir
alle hinreichend hohen n. Die Folge ((uy,))nen C R¥ ist beschriinkt. Nach dem
(mehrdimensionalen) Satz von Bolzano-Weierstral} existiert ein Grenzwert z €
R*. Wir erhalten

nh_g}o (24 — 3oy — ) = (24, 2).

Offenbar ist also

(21,2) € {(t, p(1)) : € [z, 4},

jedoch auch (z,2) € Q =]a, b|xR¥. Dies steht im Widerspruch zu
u

Beispiel 3.3 Wir betrachten die Differentialgleichung
v =ylny, y(0)=e. (3.12)

(3.11)| gilt nicht. Wir zeigen, dass eine Losung y : [0, oo[— R von|(3.12)| existiert,
das heifst[(3.11)|ist nicht notwendig fiir eine Nicht-Explosion von y.

Methode der getrennten Variablen ergibt:

d
y =dzx
ylny

) 1 =
/ dz:/ ds ==z
zlnz 0

e

1 1
(u=1Inz) / dz:/—duzlnu:ln(lnz)

zlnz U
In(Iny) ==z
= y(r) =

Dies ist fiir alle x > 0 definiert (sogar fiir alle v € R).
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3.2.3 Glattheit der Losung und der Taylorreihenansatz

Motivation Erfiillt y : I — R die Differentialgleichung

y = f(z,y)

mit stetigem f, so ist y natiirlich stetig differenzierbar (das heifst die Ableitung
existiert und diese ist stetig).

Satz 3.10 Ist [ partiell einmal stetig differenzierbar, dann ist y zweimal stetig
differenzierbar und es gilt

k
V') = Shey) + Y Ay e, 63

i=1

Ist f sogar p-mal stetig differenzierbar, so ist y (p + 1)-mal stetig differenzierbar.

Beweis: [(3.13)|folgt aus der mehrdimensionalen Kettenregel.
1" d /
J'(5) = /(o)
d
= 2 foy(@)

= Ly 1+ 30 3 oyt L

i=1

= ey + D o) g o)

Die rechte Seite ist stetig, deshalb ist y zweimal stetig differenzierbar.
Die Aussage zur mehrfachen Differenzierbarkeit folgt durch Induktion.
Wir zeigen fiir alle 1 < j < p, dass

yI(z) = g;(z, y(x))

fiir eine (p — j)-mal stetig differenzierbare Funktion g;.
Der Induktionsanfang ist durch[(3.13)| gegeben.
Der Schluss von j nach j + 1 erfolgt durch die zu[(3.13)] analoge Formel

d

: , d
(J+2) — — ,,U+D = qg.
yI (@) = =y (@) = = gy, ya)

Jg,
2 v, y(a))

1

d09; i
= D y(@)) + D fila,y(@)
=1
Dadurch ist die Aussage fiir alle p gezeigt. ®
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Ist also f beliebig oft differenzierbar, so gilt dies auch fiir y. Es ist also verniiftiger,

wenn auch nicht gesichert, anzunehmen, dass sich eine Losung von

darstellen l4dsst, mit

y, - f(x,y) ) y(fto) =%

zumindest in einer Umgebung von z als Potenzreihe

?J(iﬂ) = Z an—(x —n!xo)”

(3.14)

(3.15)

Rezept 3.1 Zur Losung von|(3.14)|entwickle man y nach|(3.15)|in eine Potenzrei-
he. Die Koeffizienten (a,,)ncn ergeben sich dann durch Reihenentwicklung von f

oder iterierte Anwendung von |(3.13)| zur Berechnung von y™ (x).

Im folgenden betrachten wir einzelne Differentialgleichungen (£ = 1).

Beispiel 3.4

Ansatz:

—2xy y(0) =1.

3" —2(i + Day—

) |
— (i+1)!



Da die Taylorreihen die gleiche Funktion sein sollen, miissen die Koeffizienten
gleich sein.

Q41 = —2ta;,—1 fiiralle 1 =0,1,2,...

agp = 1
Fiir i = 0 sehen wir aq = 0. Induktiv sieht man daraus leicht
asps1 =0 fiiralle k € N.

Es gilt nun auch

Induktionsschritt:

a2k+2 = —2(2k’ + 1)a2k

= —2(2k + 1)—(_1);(%)!
_(=D)M(2k + 2)(2k + 1)(2k)!
B (k+ 1)k!
C(=1)M(2k +2)!

- (k+1)!

Wir finden also

IQk

azkw
(—1)*(2k)! 22
Ko (2k)
(—:C2)k
k!

NE

y(z) =

0

I
NE

x>
Il
<)

I
1M

I
o

Man kann das Taylorreihenverfahren auch zur Approximation benutzen. Dies er-
folgt im ndchsten Beispiel.
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Beispiel 3.5
y =siny (3.16)
y(0)=0, y'(0)=1

Taylorreihenansatz
y() =y 0%
i=0

Aus der Differentialgleichung bekommen wir leicht

1"

y (0) = sin(y(0)) = sin(0) = 0.

Durch das Differenzieren von|(3.16)| erhalten wir auch Formeln fiir hohere Ablei-
tungen.

/

y" = (sin(y))" = cos(y)y
y"'(0) = cos(y(0)) ¥'(0) =1

)= —sin(y) (v)* + cos(y) ¥
y(4)(0) =-0-1241-0=0

)= —cos(y) (y*) —sin(y) 2y y" —sin(y) y' y" + cos(y) y
= —cos(y) (v')* — 3sin(y) v 3" + cos(y)y"”
yP0)=-1-1"-3.0-1-04+1-1=1-1=0

y© = cos(y)y™® — 3sin(y)(y")? + sin(y)(y')*
—6cos(y)(y)*y" — 4sin(y)y'y"”

y90)=1-0-04+0-0-0=0

n

Als weitere Ableitungswerte ergeben sich bei vo = 0: yV) = —9, y® =0, y® =
—45, y10 = 0, y(1) = 756, y(12) = 0, y13) = 23085, y1* = 0, y(1») = —61479,
Y19 =0, y10 = —26977860, . ..

Taylorreihe lokal = funktioniert fiir Intervalle wunderbar, fiir global fortsetzen
mit weiteren Taylorreihen auf folgenden Intervallen.

Dies sieht man auch gut an den Abbildungen|Abb. 5.2 auf der ndchsten SeiteAbb.|
.5 auf Seite 72
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[¢ ‘0] Treatyuy wi (A)uts = ,fi uoa uoneuwrxoidderofAey, 4°¢ Sunpriqqy

o€ 4 0¢ ST 0T S0 00
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[0T ‘0] TTeAToYUT Wi (fi)uis = /i uoa uonewrxoiddelofAe], :g ¢ Sunpriqqy

0T 8 9 14

00 —emmm—

Bunupio

(A)uss = ,Auon uonewixoiddy—-iojfe L

0T

ST
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Kapitel 4

Lineare Differentialgleichungen

Eine allgemeines System aus linearen Differetialgleichungen erster Ordnung be-
sitzt die Gestalt

y = Alz)y + b(x)
mit gegebenen Funktionen A : R — R¥* und b : R — R*. Ist b = 0, dann liegt
ein homogenes System vor.

4.1 Das Exponential einer Matrix

Motivation Die lineare Differentialgleichung

y =ry, y(0) =y
hat die Losung
y(x) =e"yo.
Ein System linearer Differentialgleichungen (homogenen mit konstanten Koeffizi-
enten) konnen wir in der Form
y' = Ay, y(0) =y
mit A € R¥* und vy, € R¥ schreiben.
Rein formal erwarten wir eine Losung der Form
y(z) = e*yo
Die recht Seite, speziell e* miissen wir erst definieren. Unser Ansatz dafiir ist die

Potenzreihenentwicklung von €.
Konvention: A° = Id  (Id: Einheitsmatrix)
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Satz 4.1 Fiir A € R¥** konvergiert die Reihe
|
“—~ nl

eintragsweise absolut.

Beweis: Seien
A = (a;)} B = (by);

6,j=1> ,j=1

zwel Matrizen und

My = ma§klaij|, Mp = max |b;].

1<i,j 1<i,j<k

Dann gilt fiir 1 < ¢, 5 < k beliebig:

k

(AB)U = Z Qip bgj

/=1

k
[(AB)y| <) laael [bys]
/=1

k
<Y Ma Mg

(=1

Dadurch folgt
|(AB);j| <k My Mg.

Durch Induktion beweisen wir nun, dass das

ny | < pn—l n.
123%(13‘(14 )ijl < k"M

Der Induktionsanfang n = 1 ist gerade die Definition von M 4.

Fiir den Induktionsschritt n — n + 1 benutzen wir [(4.1)]

ntly | — ny..
Jnax |(A");] = max [(A.A");
<k Ma max |(A")]
1<i,j<k
<k Ma k"' M
= k" M}
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Wir finden damit fiir beliebige 1 <i,j5 < k

oo o0
An k,nfan
IM[CINEDD
n! /| — n
n=0 n=0
o0
k.?’lMTL
< -
—~ nl
=M«

Damit konvergiert

eintragsweise absolut. ®

Beispiel 4.1

2
A:(S 2) AQZ(% boz) mit a.be R

Analog:

oo n # 0 a
LA R I (O
! 0 () 0 e

n=0

Dies ist typisch fiir Diagonalmatrizen.

Beispiel 4.2

A—(O 0> A —(0 0) = A"=0 fiiralle n>2

=, A" 11

n=0

Dies ist typisch fiir sogenannte nilpotente Matrizen, das heifst A™ = 0 fiir ein
m > 0.
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Beispiel 4.3

B3=-IdB=-B
B'=(B*?=1Id
Also gilt fiir alle k € N:
B% =4, B%t —pB, BY%2_— _[ B%B3__p,
B* = (-1)kId, B+l =(-1)fB.
Das heif3t

o0 An
>

n=0

'

Bn

[
g
k-

S
Il
o

b2k p2k+1
0 < SRRy BQk—i—l)

2% 2%+1
:Z<b Id>+z(2ll)c+1 DkB)

= R os(b)Id + sin(b)B
_ ( cos(b) sm(b))
—sin(b) cos(b)

Definition 4.1 Die Reihe % heif3t Matrixexponential der Matrix A € RF*F,

n=0

Mg

8 1

Symbol e

Satz 4.2 Sei A € R¥*F,

1. Es gilt fiir die Nullmatrix 0:

2. Fiirsundt € R gilt
oSAGtA _ o(s+DA
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3. e ist invertierbar und es gilt
(eMH P =e4,

4. Fiir alle ty € R gilt
d

— etA| — AetoA — et()AA )
at ¢ =

Beweis:
1. Es gilt 0° = Id laut Definition. Daraus folgt

o0

On
el = — =1d+0+0+--=1Id.
n!

2. Wir berechnen

n=0 m=0
o | !
n=0 n m=0 m
=3y S
n=0 m=0 TL!TTL'
© P D—m4m
=3 S
p=0 m=0 (p a m) m
e ¢} p
- Z - P gP—mygm
AT (1)
p=0 p m=0
= —'(8 —+ t)p
=0
_ e(ert)A

3. Aus 1. und 2. leiten wir
ele™ =l DA 0 = Jq und e Pe? =14 =0 = g

ab, das heiBt (e?)™! = e=4,

7



4. Aus 2. erhalten wir mit beliebigen h € R\ {0}

1 1
- (e(t0+h)A _ etgA) = (ehAetoA _ etgA)
L/ ha A
= — - ]d> fo
h (e ¢
1

== (eterhA _ etoA)

b

Folglich reicht es aus

zu zeigen. Wir finden

Benutzen wir |(4.2), dann ergibt sich fiir |h| < 1
1 =\ (h"T2AT
G 1) =), [ = 2 (),
|h|n 2
< |h] Z
< L ’ |n 2
| IZ

k"™ My
< [ Z n! .

n=2
< eFMajp.

7’L
(A™);;

kvt Mn

Daraus schlieBen wir fiir alle 4, j € {1,...,k}

iy (1 10), =1

Dadurch sind die vier Eigenschaften gezeigt. ®
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4.2 Allgemeine Losung

4.2.1 Lineare homogene Differentialgleichungssysteme
mit konstanten Koeffizienten

Satz 4.3 Sei A € R¥** dann hat fiir alle o € R und y, € R* das Anfangswert-
problem

y' = Ay, y(zo) = yo (4.3)
die maximale Losung y : R — RF mit
y(w) = ey, (4.4)

Beweis: Die Abbildung y — Ay ist (global) Lipschitz-stetig.

[Ay|l = max [(Ay),|

1<i<k
k
E @ijY;
j=1

k

= max
1<i<k

<

< max 1 gggk\apq! max |yl
j:

=k My ||y

Folglich gilt
[Ay — Agll = [[Aly = 9)Il <k Mally — gl
Damit folgt unter Nutzung von [(4.4)lund Anwendungen von [Satz 3.8 auf Seite 61

und [Satz 3.9 auf Seite 63| dass eine maximale Losung ¢ : R — R¥ von |(4.3)
existiert, welche eindeutig ist. Aus|Satz 4.2 auf Seite 76| 1. erhalten wir

(zo—x0)A

y(zo) = e yo = "yo = eyo = Id yo = Y.

Ebenso folgt aus [Satz 4.2 auf Seite 76|4.

d d —XT r—x
e y(x) = P el Ay, = Aelr=m0)4dy, = Ay(x).

Mithin 16st y|(4.3), das heilt y = ¢ und der Beweis ist vollstindig. ®

Fiir die Verwendung dieses Satzes miissen wir also e* fiir beliebige Matrizen
A € R¥** ausrechnen. Dies wird mit Hilfe der linearen Algebra leichter. Wir
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sahen schon in|Bsp. 4.1 auf Seite 75| dass Diagonalmatrizen besonders einfach zu
exponenzieren sind.

Um Matrizen auf Diagonalgestalt zu bringen, benotigt man Eigenwerte und Ei-
genvektoren, welche auch bei rellen Matrizen komplex sein konnen. Deshalb deh-
nen wir unser Studium auf komplexe Matrizen aus.

Die entsprechende Theorie ergibt sich leicht aus der reellen:
Wir koénnen den Vektorraum C* =2 R2* unter der Identifizierung

. a
a+ bi <» (b>
und die Matrizengruppe C*** C R?**2* unter der Identifizierung
. ( a b)
a+ bi <
—b a
betrachten.

Satz 4.4 Sei A € C***. Dann besitzt das Anfangswertproblem|(4.3)|fiir alle xq €
R und yo € CF die eindeutig bestimmte maximale Losung |(4.4)

Satz 4.5 Seien A, B € C** und x € R. Dann gilt:

1. Wenn AB = BA, dann gilt

2. Ist T € CF** reguliir (das heif3t invertierbar), so gilt

T-1eAT — eTflAT‘
3. Hat A Blockdiagonalgestalt, das heifit A = diag(Aq, ..., Any)

Ay 0
A

dann gilt



Beweis:

1. Zunichst gilt mit der Produktregel und [Satz 4.2 auf Seite 76|4.
—zgA 20 A d —zA
Be ™% + "B — (e >

p (e, = (G, &

dz
— A AB e ™A | %04 B(—A) e~ %0
— Y AB + B(—A))e 4
=0

T=x0

Also z — ¢ B e~*4 konstant, das heift

e Be ™ =" Be = B,

Nach [Satz 4.2 auf Seite 76|3. heiBt dies, dass e*4*B = B ¢4, Nun erhalten
wir fiir beliebige 7o € C* mit der Produktregel

d
d_ezA exB Yo = A emA e:pB Yo + e:rA B emB Yo
A

— A emA e:rB Yo + B e:pA emB Yo
= (A + B)(e*e"Pyy)

Damit 16st = — e*4e*Py, das Anfangswertproblem

Y = (A+ By, y(0)=yo.

Nach [Satz 4.4 auf der vorherigen Seite|ist also

exA eacB Yo = ex(AJrB)

Yo -
Da y, beliebig war, gilt

e:z:A ezB — em(A—i—B) ]

Mit x = 1 folgt die zu zeigende Formel.

2. Analog betrachten wir

E%T*éﬂT%_T*AéﬂT%
=T YATT e Ty,
Damit 16st z — T—! e*4 T y, das Anfangswertproblem
y =T ATy, y(0) =y
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und wir erhalten wieder
T*l exA T — eIT_lAT
Mit x = 1 entsteht die behauptete Formel.

3. Man sieht leicht, dass die Differentialgleichungen iiber die Blocke entkop-
peln. Anwendung von[Satz 4.4 auf Seite 80|auf jeden einzelnen Block liefert
das Ergebnis.

Damit sind die drei Eigenschaften nachgewiesen. ®
In der linearen Algebra kann man den folgenden Satz beweisen.
Satz 4.6 (Jordan-Zerlegung) Sei A € CF**, dann existiert eine reguliire Matrix

T € CF** sodass T-*AT = diag(Ay, ..., A,), Jeder Block A, besitzt die Ge-
stalt (\) oder

A1 0
4.5)

1

0 A

Anmerkungen ((4.5)| heifit Jordan-Block. Man sieht dann, dass )\ ein Eigenwert
von Ay (und A) mit Eigenvektor e ist. Alle anderen Einheitsvektoren erfiillen

Apeir1 = Neg1 +e;.
Rezept 4.1 (Losung von y' = Ay)

1. Man transformiert A in die Jordansche Normalform laut[Satz 4.6}

2. Man lose die Differentialgleichung fiir jeden Jordan-Block extra (siehe
4.5 auf Seite 80, 3.).

3. Man transformiere die Losung zuriick (siehe|Satz 4.5 auf Seite 80| 2.).
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Beispiel 4.4
yizyl—ym yl(o) =1
Yo =2y1 +3y2, y2(0)=0

2. Eigenwerte ausrechnen:

(1-XNB=XN+2=0

AN —4AN+342=0

M —4A+5=0
Moa=2+V4-5=24i

3. Eigenvektoren:

Eigenvektor zu A\ = 2 +1
Q-2+ —y=0
Yo = (=1 =)y

. 1
Eigenvektor: (_1 B i)

Eigenvektor zu Ay = 2 — i analog: (_11+ i)

Transformationsmatrix :

1 1
r= (—1—1 —1+i)

e (241 0
rar-(30)
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4. T~ ausrechnen:
Ty =z
Yi+Y =2
= Y2 =21~
(=1 =Dy1 + (1 +1)ye = 2
= (1= +(-1+ia+ 1 -y =2
—2iy; = (1 — )21 + 22

1 i i
Yy = 5(1 +1i)z1 + =22

2

1
3/2221—%:2

JES]
T_1 = (12—1 21)
2 T2
5. Das lineare Differentialgleichungssystem

=T VAT 2

hat die Losung

i

—(1 — 1)21 — =22

2

(2+i)x
#w) = (e 0 e(z(—]nx) 2(0)  siehe[Bsp. 4.1}

6. Riicktransformation:

y = Ay hat die L(')'sung

2—1—1):2 1-i (2
-5 €
(1+1 2+1)x (=)
2

(
2)-(mew)
:( 1—i —1+1) (g
(o
¢

(cosx — sin )
e?® 2sinx

das heifit y; = e“* (cosx — sin )

Yo = ¥ 2sinx
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Beispiel 4.5

Yy =11+ Yo
?Jé:m

11 01
A‘(o 1)‘1‘”(0 0)

Damit erhalten wir laut|Satz 4.5 auf Seite 80\ und Bsp. 4.2)|

0 1

J:A_acldx<00>_gc 0 z\\ _ (1 =x
e =e e —eld(ld—f—(o 0))—6 (0 vk

T

also gilt  y(x) = <eO xei ) y(0)

y1(x) = 31(0) € + 42(0) z €”
y2(x) = y2(0) €

Dieser Losungsweg ist einfacher als die Transformationen aus 2.3 auf Seite 23|
Fiir allgemeine Jordan-Blocke erhdilt man

22 zk—1
A1 0 Lz %5 (1)1
N 1z =
exp | © = e . :
S )
1
0 A 0 ]

4.2.2 Lineare homogene Differentialgleichungen
mit variablen Koffizienten

Sei I C R ein offenes Intervall. Wir befassen uns jetzt mit Systemen aus homo-
genen linearen Differentialgleichungen

Y = Az)y, (4.7)

wobei die Koeffizientenfunktionen A : I — R*** gegeben sind und die Losung
y : I — R gesucht ist.

Definition 4.2 Zur homogenen linearen Dgl. (4. 7) bezeichne Ly die Menge aller
Losungen auf I.
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Definition 4.3 Eine Menge {1, ..., pn} aus Funktionen o; : I — RF heifit

linear unabhingig iiber R, wenn mit v, . . ., oy, € R gilt
Zai%(m):o fiiralle €l = aq=ay=:=aq,,=0~0.
i=1

Satz 4.7 Sei A : I — R¥** stetig. Dann ist Ly ein k-dimensionaler Vektorraum
iiber R. Fiir eine Menge von Losungen {1, ..., on} C Ly sind dquivalent:

i) Die Menge {1, ..., pn} ist linear unabhdngig iiber R.

ii) Es existiert ein xy € I, so dass die Vektoren {©1(x¢), ..., om(10)} C R¥
linear unabhdingig sind.

iii) Fiir jedes vy € I sind die Vektoren {p;(xq), ..., om(x0)} C R¥ linear
unabhdngig.

Beweis:

1. Ly ist ein Vektorraum iiber R:
Seien p, 1) € Ly und A\ € R.

(p+) =¢ +9¢' = Ap+ AY = A(p +¢)
(Ap) = A" = My = A(\p)
2. Wir zeigen die Aquivalenzen (1)-(ii1). Die Implikationen (iii) — (i1) — (1)

sind klar fiir allgemeine Funktionen. Wir brauchen daher nur noch (i) —
(iii) zu zeigen. Dabei wird ein indirekter Beweis verwendet.

Seien {®1,...,pm} C Ly linear unabhingig und =, € I beliebig. Ange-
nommen die Menge der Vektoren {1 (o), . . ., m(2o)} wire linear abhén-
gig. Dann gibe es reelle Zahlen Ay, ..., \,, mit

Al@l(l'O) +-+ )\mSOm(xO) =0
und nicht alle Ay, ..., \,, sind gleich null. Desweiteren gilt wegen Teil 1.
¢I:A1901+"‘+)\m(ﬁm€£1{.

Es gilt ¢)(z9) = 0. Wegen der Eindeutigkeit der Losung von Anfangswert-
problemen des Differentialgleichungssystems folgt ¢ = 0. Damit ist
die Funktionenmenge {1, ..., ¢, } aber linear abhingig iiber R. Es ent-
steht ein Widerspruch.
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3. Wir haben noch dim(Ly) = k zu zeigen. Seien ey, . .., e die Einheitsvek-
toren in R¥ und zy € I beliebig. Zu den Anfangsbedingungen

@i(wo) = € fir e=1,...,k

existieren lokal jeweils eindeutige Losungen. Die Existenz und Eindeutig-
keit globaler Losungen ¢, : I — R gilt wegen [Satz 3.9| da das Differenti-
algleichungssystem die Nicht-Explosions-Bedingung [(3.TT)] erfiillt.

Die Losungen {1, ..., ¢} sind linear unabhingig wegen Teil 2 (ii), weil
die Einheitsvektoren linear unabhingig sind. Somit folgt dim(Ly) > k.
Andererseits gilt dim(Ly) < k, denn wegen Teil 2 (iii) konnen nur bis zu &
Vektoren in R” linear unabhiingig sein.

Dadurch sind alle Aussagen des Satzes gezeigt. ®

Definition 4.4 Eine Menge {1, ..., ¢r} aus linear unabhingigen Losungen ei-
nes homogenen linearen Differentialgleichungssystems heif3t Fundamentalsystem.
Diese Losungen bilden eine Fundamentalmatrix

P — R O = (p1 p2 k).
(Die Losungen aus dem Fundamentalsystem liefern die Spalten der Fundamental-

matrix.)

Satz 4.7 zeigt die Existenz eines Fundamentalsystems. Jedoch gibt es kein allge-
meines Konstruktionsprinzip bzw. Losungsverfahren zur Bestimmung eines Fun-
damentalsystems.

Es ergibt sich aus Definition 4] sofort die nichte Folgerung.

Satz 4.8 Fiir die Ableitungen der Funktionen in der Fundamentalmatrix gilt
() = A(z)(x)

fiir alle x € 1.

Satz 4.9 Fiir eine Funktionalmatrix ® sind alle Matrizen ®(xq) € R** fiir v, €
I reguldr.
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Beweis: (iii) zeigt
det(P(xg)) #0 fir alle zo € I.

und damit die Behauptung. ®
Mit ¢ = (cy,...,c,) " € RF gilt fir das Matrix- Vektor-Produkt

bOc=crp1 + - cppr € Ly.
Wir betrachten Anfangwertprobleme

y =A@y, ylzo) = vo.
Fiir die zugehorige Losung ergibt sich die Formel

y(w) = @(x)®(0) " y0,

denn es gilt y(zo) = (20)P(z0) Yo = Yo

Im Spezialfall eines homogenen linearen Differentialgleichungssystems mit kon-
stanten Koeffizienten, d.h. ¢y = Ay mit A € R*** konstant, folgt als Fundamen-
talmatrix

P(z) =™ oder ®(z) = ele—20)4

mit der Matrixexponentiellen aus Kapitel @.1]

4.2.3 Lineare inhomogene Differentialgleichungen
mit variablen Koffizienten

Sei wieder I C R ein offenes Intervall. Wir behandeln jetzt Systeme aus inhomo-
genen linearen Differentialgleichungen

y' = A(x)y + b(=), (4.8)

wobei die Koeffizientenfunktionen A : I — R¥** und b : I — R* gegeben sind
und die Losung y : I — R gesucht ist.

Definition 4.5 Zur inhomogenen linearen Dgl.[(4.8)|bezeichne L1 die Menge aller
Losungen auf I.
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Satz 4.10 Seien A : I — R¥** und b : I — RF stetig. Ist 1) € L eine spezielle
Losung, dann gilt
Li={)+¢ : p€Lu}

wobei Ly die Losungsmenge der zugehirigen homogenen Dgl. y' = A(x)y ist.

Beweis: Die Stetigkeit von A und b garantiert die Nicht-Explosions-Bedingung
aus [Satz 3.9] sodass Losungen auf ganz [ existieren.

Sein € L;. Es folgt
(=) =n =¥ =An+b— (A +b) = A(n — ).
Also giltn — ¢ € L. Somit n = 1) + (n — 1) mitn — ¢ € Ly. Wir haben daher

LiC{y+¢ : €Ly}

Sei umgekehrt n € {¢ + ¢ : ¢ € Ly}. Alson = ¢ + ¢ miteinem ¢ € Ly. Es
folgt
W=y +¢ =Ap+b+Ap=A + ) +b=An+b.

Somit n € L. Wir haben demzufolge
{@b—f-go : QDGEH}Q,CI
und die Gleichheit der Mengen ist gezeigt. ®

Satz 4.10| besagt, dass wir aus einer speziellen Losung der inhomogenen Dgl. und
der gesamte Losungsmenge der zugehorigen homogenen Dgl. dann die gesamte
Losungsmenge der inhomogenen Dgl. erhalten.

Variation der Konstanten

Die Konstruktion einer speziellen Losung ist mit einer Variation der Konstanten
analog zu Rezept [2.2) aus Kapitel 2.3 moglich. Dazu wird angenommen, dass ein
Fundamentalsystem ®(x) der zugehorigen homogenen Dgl., siche Deﬁnition
bereits vorliegt.

Ansatz:
y(x) = O(x)c(x).
Es gilt mit der Produktregel der Differentiation

y = dc+ o
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Mit folgt
Yy =Ay+b=A(Pc)+ b= (AP)c+b=D'c+0.
Gleichsetzen liefert mit der Regularitit der Fundamentalmatrix aus [Satz 4.9
d'c+ dd =d'c+b
o =
d =o'

Eine Integration zeigt die Formel fiir die unbekannten Koeffizienten

c(x) = /@(s)_lb(s) ds.

Sind die Funktionen in der inversen Matrix ®~! gegeben, dann verbleibt zur Be-
stimmung von ¢ nur noch Stammfunktionen zu finden.

Wir betrachten jetzt Anfangswertprobleme.

Satz 4.11 Die Losung des Anfangswertproblems

y =A@y +bz),  ylxo) =yo
lautet

y(x) = B() [ [ ) b05) s+ @) o

zo
Beweis: garantiert die Existenz der inversen Matrizen. Wir definieren

o) = | "9 (s)"b(s) ds + (o) o,

o

d.h. y = ®c. Differentiation liefert

y(z ) ' (x)c(r) + ®(x)d (z)
A(@)®(x)e(z) + (z)(x)"b(x)
A(z)y(x) + b(x).

Somit ist y eine Losung des Differentialgleichungssystems. Die Anfangsbedin-
gung folgt aus ¢(xg) = ®(xg) 'y, wodurch y(zo) = P(z0)P(z0) 'vo = vo
sicher gestellt ist. ®
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Abbildung 4.1: Elektrische Schaltung eines Band-Pass-Filters

Beispiel 4.6 Elektrische Schaltung: Band-Pass-Filter

[ADD. 4.1)zeigt die elektrische Schaltung eines Band-Pass-Filters. Diese Schaltung
enthdlt Kondensatoren, Spulen und Widerstdinde. Eine Spannungsquelle fiihrt eine
Eingangsspannung uy, ein, wihrend die Ausgangsspannung ., an einem Wider-
stand vorliegt.

Eine mathematische Modellierung fiihrt auf ein Differentialgleichungssystem der
Form y' = Ay + b mit

1 1 1 win (z
_ClRO O O _C_1 0 _C_l Clg:io)
0 0 0 0o 0 & 0
0 0 TEE R H 0

_ CaRy Cy  C» _

A = 0 0 - 0 0 b 0
1 1 1 Ro 0 0
DL Ay & s
L L I 0 -7 0

Die Matrix A ist konstant, wahrend der Vektor b variabel ist. Die unabhdingige
Verdnderliche x hat die Bedeutung der Zeit. Die Unbekannten y sind 6 Spannun-
gen, wobei die Ausgangsspannung ... = ys ist. Die verwendeten physikalischen
Parameter lauten C; = Cy = U3 = Ly = Ly = L3 = Ry = Ry =1, Ry =
Ry = R3 = 0.01. Als Eingangsspannung wird das Signal u;,(x) = sin(107322)
vorgegeben, welches einer harmonischen Oszillation mit einer zeitlich ansteigen-
den Frequenz entspricht. Ein Anfangswertproblem wird vorgegeben mit y(0) = 0.
[ADD. 4.3|zeigt die zugehorige Ausgangsspannung. Wir beobachten, dass zu kleinen
Zeiten (r < 100) die Ausgangspannung nahe null ist, da die Eingangsspannung
eine niedrige Frequenz besitzt. Dann steigt die Amplitude der Ausgangsspannung
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Abbildung 4.2: Masse-Feder-Dampfer Konfiguration

eine Zeit lang auf etwa 0.5. Fiir x > 1000 sinkt die Ausgangsspannung auf null
ab, da die Eingangsspannung jetzt eine hohe Frequenz aufweist. Dies stellt das
Verhalten eines Band-Pass-Filters dar, weil nur fiir ein bestimmtes Frequenzfens-
ter das Signal durch die Schaltung hindurch gelassen wird.

Beispiel 4.7 Mechanisches System: Masse-Feder-Ddmpfer

Abb. 4.2\ illustriert eine bestimmte Konfiguration aus Massen, Federn und Ddmp-
fern. Eine mathematische Modellierung erzeugt ein lineares System aus Differen-
tialgleichungen zweiter Ordnung der Gestalt

My"(z) + Dy'(z) + Ky(z) = b(x). 4.9)

Die unabhdngige Verdnderliche x hat die Bedeutung der Zeit und die Losung ist
y = (Y1,Y2,Y3,y4) . Die konstanten Matrizen und der variable Vektor lauten

mi 0 0 0 d1 *dl 0 0
. 0 mog O 0 . —dy di+do —dy 0
M = 0 0 mg O D= 0 —ds do + d3 —ds

0 0 0 my 0 0 —ds3 ds +ds

k1 + ko + ks —ko 0 —ks klu(x)
. —ko ko + ks —ks 0 . 0
K= 0 —ks3 ks + k4 —ky b= 0
—ks 0 —ky ka + ks + kg 0

Die externe Anregung u erfolgt an der untersten Feder. Wir geben das Signal
u(r) = sin(10712?), das eine harmonische Oszillation mit zeitlich ansteigender
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Frequenz darstellt, vor. Wir beobachten die Position vy, der obersten Masse. Die
physikalischen Parameter werden gesetzt auf my = 1, mg = 5, mg = 25, my =
125, ky = 27, ko = 9, ks = 3, ky = 1, ks = 2, kg = 3, d; = 0.1, dy = 0.4,
d3 = 1.6, dy = 1. Wir betrachten das Anfangswertproblem zu [(4.9)|mit y(0) = 0,
y'(0) = 0.

Das System [(4.9)] ist idquivalent zu einem linearen Differentialgleichungssystem
erster Ordnung. veranschaulicht die Beobachtungsgrofie aus dem zuge-
horigen Anfangswertproblem. Wir stellen fest, dass bei stets steigender Frequenz
der Anregung u die Amplitude der Auslenkung vy, mit der Zeit auf ein Maximum
(bei x ~ 1100) ansteigt und dann wieder abfillt bis auf null. Dies stellt ein typi-
sches Resonanzverhalten dar.
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Abbildung 4.3: Ausgangsspannung aus Losung eines Anfangswertproblems zum
Modell des Band-Pass-Filters
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Abbildung 4.4: Beobachtungsgrofle aus Losung eines Anfangswertproblems zum
Masse-Feder-Dampfer-System.
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