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1 Problemstellung und Beispiele

Diese Veranstaltung behandelt die numerische Lösung von Anfangs-
wertproblemen zu gewöhnlichen Differentialgleichungen. Systeme
aus gewöhnlichen Differentialgleichungen (gew. Dgln.) erster Ord-
nung besitzen die Gestalt

y′(x) = f(x, y(x)),

oder komponentenweise geschrieben

y′1(x) = f1(x, y1(x), . . . , yn(x))
y′2(x) = f2(x, y1(x), . . . , yn(x))

...
y′n(x) = fn(x, y1(x), . . . , yn(x)).

Ein solches System besitzt im allgemeinen unendlich viele Lösungen.
Daher sind zusätzliche Bedingungen notwendig, um eine eindeutige
Lösung zu identifizieren.

Ein Anfangswertproblem (AWP) ergibt sich durch Vorgabe eines
Anfangswerts

y(x0) = y0

zu einem bestimmten Anfangspunkt x0 ∈ R zusammen mit einem
vorgegebenem Wert y0 ∈ R

n. Abb. 1 verdeutlicht diese Problem-
stellung.

Demgegenüber liegt bei einem Randwertproblem (RWP) eine Be-
dingung vor, die sowohl einen Anfangszustand als auch einen End-
zustand einbezieht, d.h.

r(y(a), y(b)) = 0

mit gegebener Funktion r : Rn×Rn → R
n zu einem Intervall [a, b].

Beispielsweise ergibt sich ein periodisches RWP durch die Forderung
y(a)− y(b) = 0.

Eine gew. Dgl. n-ter Ordnung lautet

z(n)(x) = g(x, z(x), z′(x), z′′(x), . . . , z(n−1)(x)).
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Abbildung 1: Anfangswertproblem einer gewöhnlichen Differentialgleichung.

Wir erhalten ein äquivalentes System erster Ordnung durch die De-
finition

y1 := z, y2 := z′, y3 := z′′, . . . , yn := z(n−1).

Es folgt das System

y′1 = y2, y′2 = y3, . . . , y′n−1 = yn, y′n = g(x, y1, . . . , yn).

Daher betrachten wir in dieser Veranstaltung o.E.d.A. nur Systeme
erster Ordnung.

Desweiteren gibt es die Klasse der partiellen Differentialgleichungen
(part. Dgln.), wobei die Lösung nicht mehr nur von einer unabhängi-
gen Veränderlichen sondern mehreren unabhängigen Veränderlichen
abhängt. Hier können AWPe, RWPe oder Kombinationen aus bei-
den vorliegen.

In den meisten Fällen können AWPe oder RWPe von Dgln. nicht
analytisch gelöst werden, d.h. es existiert keine geschlossene Formel
für die Lösung. Auch wenn ein analytischer Lösungsweg möglich ist,
so möchte man diesen meist vermeiden wegen des hohen Aufwands.
Daher sind numerische Verfahren für diese Probleme erforderlich.

Wir präsentieren später Beispiele von Modellen aus gew. Dgln., die
in verschiedenen Anwendungsgebieten auftreten: in der Chemie (Re-
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aktionskinetik), in der Elektrotechnik (elektrische Schaltung) und
in der Mechanik (Mehrkörperproblem). In allen Fällen werden diese
mathematischen Modelle zur (näherungsweisen) Beschreibung von
realen Prozessen eingesetzt. Wegen vereinfachender Modellannah-
men stellt die Lösung der Dgln. eine Approximation der realen
Zustände dar.

1.1 Existenz und Eindeutigkeit

Gegeben sei das AWP

y′(x) = f(x, y(x)), y(x0) = y0 (1.1)

mit der rechten Seite f : G → R
n auf einer offenen Menge G ⊆

R × Rn. Es gilt (x0, y0) ∈ G für den Anfangswert. Wir benötigen
als Voraussetzung die Existenz und Eindeutigkeit der Lösung y. Der
Satz von Peano liefert eine Existenzaussage für eine stetige rech-
te Seite, jedoch keine Eindeutigkeitsaussage. Für die Eindeutigkeit
wird eine stärkere Eigenschaft benötigt.

Definition 1.1 Die rechte Seite f genügt auf der offenen Menge G

einer globalen Lipschitz-Bedingung, wenn eine Konstante L > 0 exi-
stiert mit

∥f(x, y)− f(x, z)∥ ≤ L · ∥y − z∥ (1.2)

für alle (x, y), (x, z) ∈ G. Die rechte Seite f erfüllt eine lokale
Lipschitz-Bedingung, wenn zu jedem (x̂, ŷ) ∈ G eine Umgebung
U ⊂ G exisitert, so dass f auf U eine Lipschitz-Bedingung mit
einer von U abhängigen Konstanten L > 0 erfüllt.

In dieser Definition wird eine beliebige Vektornorm ∥·∥ auf dem R
n

verwendet. Hinreichend für die lokale Lipschitz-Bedingung ist, dass
f auf G bezüglich der Variablen y stetig differenzierbar ist. Der Satz
von Picard-Lindelöf gibt nun eine Existenz- und Eindeutigkeitsaus-
sage.

3



Satz 1.2 (Picard-Lindelöf) Sei G ⊆ R×Rn offen und f : G →
R

n eine stetige Funktion, die eine lokale Lipschitz-Bedingung erfüllt.
Dann gibt es zu jedem Anfangswert (x0, y0) ∈ G ein ε > 0 und eine
eindeutige Lösung y : [x0 − ε, x0 + ε] → R

n des AWPs (1.1).

Beweis: siehe Satz 4 in Kapitel 12 aus [3].

1.2 Chemische Reaktionskinetik

Chemische Prozesse enthalten typischerweise bimolekulare Reaktio-
nen der Gestalt

A + B −→ C + D.

Sei cS die Konzentration der Substanz S, welche von der Zeit t

abhängt. Das zugehörige System gew. Dgln. lautet

c′A(t) = −k cA(t)cB(t)

c′B(t) = −k cA(t)cB(t)

c′C(t) = +k cA(t)cB(t)

c′D(t) = +k cA(t)cB(t).

(1.3)

Die Reaktionsrate k > 0 charakterisiert die Wahrscheinlichkeit der
chemischen Reaktion im Fall einer Kollision der Moleküle A und
B. Der Koeffizient k kann daher Geschwindigkeit der Reaktion in-
terpretiert werden. Die physikalische Einheit des Parameters k ist
liter/(s mol). Anfangswerte sind für das System (1.3) vorzugeben.

Nun betrachten wir eine Menge aus m allgemeinen chemischen Re-
aktionen zwischen n verschiedenen Stoffen A1, . . . ,An (Moleküle
oder Atome), d.h.

α1jA1 + α2jA2 + · · ·+ αnjAn
kj−→ γ1jA1 + γ2jA2 + · · ·+ γnjAn

für j = 1, . . . ,m oder äquivalent
n∑

i=1

αijAi
kj−→

n∑
i=1

γijAi für j = 1, . . . ,m. (1.4)
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Die Parameter αij, γij ∈ N0 stellen die stoichiometrischen Konstan-
ten dar. Die j-te Reaktion besitzt die Geschwindigkeit kj ∈ R+. Es
entsteht als mathematisches Modell

dcAi

dt
=

m∑
j=1

(γij − αij)kj

n∏
l=1

cAl

αlj für i = 1, . . . , n ,

welches ein System aus n gew. Dgln. für die unbekannten Konzen-
trationen darstellt. Die Auswertung der rechten Seite kann auto-
matisch erfolgen, wenn die Reaktionsgleichungen (1.4) spezifiziert
sind.

Die Hydrolyse von Harnstoff ist ein Beispiel für ein chemisches Reak-
tionssystem. Dabei reagiert Harnstoff (Urea) zusammen mit Wasser
zu Ammoniumcarbonat. Für eine genügende Schnelligkeit der Re-
aktion ist die Hilfe des Enzyms Urease erforderlich, da es die Akti-
vierungsenergie verringert, d.h. das Enzym fungiert als Katalysator.
Das gesamte Reaktion lautet

(NH2)2CO+ 2 H2O+Urease −→ (NH4)2CO3 +Urease. (1.5)

Dieser Prozess ergibt sich aus drei einfacheren Reaktionen. Mit den
Abkürzungen U: Urea, E: Urease, UE: Kombination aus Urea and
Urease, A: Ammoniumcarbonat besteht die Reaktion (1.5) aus den
drei Anteilen

U + E
k1−→ UE

UE
k2−→ U+ E

UE + 2 H2O
k3−→ A+ E.

(1.6)

Die Parameter k1, k2, k3 spezifizieren die Reaktionsgeschwindigkei-
ten.

Wir konstruieren ein mathematisches Modell für dieses Reaktions-
system. Sei wieder cS die Konzentration der Substanz S in der Ein-
heit mol/liter (mol/l). Die zeitliche Änderung der Konzentrationen
soll bestimmt werden. Da alle Reaktionen in Wasser stattfinden und
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Abbildung 2: Simulation der Hydrolyse von Harnstoff.

die anderen Konzentrationen demgegenüber relativ klein sind, neh-
men wir eine konstante Wasserkonzentration (55.56 mol/l) an. Die
Reaktionsgeschwindigkeiten sind

k1 = 3.01 l
mol·s

, k2 = 0.02 1
s , k3 = 0.1 1

s . (1.7)

Es folgt ein System aus vier gew. Dgln. für die unbekannten Kon-
zentrationen

c′U = − k1cUcE + k2cUE

c′E = − k1cUcE + k2cUE + k3cUE

c′UE = k1cUcE − k2cUE − k3cUE

c′A = k3cUE.

(1.8)

Dieses System besitzt eine eindeutige Lösung für vorgegebene An-
fangswerte. Wir verwenden die Anfangsbedingungen

cU = 0.1 mol
l

, cE = 0.02 mol
l

, cUE = cA = 0. (1.9)
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Wie bei vielen anderen Anwendungen ist eine analytische Lösung
des Systems aus gew. Dgln. nicht möglich, d.h. wir können keine
explizite Formel für die unbekannte Lösung erhalten. Daher ver-
wenden wir eine numerisches Verfahren um eine Näherungslösung
zu erhalten. Abb. 2 zeigt das Ergebnis.

Zum einen verringert sich die Konzentration von Harnstoff mit der
Zeit bis auf null, da die Substanz in der Hydrolyse abgebaut wird.
Zum anderen erhöht sich die Konzentration des Reaktionsprodukts
Ammoniumcarbonat bis kein Harnstoff mehr vorhanden ist. Die
Konzentration des Enzyms verringert sich zwar anfangs, jedoch liegt
am Ende wieder genau soviel Enzym vor wie zu Beginn.

1.3 Elektrische Schaltungen

Als ein einfaches Beispiel einer elektrischen Schaltung betrachten
wir den elektromagnetischen Schwingkreis. Dieser besteht aus einer
Kapazität C, einer Induktivität L und einem Widerstand R, siehe
Abb. 3 (links). Die Kirchhoffsche Knotenregel liefert die Gleichung

IC + IL + IR = 0.

Die Kirchhoffsche Maschenregel impliziert U := UC = UL = UR. Je-
des Element der Schaltung ist durch eine Strom-Spannungs-Relation
gekennzeichnet, nämlich

CU ′
C = IC , LI ′L = UL, R =

UR

IR
.

Es folgt ein lineares System aus zwei gew. Dgln.

U ′ = − 1
C IL − 1

RCU

I ′L = 1
LU

(1.10)

für die unbekannten Funktionen U und IL. Weitere Umformungen
liefern eine gew. Dgl. zweiter Ordnung für die unbekannte Spannung

U ′′ + 1
RCU

′ + 1
LCU = 0.
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Abbildung 3: Elektromagnetischer Schwingkreis ohne (links) und mit (rechts)
Stromquelle.

Wenn derWiderstand hinreichend klein ist, dann entsteht als Lösung
eine gedämpfte Schwingung

U(t) = e−
1

2RC t [A sin (ωt) +B cos (ωt)] mit ω =
√

1
LC − 1

4R2C2 .

Die Konstanten A und B bestimmen sich aus Anfangsbedingungen.

Das System (1.10) aus gew. Dgln. ist autonom. Wir erhalten ei-
ne zeitabhängiges System durch Hinzufügen einer unabhängigen
Stromquelle, siehe Abb. 3 (rechts). Als Eingabe verwenden wir

Iin(t) = I0 sin (ω0t) .

Es folgen dann die Dgln.

U ′ = − 1
C IL − 1

RCU − 1
C Iin(t)

I ′L = 1
LU.

(1.11)

In diesem Fall entstehen als Spannungen und Ströme dann erzwun-
gene Schwingungen. Abb. 4 zeigt Beispiele zu Lösungen von An-
fangswertproblemen der Systeme (1.10) und (1.11).
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Abbildung 4: Lösung U der Dgl. (1.10) (links) und der Dgl. (1.11) (rechts).

1.4 Mehrkörpersysteme

Wir betrachten ein Zwei-Körper-Problem bestehend aus Partikeln
mit den Massen m1,m2. Sei X⃗i = (xi, yi, zi) die Position der i-ten
Masse. Die Positionen und die Geschwindigkeiten der Körper hängen
von der Zeit ab. Die Gravitation bewirkt Kräfte zwischen den Mas-
sen. Das Newtonsche Bewegungsgesetz liefert ein System aus gew.
Dgln. zweiter Ordnung

m1X⃗
′′
1 (t) = G

m1m2

|X⃗1(t)− X⃗2(t)|3
(X⃗2(t)− X⃗1(t))

m2X⃗
′′
2 (t) = G

m1m2

|X⃗1(t)− X⃗2(t)|3
(X⃗1(t)− X⃗2(t))

mit der Gravitationskonstanten G > 0. Setzen wir V⃗i := X⃗ ′
i für die

Geschwindigkeiten, so folgt ein System erster Ordnung

X⃗ ′
1 = V⃗1

V⃗ ′
1 = G

m2

|X⃗1 − X⃗2|3
(X⃗2 − X⃗1)

X⃗ ′
2 = V⃗2

V⃗ ′
2 = G

m1

|X⃗1 − X⃗2|3
(X⃗1 − X⃗2)
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Abbildung 5: Trajektorien (Positionen) eines Zwei-Körper-Problems mit Massen
m1 > m2 aus zwei unterschiedlichen Blickwinkeln (Linie: erster Körper, Punkte:
zweiter Körper).

bestehend aus zwölf Gleichungen. Dieses System ist autonom. An-
fangsbedingungen X⃗i(0), V⃗i(0) müssen vorgegeben werden. Abb. 5
zeigt die Trajektorien eines Zwei-Körper-Problems mit unterschied-
lichen Massen m1 > m2. Die Bewegung erfolgt hier typischerweise
ungefähr entlang von Ellipsen.

Wir leiten nun das N -Körper-Problem für Massen m1, . . . ,mN her.
Sei F⃗ij die Gravitationskraft auf die i-te Masse verursacht von der
j-ten Masse. Das Newtonsche Bewegungsgesetz impliziert

miX⃗
′′
i =

N∑
j=1,j ̸=i

F⃗ij =
N∑

j=1,j ̸=i

G
mimj

|X⃗j − X⃗i|3
(X⃗j − X⃗i)

für i = 1, . . . , N . Es folgt ein System erster Ordnung aus 6N gew.
Dgln.

X⃗ ′
i = V⃗i

V⃗ ′
i = G

N∑
j=1,j ̸=i

mj

|X⃗j − X⃗i|3
(X⃗j − X⃗i) für i = 1, . . . , N.

Das Zwei-Körper-Problem kann noch analytisch gelöst werden, wäh-
rend dies nicht mehr für das N -Körper-Problem mit N > 2 gilt.
Daher benötigen wir numerische Verfahren für diese Aufgabenstel-
lung.
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Weitere Modelle

In den vorangehenden Abschnitten wurden Probleme aus dem Be-
reich der Chemie, der Elektrotechnik und der Mechanik besprochen.
Systeme aus gew. Dgln. treten ebenfalls in den folgenden Anwen-
dungen auf:

• Biologie (z.B. Räuber-Beute-Modelle, Epidemiologische
Modelle),

• Simulation von Kriegsgefechten (Lanchester Modelle),

• Diskretisierung von partiellen Differentialgleichungen,

• und andere.

Weitere Literatur zu Modellen mit gewöhnlichen Differentialglei-
chungen ist beispielsweise [1, 2].
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2 Einschrittverfahren

Wir besprechen jetzt numerische Methoden für die Anfangswert-
probleme, die im vorhergehenden Kapitel eingeführt wurden. Dabei
wird mit Einschrittverfahren begonnen, während Mehrschrittver-
fahren im nächsten Kapitel behandelt werden.

2.1 Vorbereitungen

Wir möchten ein AWP (1.1) eines Systems gew. Dgln. in einem
Intervall [x0, xend] (x0 < xend) numerisch lösen. Alle Verfahren für
AWPe, die in dieser Veranstaltung betrachtet werden, verwenden
eine endliche Anzahl von Gitterpunkten

x0 < x1 < x2 < x3 < · · · < xN−1 < xN = xend.

Eine mögliche Wahl sind äquidistante Gitterpunkte

xi := x0 + ih mit h :=
xend − x0

N
für i = 0, 1, . . . , N.

Numerische Lösungen yi ≈ y(xi) werden sukzessive berechnet. In
einem Einschrittverfahren ist die Abhängigkeit der Werte einfach

y0 −→ y1 −→ y2 −→ · · · −→ yN−1 −→ yN .

Im Gegensatz dazu liegt bei einemMehrschrittverfahren mit k Schrit-
ten eine Abhängigkeit vor der Gestalt

yi−k, yi−k+1, . . . , yi−2, yi−1 −→ yi für i = k, k + 1, . . . , N.

Dabei müssen die ersten Werte y1, . . . , yk−1 durch eine andere Me-
thode bestimmt werden im Fall k > 1. Ein Einschrittverfahren liegt
auch in einer Mehrschrittmethode im Spezialfall k = 1 vor.

Ein allgemeines Einschrittverfahren kann in der Form

yi+1 = yi + hiΦ(xi, yi, hi), (2.1)

geschrieben werden mit einer Inkrementfunktion Φ, die von sowohl
dem Verfahren als auch der rechten Seite f abhängt.
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2.2 Elementare Integrationsverfahren

Die meisten Methoden für AWP (1.1) basieren auf einer Approxi-
mation der äquivalenten Integralgleichung

y(x) = y(x0) +

∫ x

x0

f(s, y(s)) ds. (2.2)

Im Intervall [x0, x0 + h] erhalten wir

y(x0 + h) = y0 +

∫ x0+h

x0

f(s, y(s)) ds

= y0 + h

∫ 1

0

f(x0 + sh, y(x0 + sh)) ds.

(2.3)

Nun wird das Integral auf der rechten Seite durch eine Quadratur-
formel ersetzt. Die Schwierigkeit besteht darin, dass die Funktion
y, welche im Integranden auftritt, a priori unbekannt ist.

Da die Schrittweite h klein ist, verwenden wir einfache Quadra-
turformeln und keine zusammengesetzten Quadraturformeln. Wir
diskutieren die folgenden Beispiele, siehe Abb. 6:

(a) Rechteckregel (linksseitig):

Als Näherung ergibt sich

y1 = y0 + hf(x0, y0).

Diese Methode wird (explizites) Euler-Verfahren genannt. Es ist
die einfachste Methode, die durchführbar ist. Ist der Anfangswert
y(x0) = y0 gegeben, dann kann die Näherung y1 direkt über eine
Funktionsauswertung von f berechnet werden.

(b) Rechteckregel (rechtsseitig):

Nun folgt als Methode

y1 = y0 + hf(x0 + h, y1). (2.4)

13
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Abbildung 6: Elementare Quadraturregeln: (a) Rechteck (linksseitig), (b) Recht-
eck (rechtsseitig), (c) Trapezregel, (d) Mittelpunktregel.

Diese Technik wird implizites Euler-Verfahren genannt. Der unbe-
kannte Wert y1 tritt auf beiden Seiten der Gleichung auf. Im all-
gemeinen kann hier keine explizite Formel für y1 bestimmt wer-
den. Die Vorschrift (2.4) stellt ein nichtlineares Gleichungssystem
(aus algebraischen Gleichungen) für die Unbekannte y1 dar, d.h.
der Wert y1 ist implizit definiert. Beispielsweise kann mit einer
Newton-Iteration eine Näherungslösung erhalten werden. Der Re-
chenaufwand für einen Integrationsschritt ist somit aber deutlich
höher als im expliziten Euler-Verfahren.

(c) Trapezregel:

Wird das Integral mit der Trapezregel approximiert, dann folgt die
Vorschrift

y1 = y0 + h1
2 (f(x0, y0) + f(x0 + h, y1)) .

Dieser Ansatz führt daher wieder auf eine implizite Methode. Der
Rechenaufwand für einen Integrationsschritt ist ungefähr so hoch
wir im impliziten Euler-Verfahren. Jedoch kann man eine deutlich
besser Näherung erwarten, da die Trapeze besser approximieren als
die Rechtecke in der Quadratur.
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(d) Mittelpunktregel:

Die Mittelpunktregel verwendet ein bestimmtes Rechteck. Es folgt

y1 = y0 + hf(x0 +
1
2h, y(x0 +

1
2h)). (2.5)

Diese Vorschrift ist noch nicht durchführbar, denn Unbekannte sind
sowohl y1 als auch y(x0 +

1
2h). Daher benötigen wir eine weitere

Gleichung, um den Zwischenwert y(x0 +
1
2h) zu bestimmen. Bei-

spielsweise kann das explizite Euler-Verfahren diesen Wert liefern,
wodurch folgt {

y1/2 = y0 +
h
2f(x0, y0)

y1 = y0 + hf(x0 +
1
2h, y1/2)

oder äquivalent

y1 = y0 + hf(x0 +
h
2 , y0 +

h
2f(x0, y0)). (2.6)

Diese Methode ist explizit, denn man kann sukzessive y1/2 und y1
berechnen ohne nichtlineare Gleichungssysteme zu lösen. Es werden
nur zwei Funktionsauswertungen von f benötigt. Die Vorschrift (2.6)
wird modifiziertes Euler-Verfahren oder Collatz-Verfahren genannt.
Alternativ entsteht eine implizite Methode, wenn der Zwischenwert
linear durch y0 und y1 interpoliert wird, d.h.

y1 = y0 + hf(x0 +
h
2 ,

1
2(y0 + y1))

ergibt sich als Verfahrensvorschrift. Man nennt dies auch die impli-
zite Mittelpunktregel.

Die Genauigkeit dieser Methoden wird später untersucht.
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Explizites Euler-Verfahren

Wir betrachten das explizite Euler-Verfahren jetzt genauer. Diese
Formel kann auch durch zwei andere Ansätze erhalten werden. Zum
einen ersetzen wir die Ableitung in der Dgl. y′ = f(x, y) durch den
Differenzenquotienten (erster Ordnung), wodurch folgt

y(x0 + h)− y(x0)

h
≈ f(x0, y(x0)) ⇒ y1 = y0 + hf(x0, y0).

Zum anderen verwenden wir die Tangente zu y(x) im Anfangspunkt
(x0, y0) zur Approximation der Lösung. Die Tangentengleichung lau-
tet

t(x) = y(x0) + (x− x0)y
′(x0) = y(x0) + (x− x0)f(x0, y(x0)).

Es folgt
y1 := t(x0 + h) = y0 + hf(x0, y0),

d.h. wir erhalten das explizite Euler-Verfahren. Die sukzessive An-
wendung dieser Methode liefert daher Tangentenstücke, wodurch
diese Technik auch Polygonzugverfahren genannt wird.

Als Beispiel lösen wir das AWP

y′ =
1

2y
, y(14) =

1
2 , x ∈ [14 , 2].

Die exakte Lösung ist y(x) =
√
x. Abb. 7 zeigt die Näherungslösun-

gen aus dem expliziten Euler-Verfahren. Wir erkennen, dass die
Näherungen mit steigender Schrittzahl N bzw. kleinerer Schritt-
weite h genauer werden.
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Abbildung 7: Lösung von y′ = 1
2y
, y(1

4
) = 1

2
(Linie) und Näherungslösung (Punk-

te) aus dem expliziten Euler-Verfahren mit N Schritten.
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2.3 Konsistenz und Konvergenz

Wir betrachten ein allgemeines Einschrittverfahren der Gestalt (2.1)
mit der Inkrementfunktion Φ.

Es existieren unterschiedliche Notationen, um die Genauigkeit der
Näherung yi+1 mit der exakten Lösung y(xi+1) zu vergleichen. Zu
einem lokalen Bereich formulieren wir die folgende Definition.

Definition 2.1 (lokaler Diskretisierungsfehler) Sei y(x) die
exakte Lösung des AWPs y′ = f(x, y), y(x0) = y0 und y1 = y0 +
hΦ(x0, y0, h) die Näherung aus einem Einschrittverfahren mit Schritt-
weite h > 0. Dann lautet der lokale Diskretisierungsfehler

τ(h) =
y(x0 + h)− y1

h
. (2.7)

Der lokale Diskretisierungsfehler hängt auch von der Wahl des An-
fangswerts (x0, y0) ab, welches in der Notation jedoch nicht extra
aufgezeigt wird.

Die Definition (2.7) des lokalen Diskretisierungsfehlers kann auf drei
Arten interpretiert werden:

• die Differenz zwischen der exakten Lösung und der Näherungs-
lösung (Diskretisierungsfehler nach einem Schritt ausgehend
von der exakten Lösung) skaliert mit der Schrittweite h.

• die Differenz zwischen den Steigungen der entsprechenden Se-
kanten

τ(h) =
y(x0 + h)− y0

h︸ ︷︷ ︸
exakte Lösung

− y1 − y0
h︸ ︷︷ ︸

Näherungslösung

.

Die Sekanten sind in Abb. 8 dargestellt. Für τ(h) → 0 werden
beide Sekanten zur Tangente t(x) = y(x0) + (x− x0)y

′(x0) im
Grenzfall.
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Abbildung 8: Sekanten an die exakte Lösung und an die Näherungslösung.

• der Defekt

τ(h) =
y(x0 + h)− y0

h
− Φ(x0, y0, h), (2.8)

welcher sich durch Einsetzen der exakten Lösung in die Formel
der Näherung ergibt. Mit Definition der stetigen Funktion

∆(x0, y0, h) =

{
y(x0+h)−y0

h für h > 0
f(x0, y0) für h = 0

(2.9)

kann man genauer schreiben

τ(x0, y0, h) = ∆(x0, y0, h)− Φ(x0, y0, h) für h ≥ 0.

Beispiel 1: Lokaler Diskretisierungsfehler im expliziten Euler-Verf.

Taylor-Entwicklung liefert unter der Annahme y ∈ C2

y(x0 + h) = y(x0) + hy′(x0) +
1
2h

2y′′(x0 + ϑ(h)h)

= y0 + hf(x0, y0) +
1
2h

2y′′(x0 + ϑ(h)h)

mit 0 < ϑ(h) < 1.

Der lokale Diskretisierungsfehler ergibt sich zu

τ(h) = 1
h(y(x0 + h)− y1) = 1

h(y(x0 + h)− y0 − hf(x0, y0))

= 1
2hy

′′(x0 + ϑ(h)h).

Es folgt τ(h) = O(h).
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Beispiel 2: Lokaler Diskretisierungsfehler im impliziten Euler-Verf.

Zur Vereinfachung setzen wir eine beschränkte rechte Seite voraus,
d.h. |f | ≤ M . Zum einen liefert das implizite Euler-Verfahren

y1 = y0 + hf(x0 + h, y1) = y0 + hf(x0 + h, y0 + hf(x0 + h, y1)).

Mehrdimensionale Taylor-Entwicklung der Funktion f ∈ C2 zeigt
uns

y1 = y0 + h
[
f(x0, y0) +

∂f

∂x
(x0, y0)h+

∂f

∂y
(x0, y0)hf(x0 + h, y1)

+O(h2)
]

= y0 + hf(x0, y0) +O(h2).

Zum anderen liefert eine Taylor-Entwicklung der exakten Lösung

τ(h) = 1
h(y(x0 + h)− y1)

= 1
h

(
y0 + hf(x0, y0) +O(h2)− (y0 + hf(x0, y0) +O(h2))

)
= O(h).

Wieder folgt τ(h) = O(h).

Aufbauend auf den Eigenschaften des lokalen Diskretisierungsfeh-
lers definieren wir die Konsistenz.

Definition 2.2 (Konsistenz) Ein Einschrittverfahren (oder des-
sen Inkrementfunktion Φ) heißt konsistent, wenn der lokale Diskre-
tisierungsfehler bei allen Anfangswerten (x0, y0) ∈ G (G: Definiti-
onsbereich von f) gegen null konvergiert für kleine Schrittweiten:

∥τ(h)∥ ≤ σ(h) mit lim
h→0

σ(h) = 0.

Das Verfahren heißt konsistent von (mindestens) Ordnung p, wenn

∥τ(h)∥ = O(hp).
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Die Konsistenz eines Einschrittverfahrens kann leicht mit der fol-
genden Eigenschaft charakterisiert werden.

Lemma 2.3 Sei die rechte Seite f der Dgl. y′ = f(x, y) stetig in x
und erfülle die Lipschitz-Bedingung (1.2) bezüglich y. Dann gilt die
Äquivalenz

Φ ist konsistent ⇔ lim
h→0

Φ(x, y, h) = f(x, y).

Beweis:

Sei z die Lösung des AWPs z′(x) = f(x, z(x)), z(x0) = y0 mit
(x0, y0) ∈ G. Wegen der Definition von τ und dem Mittelwertsatz
der Differentialrechnung gilt komponentenweise

τj(x0, y0, h) =
zj(x0 + h)− y0

h
− Φj(x0, y0, h)

= z′j(x0 + θjh)− Φj(x0, y0, h)

mit Zwischenwerten θj ∈ (0, 1) für j = 1, . . . , n. Mit der Stetigkeit
von z′ folgt

lim
h→0

z′j(x0 + θjh) = z′j(x0) = fj(x0, y0)

für j = 1, . . . , n. Somit gilt

lim
h→0

∥τ(x0, y0, h)∥ = ∥f(x0, y0)− lim
h→0

Φ(x0, y0, h)∥

falls die Grenzwerte existieren. Diese Gleichung liefert die Behaup-
tung. □

Die Konsistenzordnung beschreibt die Qualität der Näherung nach
einem einzelnen Schritt. Jedoch sind wir an der Qualität der Ap-
proximation nach N Schritten interessiert, wo der Endpunkt xend
erreicht wird. Dies motiviert die nächste Definition.
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Definition 2.4 (globaler Diskr.fehler und Konvergenz)
Der globale Diskretisierungsfehler einer Methode auf einem Gitter
x0 < x1 < · · · < xN ist definiert durch die Differenz

eN := y(xN)− yN . (2.10)

Für N → ∞ nehmen wir hmax → 0 mit hmax := max
i=0,...,N−1

|xi+1 − xi|
an. Das Verfahren heißt konvergent, wenn für festes xend = xN gilt

lim
N→∞

eN = 0.

Das Verfahren ist konvergent von (mindestens) Ordnung p, falls

eN = O(hp
max).

Bezüglich des Zusammenhangs zwischen Konsistenz und Konver-
genz beweisen wir einen Satz. O.E.d.A. verwenden wir dabei die
Maximumnorm als Vektornorm. Desweiteren benötigen wir noch
eine Hilfsaussage.

Lemma 2.5 Erfüllt eine Folge (ri)i∈N ⊂ Rn die Abschätzung

∥ri+1∥ ≤ (1 + δ)∥ri∥+ β für i = 0, 1, 2, . . .

mit Konstanten β ≥ 0 und δ > 0, dann gilt für k ∈ N0

∥rk∥ ≤ ekδ∥r0∥+
ekδ − 1

δ
β ,

wobei die Vektornorm beliebig ist.

Beweis:

Verwendet wird Induktion über k. Der Induktionsanfang mit k = 1
lautet

∥r1∥ ≤ (1 + δ)∥r0∥+ β ≤ eδ·1∥r0∥+
eδ·1 − 1

δ
β
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wegen 1 + δ ≤ eδ und somit auch 1 ≤ (eδ − 1)/δ. Zum Induktions-
schluss sei die Aussage für ein k ≥ 1 erfüllt. Es folgt wieder mit
1 + δ ≤ eδ

∥rk+1∥ ≤ (1 + δ)∥rk∥+ β ≤ (1 + δ)ekδ∥r0∥+ (1 + δ)e
kδ−1
δ β + β

≤ eδekδ∥r0∥+ (1+δ)ekδ−(1+δ)+δ
δ β

≤ e(k+1)δ∥r0∥+ e(k+1)δ−1
δ β

und damit ist die Aussage für k + 1 gezeigt. □

Nun ergibt sich das Hauptresultat dieses Unterabschnitts.

Satz 2.6 (Konvergenz von Einschrittverfahren)
Gegeben sei ein AWP y′ = f(x, y), y(x0) = y0 mit der exakten
Lösung y(x) für x ∈ [x0, xend]. Die Inkrementfunktion Φ sei stetig
auf

G :=
{
(x, y, h) : x ∈ [x0, xend], ∥y − y(x)∥ ≤ γ, 0 < h ≤ h̄

}
mit Konstanten γ, h̄ > 0 und es gelte die Lipschitz-Bedingung

∥Φ(x, y1, h)− Φ(x, y2, h)∥ ≤ K · ∥y1 − y2∥ (2.11)

für alle (x, yi, h) ∈ G, i = 1, 2 mit einer Konstanten K > 0. Das
Einschrittverfahren sei konsistent von Ordnung p im Sinne von

∥τ(x, y(x), h)∥ = ∥∆(x, y(x), h)− Φ(x, y(x), h)∥ ≤ C · hp (2.12)

für alle x ∈ [x0, xend] und 0 < h ≤ h̄ mit einer Konstanten C > 0.
Verwendet wird konstante Schrittweite hN := xend−x0

N , d.h. Gitter-
punkte sind xi := x0 + ihN für i = 0, 1, . . . , N . Dann gibt es ein
ĥ ∈ (0, h̄], so dass die globalen Diskretisierungsfehler beschränkt
sind durch

∥ei∥ ≤ hp
N ·C · exp(K(xend − x0))− 1

K
für i = 1, . . . , N (2.13)

und für alle hN ≤ ĥ.
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Beweis:

Zu y, z ∈ Rn definieren wir für γ > 0 die Hilfsgröße ỹ(y, z) ∈ Rn

komponentenweise für j = 1, . . . , n (ỹ = (ỹ1, . . . , ỹn)
⊤) durch

ỹj :=


zj + γ falls yj ≥ zj + γ,
zj − γ falls yj ≤ zj − γ,
yj sonst.

Damit konstruieren wir die Hilfsfunktion

Φ̃(x, y, h) := Φ(x, ỹ(y, y(x)), h).

Offensichtlich ist Φ̃ stetig auf

G̃ :=
{
(x, y, h) : x ∈ [x0, xend], y ∈ Rn, h ≤ h̄

}
und erfüllt wegen (2.11) die Bedingung∥∥∥Φ̃(x, y1, h)− Φ̃(x, y2, h)

∥∥∥ ≤ K · ∥y1 − y2∥ (2.14)

für alle (x, yi, h) ∈ G̃, i = 1, 2. Wegen Φ̃(x, y(x), h) = Φ(x, y(x), h)
für alle x ∈ [x0, xend] sowie 0 < h ≤ h̄ und (2.12) gilt auch∥∥∥∆(x, y(x), h)− Φ̃(x, y(x), h)

∥∥∥ ≤ C · hp (2.15)

für x ∈ [x0, xend] und 0 < h ≤ h̄.

Das zu Φ̃ gehörige Einschrittverfahren liefert die Näherungslösungen
ũi über die Formel

ũi+1 = ũi + hN Φ̃(xi, ũi, hN)

mit Anfangswert ũ0 = y0. Mit der Funktion (2.9) folgt direkt

yi+1 = yi + hN∆(xi, yi, hN)

für die exakten Lösungswerte yi = y(xi). Durch Subtraktion erhal-
ten wir für die Fehler ẽi := ũi − yi die Rekursionsformel

ẽi+1 = ẽi + hN

[
Φ̃(xi, ũi, hN)−∆(xi, yi, hN)

]
= ẽi + hN

[
Φ̃(xi, ũi, hN)− Φ̃(xi, yi, hN)

]
+ hN

[
Φ̃(xi, yi, hN)−∆(xi, yi, hN)

]
.
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Es ergibt sich aus (2.14) und (2.15)∥∥∥Φ̃(xi, ũi, hN)− Φ̃(xi, yi, hN)
∥∥∥ ≤ K · ∥ũi − yi∥ = K · ∥ẽi∥,∥∥∥∆(xi, yi, hN)− Φ̃(xi, yi, hN)
∥∥∥ ≤ C · hp

N .

Wir erhalten die Abschätzung

∥ẽi+1∥ ≤ (1 + hNK)∥ẽi∥+ C · hp+1
N

für i = 0, 1, . . . , N − 1. Lemma 2.5 liefert nun mit ẽ0 = ũ0 − y0 = 0
die Abschätzung

∥ẽi∥ ≤ C · hp
N · exp(KihN)− 1

K
für alle i = 0, 1, . . . , N.

Damit folgt auch

∥ẽi∥ ≤ C · hp
N · exp(K(xend − x0))− 1

K
für alle i = 0, 1, . . . , N

wegen ihN ≤ xend − x0. Wir erkennen, dass ein ĥ ≤ h̄ existiert,
so dass ∥ẽi∥ ≤ γ für alle i = 0, 1, . . . , N gilt, falls hN ≤ ĥ. Damit
erhalten wir Φ̃i(xi, ũi, hN) = Φ(xi, ũi, hN) für hN ≤ ĥ aus der Defini-
tion der Hilfsfunktion Φ̃. In diesem Fall sind die Näherungen ũi aus
dem von Φ̃ erzeugten Einschrittverfahren identisch mit den Nähe-
rungen ui aus dem von Φ festgelegten Einschrittverfahren. Somit
gilt ẽi = ei für i = 0, 1, . . . , N mit ei := ui − yi. Dadurch folgt die
Abschätzung (2.13). □

Bemerkungen:

• Die Lipschitz-Bedingung (2.11) ist bei den üblichen Verfahren
erfüllt, falls die rechte Seite f der Dgl. lokal Lipschitz-stetig
in y auf G ist.

• Die Konsistenzbedingung (2.12) stellt eine leichte Verschärfung
der Bedingung aus Def. 2.2 dar und ist bei allen gängigen Ver-
fahren gegeben.
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• Die Konvergenzaussage (2.13) in Satz 2.6 betrifft nicht nur den
Endwert bei x = xend sondern alle Gitterpunkte x1, . . . , xN .

• Die Konvergenzaussage gilt auch bei nichtkonstanten Schritt-
weiten, d.h. einem Gitter x0 < x1 < x2 < · · · < xN−1 <
xN = xend und Schrittweiten hi := xi+1 − xi. Im Grenzfall
muss dann hmax → 0 gelten mit der maximalen Schrittweite
hmax := max{h0, h1, . . . , hN−1}.

• In die Konvergenzanalyse können auch Fehler e0 = u0− y0 ̸= 0
in den Anfangswerten sowie Rundungsfehler einbezogen wer-
den.

Satz 2.6 zeigt, dass die Konsistenz hinreichend für die Konvergenz
ist. Zudem stimmt die Konsistenzordnung mit der Konvergenzord-
nung überein. Die Konsistenz kann durch eine Untersuchung der
Inkrementfunktion Φ des Einschrittverfahrens nachgewiesen wer-
den. Umgekehrt gibt es konvergente Methoden, die nicht konsistent
sind. Konsistenz ist somit nicht notwendig für Konvergenz. Jedoch
werden inkonsistente Verfahren nicht in der Praxis eingesetzt.

2.4 Runge-Kutta-Verfahren

Der wichtigste Typ von Einschrittverfahren sind die Runge-Kutta-
Verfahren. Die Idee besteht darin, das Integral in (2.3) durch eine
Quadraturformel mit den Knoten c1, . . . , cs ∈ [0, 1] und (äußeren)
Gewichten b1, . . . , bs ∈ R zu ersetzen. O.E.d.A. sei c1 ≤ c2 ≤ · · · ≤
cs. Es folgt eine endliche Summe

y1 = y0 + h
s∑

i=1

bif(x0 + cih, y(x0 + cih)).

Das Problem dabei ist, dass die Zwischenwerte y(x0 + cih) a priori
unbekannt sind. Wir erhalten Näherungen für die Zwischenwerte
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wieder aus der Integralgleichung (2.2), d.h.

y(x0 + cih) = y0 + h

∫ ci

0

f(x0 + sh, y(x0 + sh)) ds.

Die beteiligten Integrale werden durch Quadraturformeln ersetzt.
Um die Einführung neuer Unbekannten zu vermeiden, dürfen nur
die gleichen Knoten c1, . . . , cs wie zuvor verwendet werden. Jedoch
entstehen neue (innere) Gewichte. Es folgen die Näherungen

zi = y0 + h
s∑

j=1

aijf(x0 + cjh, zj) (2.16)

für i = 1, . . . , s. Die letztlich gesuchte Näherung wird zu

y1 = y0 + h

s∑
i=1

bif(x0 + cih, zi).

Die Gleichungen (2.16) stellen ein nichtlineares Gleichungssystem
(aus algebraischen Gleichungen) für die Unbekannten z1, . . . , zs dar.
Wenn die Zwischenwerte bestimmt wurden, dann können wir die
Näherung y1 direkt aus s Auswertungen der Funktion f erhalten.
Man nennt s auch die Stufenzahl des Verfahrens.

Betreffend (2.16) ist eine natürliche Forderung, dass eine konstante
Funktion f ≡ 1 (y(x0 + cih) = y0 + cih) exakt reproduziert. Wir
erhalten die Bedingungen

ci =
s∑

j=1

aij für jedes i = 1, . . . , s. (2.17)

Diese Gleichung bedeutet, dass die Summe der Gewichte gleich der
(relativen) Länge des Teilintervalls sein muss.
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Eine Runge-Kutta-Methode ist eindeutig durch seine Koeffizienten
festgelegt. Die Koeffizienten können in einem sogenannten Butcher-
Tableau angeordnet werden:

c1 a11 a12 · · · a1s
c2 a21 a22 · · · a2s
...

...
... . . . ...

cs as1 as2 · · · ass
b1 b2 · · · bs

oder kurz
c A

b⊤

mit c ∈ Rs, b ∈ Rs, A ∈ Rs×s.

Beispiele: Verfahren aus Abschnitt 2.2

(a): expl. Euler-Verfahren, (b): impl. Euler-Verfahren, (c): Trapez-
regel, (d): Collatz-Verfahren:

(a)
0 0

1
(b)

1 1

1

(c)

0 0 0
1 1

2
1
2

1
2

1
2

(d)

0 0 0
1
2

1
2 0

0 1
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Beispiel: Gauß-Runge-Kutta-Verfahren

Wir verwenden die Gauß-Legendre-Quadratur für die Knoten ci und
die Gewichte bi. Diese Quadraturformel besitzt die Ordnung 2s, d.h.
es gilt

s∑
i=1

bip(ci) =

∫ 1

0

p(x) dx für alle p ∈ P2s−1

(Pm: Polynome bis Grad m). Die Gewichte aij bestimmen wir für
jedes i = 1, . . . , s derart, dass

s∑
j=1

aijp(cj) =

∫ ci

0

p(x) dx für alle p ∈ Ps−1.

Im einfachen Fall s = 1 folgt direkt c1 =
1
2 , b1 = 1 und a11 =

1
2 . Es

entsteht das Runge-Kutta-Verfahren

z1 = y0 +
h
2f(x0 +

h
2 , z1),

y1 = y0 + hf(x0 +
h
2 , z1).

(2.18)

Dieser Ansatz entspricht der Mittelpunktregel (2.5), wobei die Nähe-
rung z1 ≈ y(x0+

1
2h) durch das implizite Euler-Verfahren bestimmt

wird.

Das Butcher-Tableau schreibt sich im Fall s = 2:

3−
√
3

6
1
4

3−2
√
3

12
3+

√
3

6
3+2

√
3

12
1
4

1
2

1
2

Wenn die Matrix A = (aij) vollbesetzt ist, dann ist das Runge-
Kutta-Verfahren implizit. Ein nichtlineares Gleichungssystem (2.16)
aus s · n algebraischen Gleichungen muss dann gelöst werden. Im
Gegensatz dazu möchten wir nun explizite Methoden erhalten. Die
entsprechende Bedingung lautet aij = 0 für i ≤ j. Dadurch wir A zu
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einer strikten unteren Dreiecksmatrix. Das Butcher-Tableau besitz
dann die Gestalt:

0 0 0 · · · · · · 0

c2 a21 0 . . . ...
...

... . . . . . . . . . ...
...

... . . . 0 0
cs as1 · · · · · · as,s−1 0

b1 b2 · · · bs−1 bs

Insbesondere folgt c1 = 0 aus der Bedingung (2.17) und dadurch
z1 = y0. Nun ergeben sich die Zwischenwerte sukzessive aus

zi = y0 + h

i−1∑
j=1

aijf(x0 + cjh, zj) für i = 1, . . . , s.

Der Rechenaufwand einer expliziten Runge-Kutta-Methode besteht
somit nur in s Auswertungen der rechten Seite f . Man kann ein ex-
plizites Verfahren daher als eine sukzessive Extrapolation mit den
gegebenen Zwischenwerten interpretieren. Implizite Verfahren ent-
sprechen dann einer Interpolation mit den Zwischenwerten.

Beispiele: Einige bekannte explizite Runge-Kutta-Verfahren

Heun-Verfahren (links), Kutta-Simpson-Verfahren (mitte) und klas-
sisches Runge-Kutta-Verfahren (rechts):

0
1
3

1
3

2
3 0 2

3
1
4 0 3

4

0
1
2

1
2

1 −1 2
1
6

4
6

1
6

0
1
2

1
2

1
2 0 1

2

1 0 0 1
1
6

2
6

2
6

1
6
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Eine äquivalente Notation für Runge-Kutta-Schemata entsteht durch
die Definition von Inkrementen ki mittels

ki = f(x0 + cih, zi) = f
(
x0 + cih, y0 + h

s∑
j=1

aijkj

)
(2.19)

für i = 1, . . . , s. Ein Runge-Kutta-Verfahren besitzt dann die Ge-
stalt

ki = f
(
x0 + cih, y0 + h

s∑
j=1

aijkj

)
, i = 1, . . . , s ,

y1 = y0 + h

s∑
i=1

biki.

(2.20)

Die Inkremente ki sind nun a priori unbekannt.

Ordnungsbedingungen

Ein Runge-Kutta-Methode ist durch ihre Koeffizienten ci, bi, aij ein-
deutig bestimmt. Wir leiten Bedingungen an diese Koeffizienten her,
welche die Konsistenz des Einschrittverfahrens mit Ordnung p lie-
fern. Wir betrachten eine autonome skalare Dgl. y′ = f(y). Es folgt

y′′ = f ′y′ = f ′f,

y′′′ = f ′′y′f + f ′f ′y′ = f ′′f 2 + (f ′)2f.

Taylor-Entwicklung der exakten Lösung führt auf

y(x0 + h) = y(x0) + hy′(x0) +
h2

2 y
′′(x0) +

h3

6 y
′′′(x0) +O(h4)

= y0 + hf(y0) +
h2

2 f
′(y0)f(y0)

+ h3

6

[
f ′′(y0)f(y0)

2 + f ′(y0)
2f(y0)

]
+O(h4).

Im folgenden benutzen wir die Abkürzungen f = f(y0), f
′ = f ′(y0),

etc. Die Inkremente ki aus (2.20) hängen von der Wahl der Schritt-
weite h ab. Wir nehmen an, dass diese Inkremente beschränkt sind
in einer Umgebung von h = 0. Dies ist beispielsweise gesichert, wenn
eine beschränkte rechte Seite f auftritt.
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Die Runge-Kutta-Methode erfülle die fundamentale Bedingung aus
(2.17). Eine Taylor-Entwicklung der Funktion f bezüglich der In-
kremente (2.19) liefert für i = 1, . . . , s

ki = f + f ′h

(
s∑

j=1

aijkj

)
+ 1

2f
′′h2

(
s∑

j=1

aijkj

)2

+O(h3)

= f + f ′h

(
s∑

j=1

aij

(
f + f ′h

(
s∑

ℓ=1

ajℓkℓ

)
+O(h2)

))

+ 1
2f

′′h2

(
s∑

j=1

aij (f +O(h))

)2

+O(h3)

= f + f ′h

(
s∑

j=1

aij

(
f + f ′h

(
s∑

ℓ=1

ajℓ (f +O(h))

)
+O(h2)

))
+ 1

2f
′′h2 (fci +O(h))2 +O(h3)

= f + f ′h

(
s∑

j=1

aij
(
f + f ′fhcj +O(h2)

))
+ 1

2f
′′f 2h2c2i +O(h3)

= f + hf ′fci + h2(f ′)2f

(
s∑

j=1

aijcj

)
+ 1

2h
2f ′′f 2c2i +O(h3).

Die Näherung aus dem Runge-Kutta-Verfahren resultiert zu

y1 = y0 + h

s∑
i=1

biki

= y0 + hf

(
s∑

i=1

bi

)
+ h2f ′f

(
s∑

i=1

bici

)

+ h3(f ′)2f

(
s∑

i,j=1

biaijcj

)
+

1

2
h3f ′′f 2

(
s∑

i=1

bic
2
i

)
+O(h4).

Ein Vergleich mit der Taylor-Entwicklung der exakten Lösung zeigt
die Bedingungen für Konsistenz bis Ordnung p = 3. Die Konsistenz-
bedingungen bis Ordnung p = 4 sind ebenfalls dargestellt:
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p = 1 :
s∑

i=1

bi = 1

p = 2 :
s∑

i=1

bici = 1
2

p = 3 :
s∑

i=1

bic
2
i = 1

3

s∑
i,j=1

biaijcj = 1
6

p = 4 :
s∑

i=1

bic
3
i = 1

4

s∑
i,j=1

biaijcicj = 1
8

s∑
i,j=1

biaijc
2
j = 1

12

s∑
i,j,ℓ=1

biaijajℓcℓ = 1
24

Die Konsistenzbedingungen können mit dem Ansatz über Taylor-
Entwicklungen bis zu einer beliebigen Ordnung p hergeleitet wer-
den. Im Fall von expliziten Runge-Kutta-Verfahren brauchen in
den Summen nur die Koeffizienten ungleich null aufgeführt zu wer-
den. Zu einer gewünschten Konsistenzordnung p möchten wir ein
Runge-Kutta-Verfahren mit möglichst kleiner Stufenzahl s erhal-
ten. Bei impliziten Methoden kann mit s Stufen die maximale Ord-
nung p = 2s erreicht werden, welche dann bei den Gauß-Runge-
Kutta-Schemata auftritt. Bei den explizten Methoden gibt Tabelle 1
eine Information.

Stufenzahl s 1 2 3 4 5 6 7 8 9 10 11 · · · 17
maximale Ordnung p 1 2 3 4 4 5 6 6 7 7 8 · · · 10

Ordnung p 1 2 3 4 5 6 7 8
minimale Stufenzahl s 1 2 3 4 6 7 9 11
Anzahl Ordnungsbedingungen 1 2 4 8 17 37 85 200

Tabelle 1: Ordnung und Stufenzahl bei expliziten Runge-Kutta-Verfahren.

33



2.5 Schrittweitensteuerung

In einer numerischen Integration werden die Näherungen yk ≈ y(xk)
sukzessive durch eine numerische Methode berechnet. Wir möchten,
dass die Schrittweiten hk := xk+1 − xk automatisch bestimmt wer-
den, so dass der entstehende Fehler in der Methode hinreichend
klein bleibt.

Seien y = (y1, . . . , yn)
⊤ die Komponenten der Lösung. Wir nehmen

an, dass das numerische Verfahren die Konsistenzordnung p besitzt,
d.h. die Näherung yh ≈ y(x0 + h) erfüllt die Bedingung

yhi − yi(x0 + h) = O(hp+1) = Cih
p+1 +O(hp+2) (2.21)

mit Konstanten Ci ̸= 0 für jede Komponente. Ein ähnliches nume-
risches Verfahren wird zur Berechnung der Näherung ŷh mit einer
Ordnung höher eingesetzt, d.h.

ŷhi − yi(x0 + h) = O(hp+2). (2.22)

Bei Runge-Kutta-Methoden werden typischerweise eingebettete Ver-
fahren eingesetzt. Bei Mehrschrittverfahren existieren verschiedene
Möglichkeiten. Desweiteren kann Richardson-Extrapolation sowohl
bei Einschritt- als auch Mehrschrittverfahren eingesetzt werden.

Wir möchten den Fehler yh−y(x0+h) im Verfahren der niedrigeren
Ordnung schätzen. Die Bedingungen (2.21) und (2.22) liefern

yhi −yi(x0+h) = yhi −ŷhi −(yi(x0+h)−ŷhi ) = yhi −ŷhi +O(hp+2). (2.23)

Daher stellt ŷh − yh einen Schätzer für den lokalen Fehler, welcher
Größenordnung p+ 1 hat, dar. Aus (2.21) und (2.23) folgt

yhi − ŷhi = Cih
p+1 +O(hp+2). (2.24)

Wir nehmen an, dass wir bereits einen Integrationsschritt mit der
Schrittweite hused durchgeführt haben. Nun möchten wir eine geeig-
nete Schrittweite hopt schätzen, um den Integrationsschritt zu wie-
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derholen. Die Eigenschaften (2.21) und (2.24) implizieren ungefähr

yhused

i − ŷhused

i ≈ Cih
p+1
used,

y
hopt

i − yi(x0 + hopt) ≈ Cih
p+1
opt .

Elimination der Konstanten Ci liefert

|yhopt

i − yi(x0 + hopt)|
|yhused

i − ŷhused

i |
=

(
hopt

hused

)p+1

. (2.25)

Der Fehlerschätzer zum durchgeführten Schritt lautet

ηi := |yhused

i − ŷhused

i | (2.26)

für i = 1, . . . , n. Der Fehler zum neuen Schritt soll

|yhopt

i − yi(x0 + hopt)| = TOL (2.27)

erfüllen mit einer absoluten Toleranz TOL > 0 in allen Komponen-
ten. Wir möchten nicht, dass der Fehler kleiner als TOL ist, denn
ein kleinerer Fehler bedeutet eine kleinere Schrittweite und dadurch
einen höheren Rechenaufwand aufgrund eine größeren Schrittan-
zahl. Einsetzen von (2.26),(2.27) in Gleichung (2.25) führt auf

hopt,i = hused · p+1

√
TOL

ηi
,

wobei jede Kompomente eine eigene Schrittweite erzeugt. Die Länge
des nächsten Schritts wird daher gewählt als

hnew = δ · min
i=1,...,n

hopt,i

mit einem Sicherheitsfaktor δ, z.B. δ = 0.9. Um oszillierende Schritt-
weiten zu verhindern, wird desweiteren gefordert

σ hused ≤ hnew ≤ θ hused

mit 0 < σ < 1 < θ, z.B. σ = 1
5 , θ = 5.
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Falls hnew < hused gilt, dann wurde unsere Genauigkeitsforderung
(2.27) verfehlt, da der Fehler größer ist. Somit wiederholen wir den
Schritt mit hnew anstelle von hused. Daraufhin wird jedoch wieder
der Fehler geschätzt. Falls hnew ≥ hused erfüllt ist, dann akzeptieren
wir den Schritt, da der Fehler kleiner oder gleich der Genauigkeits-
forderung (2.27) ist. Der nächste Schritt wird dann mit hnew als
vorgeschlagene Schrittweite durchgeführt.

Oft wird die Toleranz relativ bezüglich der Größenordnung der (nu-
merischen) Lösung vorgegeben. Sei RTOL > 0 eine relative Toleranz
und ATOL > 0 eine absolute Toleranz, dann definieren wir

TOL = ATOL + RTOL · |yhused

i |.

Der absolute Teil ATOL wird benötigt für den Fall |yhused

i | ≈ 0.
Typische Werte sind z.B. RTOL = 10−3 und ATOL = 10−6.

Die obige Verwendung des Betrags | · | entspricht der Maximum-
norm als Vektornorm. Jedoch besitzt die Maximumnorm ein Defizit
an Glattheit und verursacht dadurch manchmal Probleme in der
Integration. Daher wir in der Praxis häufig die skalierte Norm

ERR =

√√√√1

n

n∑
i=1

(
ŷhused

i − yhused

i

ATOL + RTOL · |yhused

i |

)2

(2.28)

eingesetzt, die man als gewichtete Euklidische Norm interpretieren
kann. Man beachte, dass der Nenner in (2.28) immer positiv ist. Die
Bedingung (2.27) entspricht nun ERR = 1. Die neue Schrittweite
wird definiert als

hnew = δ · hused ·
1

p+1
√
ERR

mit einem Sicherheitsfaktor δ.

Die Schätzung des lokalen Fehlers erfolgt für das Verfahren mit Ord-
nung p, während das Ergebnis aus dem Verfahren der Ordnung p+1
nur zur Berechnung des Fehlerschätzers eingesetzt wird. Jedoch ist
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die Näherung aus der Methode mit Ordnung p + 1 in den meisten
Fällen genauer. Daher wird häufig die Näherung höherer Ordnung
als Ausgabe des Integrationsschritts festgesetzt.

Der obige Ansatz kontrolliert den lokalen Fehler in jedem Integrati-
onsschritt. Jedoch hätten wir gerne eine Schrittweitenbestimmung
derart, dass der globale Fehler (2.10) eine Genauigkeitsschranke
erfüllt. Leider existieren keine erfolgreichen Strategien zur Kontrolle
des globalen Fehlers. Daher verwenden numerische Integrationsver-
fahren aus üblichen Softwarepaketen (z.B. MATLAB) nur Schritt-
weitensteuerungen auf Basis der lokalen Fehler.

Eingebettete Verfahren

Es verbleibt zwei numerische Verfahren zur Schätzung des lokalen
Fehlers festzulegen. Im Fall von Runge-Kutta-Methoden werden ein-
gebettete Verfahren angewendet, da der zusätzliche Rechenaufwand
für die zweite Näherung relativ klein ausfällt.

Das Butcher-Tableau eines eingebetteten Verfahrens lautet

c1 a11 a12 · · · a1s
c2 a21 a22 · · · a2s
...

...
... . . . ...

cs as1 as2 · · · ass
b1 b2 · · · bs
b̂1 b̂2 · · · b̂s

mit zwei Mengen bi und b̂i von Gewichten. Die entstehenden Nähe-
rungen sind

yh = y0 + h(b1k1 + · · ·+ bsks),

ŷh = y0 + h(b̂1k1 + · · ·+ b̂sks).

Wenn die Inkremente k1, . . . , ks zur Berechnung der Näherung yh

verfügbar sind, dann kann die zweite Näherung ŷh ohne wesentlichen
Mehraufwand bestimmt werden.
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Im Fall von expliziten Runge-Kutta-Verfahren stellen die Runge-
Kutta-Fehlberg Methoden eine Klasse eingebetteter Verfahren dar.

Beispiel: Runge-Kutta-Fehlberg 2(3)

0
1
4

1
4

27
40 −189

800
729
800

1 214
891

1
33

650
891

214
891

1
33

650
891 0

533
2106 0 800

1053 − 1
78
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3 Mehrschrittverfahren

In diesem Kapitel untersuchen wir Mehrschrittmethoden, d.h. meh-
rere alte Näherungen werden eingesetzt um eine neue Näherung
zu konstruieren. Betrachtet wird wieder ein AWP y′ = f(x, y),
y(x0) = y0, siehe (1.1). Sind die Approximationen

(xi−k+1, yi−k+1), (xi−k+2, yi−k+2), . . . , (xi−1, yi−1), (xi, yi) (3.1)

für ein k ≥ 1 gegeben, dann wird daraus eine neue Näherung
(xi+1, yi+1) bestimmt. Im Gegensatz zu Einschrittverfahren reicht
hier die Konsistenz alleine für die Konvergenz der Methoden nicht
aus.

3.1 Methoden über numerischer Quadratur

Wir führen eine wichtige Klasse von Mehrschrittverfahren ein, deren
Konstruktionsprinzip auf der Integralgleichung (2.2) beruht. Eine
Polynominterpolation wird aufgestellt und das exakte Integral wird
mit dem Integral des Polynoms approximiert. Wir wählen eine ganze
Zahl ℓ ≥ 1 und erhalten für die exakte Lösung des AWPs (1.1) die
Integralgleichung

y(xi+1) = y(xi−ℓ+1) +

∫ xi+1

xi−ℓ+1

y′(s) ds

= y(xi−ℓ+1) +

∫ xi+1

xi−ℓ+1

f(s, y(s)) ds.
(3.2)

Nun approximieren wir den Integranden f(x, y(x)). Wir stellen das
Polynom pk,i ∈ Pk−1 auf, welches die Stützpunkte

(xj, f(xj, yj)) für j = i− k + 1, i− k + 2, . . . , i− 1, i

interpoliert. Dementsprechend gilt

pk,i(xj) = f(xj, yj) für j = i− k + 1, i− k + 2, . . . , i− 1, i.
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Dieses Interpolationspolynom existiert und ist eindeutig. Mit der
Lagrange-Basis

Li,j(x) =
k∏

ν=1,ν ̸=j

x− xi−ν+1

xi−j+1 − xi−ν+1
für j = 1, . . . , k ,

und fi := f(xi, yi) lautet das Polynom

pk,i(x) =
k∑

j=1

fi−j+1Li,j(x).

Die Erwartung ist pk,i(x) ≈ f(x, y(x)) im betrachteten Gebiet. Da-
her ergibt sich als neue Näherung wegen (3.2)

yi+1 = yi−ℓ+1 +
k∑

j=1

fi−j+1

∫ xi+1

xi−ℓ+1

Li,j(s) ds.

Da die Lagrange-Polynome gegeben sind, kann das Integral exakt
ausgewertet werden.

In den meisten Fällen gilt ℓ ≤ k, d.h. das Intervall der Interpo-
lation enthält das Intervall der Integration (zur linken Seite hin).
Abb. 9 verdeutlicht diese Konstruktion. Wir erhalten ein explizites
k-Schritt-Verfahren.

Im Fall von äquidistanten Gitterpunkten xi = x0 + ih sind die
Lagrange-Polynome unabhängig vom Index i∫ xi+1

xi−ℓ+1

Li,j(s) ds =

∫ xi+1

xi−ℓ+1

∏
ν ̸=j

s− xi−ν+1

xi−j+1 − xi−ν+1
ds

= h

∫ 1

1−ℓ

∏
ν ̸=j

x0 + (i+ u)h− (x0 + (i− ν + 1)h)

x0 + (i− j + 1)h− (x0 + (i− ν + 1)h)
du

= h

∫ 1

1−ℓ

∏
ν ̸=j

u+ ν − 1

ν − j
du.
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i−k+1 i−l+1 i i+1

Abbildung 9: Konstruktion von Mehrschrittverfahren mittels Quadratur.

Es folgt die Methode

yi+1 = yi−ℓ+1 + h

k∑
j=1

βjf(xi−j+1, yi−j+1)

mit den konstanten Koeffizienten

βj :=

∫ 1

1−ℓ

k∏
ν=1,ν ̸=j

u+ ν − 1

ν − j
du für j = 1, . . . , k.

Ein implizites Mehrschrittverfahren entsteht, wenn die unbekannte
neue Näherung (xi+1, yi+1) in die Interpolation einbezogen wird. Sei
qk,i ∈ Pk das Interpolationspolynom zu den Stützpunkten

(xj, f(xj, yj)) für j = i− k + 1, i− k + 2, . . . , i− 1, i, i+ 1.

Es folgt

qk,i(xj) = f(xj, yj) fürr j = i−k+1, i−k+2, . . . , i− 1, i, i+1.

Die zugehörigen Lagrange-Polynome lauten

L∗
i,j(x) =

k∏
ν=0,ν ̸=j

x− xi−ν+1

xi−j+1 − xi−ν+1
für j = 0, 1, . . . , k
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und somit

qk,i(x) =
k∑

j=0

fi−j+1L
∗
i,j(x).

Wir schreiben qk,i(x; yi+1) um zu betonen, dass dieses Polynom noch
von der neuen Näherung abhängt, welche a priori unbekannt ist. Es
ergibt sich

yi+1 = yi−ℓ+1 +

∫ xi+1

xi−ℓ+1

qk,i(s; yi+1) ds.

Diese Formel stellt ein nichtlineares Gleichungssystem für die Unbe-
kannten yi+1 dar. Daher liefert dieser Ansatz eine implizite Methode
mit k Schritten.

Im Fall von äquidistanten Schrittweiten lautet das Verfahren

yi+1 = yi−ℓ+1 + h

k∑
j=0

β∗
j f(xi−j+1, yi−j+1) (3.3)

mit den konstanten Koeffizienten

β∗
j :=

∫ 1

1−ℓ

k∏
ν=0,ν ̸=j

u+ ν − 1

ν − j
du für j = 0, 1, . . . , k.

Äquivalent können wir schreiben

yi+1 − hβ∗
0f(xi+1, yi+1) = yi−ℓ+1 + h

k∑
j=1

β∗
j f(xi−j+1, yi−j+1),

wobei die rechte Seite die bekannten Daten und die linke Seite die
unbekannte neue Näherung enthält.

Adams-Methoden

Eine beliebte Klasse von Mehrschrittverfahren sind die Adams-Me-
thoden, die aus der Wahl ℓ = 1 in (3.2) entstehen. Daher wird die
Integration nur im Teilintervall [xi, xi+1] durchgeführt.
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β1 β2 β3 β4

k = 1 1

k = 2 3
2

−1
2

k = 3 23
12

−16
12

5
12

k = 4 55
24

−59
24

37
24

− 9
24

β∗
0 β∗

1 β∗
2 β∗

3 β∗
4

k = 1 1
2

1
2

k = 2 5
12

8
12

− 1
12

k = 3 9
24

19
24

− 5
24

1
24

k = 4 251
720

646
720

−264
720

106
720

− 19
720

Tabelle 2: Koeffizienten in Adams-Bashforth (links) und Adams-Moulton (rechts).

Die expliziten Methoden heißen Adams-Bashforth-Verfahren. Das
k-Schritt-Verfahren lautet

yi+1 = yi + h

k∑
j=1

βjf(xi−j+1, yi−j+1) (3.4)

im Fall von äquidistanten Schrittweiten. Die impliziten Methoden
heißen Adams-Moulton-Verfahren. Das k-Schritt-Verfahren besitzt
die Formel

yi+1 = yi + h

k∑
j=0

β∗
j f(xi−j+1, yi−j+1). (3.5)

Tabelle 2 zeigt die Koeffizienten dieser Methode für k = 1, 2, 3, 4.
Die Einschritt-Adams-Bashforth-Methode ist gerade das explizite
Euler-Verfahren, während die Einschritt-Adams-Moulton-Methode
die Trapezregel ergibt.

Nyström-Verfahren und Milne-Verfahren

Wir erhalten eine weitere bedeutende Klasse von Mehrschrittver-
fahren aus der Wahl ℓ = 2 in (3.2). Die zugehörigen expliziten
Verfahren heißen dann Nyström-Methoden. Beispielsweise führt die
Wahl k = 1 (jetzt ausnahmsweise k < ℓ) auf die explizite Mittel-
punktregel

yi+1 = yi−1 + 2hf(xi, yi), (3.6)

welche ein Zweischrittverfahren darstellt. Die entsprechenden impli-
ziten Verfahren heißen Milne-Methoden. Für äquidistante Schritt-
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weiten liefert der Fall k = 1 wieder die explizite Mittelpunktregel,
da der Term mit fi+1 herausfällt. Die Wahl k = 2 ergibt die Milne-
Simpson-Regel

yi+1 = yi−1 + h1
3 (f(xi−1, yi−1) + 4f(xi, yi) + f(xi+1, yi+1)) ,

d.h. ein implizites Verfahren. Diese Methode entspricht der Simpson-
Regel in der numerischen Quadratur.

Die Fälle ℓ ≥ 3 in (3.2) sind für die Praxis irrelevant. Zudem ist die
Anzahl der Schritte (d.h. max{k, ℓ}) üblicherweise kleiner 15 und
häufig nicht größer als 5 in Softwarepaketen.

3.2 Methoden über numerische Differentiation

Wir führen einen anderen Typ von impliziten Mehrschrittverfah-
ren ein, welcher durch numerische Differentiation entsteht. Ist eine
Differentialgleichung y′ = f(x, y) gegeben, dann können wir die Ab-
leitung auf der linken Seite durch eine Differenzenformel ersetzen,
was einer numerischen Differentiation entspricht. Der übliche Diffe-
renzenquotient lautet

y′(x0 + h) = 1
h [y(x0 + h)− y(x0)] +O(h).

Zusammen mit y′(x0 + h) = f(x0 + h, y(x0 + h)) erhalten wir als
numerische Methode

y1 = y0 + hf(x0 + h, y1),

d.h. das implizite Euler-Verfahren

Dieser Ansatz kann zu einem k-Schritt-Verfahren verallgemeinert
werden wie folgt: Mit den gegebenen Daten (xi−k+ℓ, yi−k+ℓ) für ℓ =
1, . . . , k stellen wir das Interpolationspolynom p ∈ Pk mit

p(xi−k+ℓ) = yi−k+ℓ für ℓ = 1, . . . , k, k + 1

auf. Darin ist der unbekannte Wert yi+1 eingeschlossen, wodurch die
Methode implizit ist. Die Strategie ist in Abb. 10 dargestellt. Die
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x xx x
i−k+1 i i+1

y

p(x)

Abbildung 10: Konstruktion von Mehrschrittverfahren durch numerische Diffe-
rentiation.

Ableitung p′ kann man als Approximation der Ableitung y′ interpre-
tieren. Der unbekannte Wert wird bestimmt durch die Bedingung

p′(xi+1) = f(xi+1, yi+1), (3.7)

d.h. man verlangt, dass das Interpolationspolynom nur an der Stelle
xi+1 die Differentialgleichung erfüllt. Die entstehenden Schemata
nennt man BDF-Methoden (backward differentiation formulas).

Das Interpolationspolynom besitzt die Darstellung

p(x) =
k∑

j=0

yi+1−jLj(x)

mit den Lagrange-Polynomen

Lj(x) =
k∏

ν=0,ν ̸=j

x− xi+1−ν

xi+1−j − xi+1−ν
.

Wir erhalten

p′(xi+1) =
k∑

j=0

yi+1−jL
′
j(xi+1) = f(xi+1, yi+1).
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α0 α1 α2 α3 α4

k = 1 1 −1

k = 2 3
2

−2 1
2

k = 3 11
6

−3 3
2

−1
3

k = 4 25
12

−4 3 −4
3

1
4

Tabelle 3: Koeffizienten in den BDF-Verfahren.

Im Fall von konstanten Schrittweiten (xℓ = x0 + ℓh) können die
Lagrange-Polynome transformiert werden zu

L̃j(u) =
k∏

ν=0,ν ̸=j

u+ ν − 1

ν − j
mit x = xi + uh.

Die neuen Polynome sind unabhängig vom Index i. Das entstehende
k-Schritt-Verfahren lautet

α0yi+1 + α1yi + · · ·+ αk−1yi−k+2 + αkyi−k+1 = hf(xi+1, yi+1) (3.8)

mit den konstanten Koeffizienten

αj = L̃′
j(1) für j = 0, . . . , k.

(Denn es gilt dx = hdu.) Tabelle 3 zeigt die Koeffizienten der ersten
vier BDF Methoden.

In diesem Ansatz sind alle Koeffizienten bereits durch die Polyno-
minterpolation und die Bedingung (3.7) festgelegt. Dadurch sind
keine weiteren Freiheitsgrade enthalten.

Es existiert noch eine Modifikation der BDF-Verfahren zu den soge-
nannten NDF-Verfahren (numerical differentiation formulas), siehe
z.B. [6].
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3.3 Konsistenz, Stabilität und Konvergenz

Wir definieren zunächst die Form von Mehrschrittverfahren (MSV),
die in diesem Abschnitt analysiert werden soll.

Definition 3.1 Ein lineares k-Schritt-Verfahren mit konstanter
Schrittweite h zur Dgl. y′ = f(x, y) lautet

k∑
ℓ=0

αℓ yi+ℓ = h
k∑

ℓ=0

βℓf(xi+ℓ, yi+ℓ) (3.9)

mit reellwertigen Koeffizienten α0, . . . , αk sowie β0, . . . , βk für die
αk ̸= 0 und α0β0 ̸= 0 gilt.

Das Mehrschrittverfahren ist explizit für βk = 0 und implizit für
βk ̸= 0. Alle Methoden aus Abschnitt 3.1 und Abschnitt 3.2 sind
lineare Mehrschrittverfahren. Nichtlineare Mehrschrittverfahren da-
gegen werden in der Praxis nur selten eingesetzt.

Definition 3.2 (lokaler Diskretisierungsfehler eines MSVs)
Sei y(x) die exakte Lösung des AWPs y′ = f(x, y), y(x0) = y0.
Der lokale Diskretisierungsfehler eines linearen Mehrschrittverfah-
rens (3.9) ist definiert durch den Defekt

τ(h) =
1

h

( k∑
ℓ=0

αℓ y(x0+ℓh)−h
k∑

ℓ=0

βℓf(x0+ℓh, y(x0+ℓh))
)
. (3.10)

Diese Definition stimmt für ein explizites Verfahren im Fall k = 1
mit dem lokalen Diskretisierungsfehler (2.7) aus Def. 2.1 überein.
Für implizite Verfahren lässt sich im Fall k = 1 eine gleiche Größen-
ordnung des Fehlers begründen.
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Bei einem expliziten linearen Mehrschrittverfahren (3.9) ergibt sich
die Näherung mit i = 0 und xℓ = x0 + ℓh aus (βk = 0)

αkyk +
k−1∑
ℓ=0

αℓyℓ = h
k−1∑
ℓ=0

βℓf(xℓ, yℓ).

Wir nehmen an, dass die Anfangswerte exakt gegeben sind (d.h.
yℓ = y(xℓ) für ℓ = 0, . . . , k − 1). Es folgt

αkyk +
k−1∑
ℓ=0

αℓy(xℓ) = h
k−1∑
ℓ=0

βℓf(xℓ, y(xℓ)).

Die exakte Lösung erfüllt wegen (3.10)

αky(xk) +
k−1∑
ℓ=0

αℓy(xℓ) = h

k−1∑
ℓ=0

βℓf(xℓ, y(xℓ)) + h · τ(h).

Der lokale Diskretisierungsfehler besitzt daher die Gestalt

τ(h) =
αk

h
(y(xk)− yk).

Ein lineares MSV (3.9) kann noch normiert werden zu αk := 1.

Analog zu Def. 2.2 charakterisieren wir die Konsistenz des Verfah-
rens.

Definition 3.3 (Konsistenz eines MSVs)
Das lineare Mehrschrittverfahren (3.9) ist konsistent, wenn der lo-
kale Diskretisierungsfehler aus (3.10) die Eigenschaft

∥τ(h)∥ ≤ σ(h) mit lim
h→0

σ(h) = 0

für jeden Anfangswert (x0, y0) ∈ G (G: Definitionsbereich von f)
besitzt. Die Methode ist konsistent von Ordnung (mindestens) p,
falls τ(h) = O(hp).

Für den globalen Diskretisierungsfehler eN := y(xN)−uN an einem
festen Endpunkt xend = xN gilt die Def. 2.4 wie bei Einschrittver-
fahren. Ebenso verwenden wir den Konvergenzbegriff aus Def. 2.4.
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Desweiteren setzen wir zur Vereinfachung in der theoretischen Un-
tersuchung voraus, dass die in einem k-Schritt-Verfahren benötigten
Anfangswerte y0, y1, . . . , yk−1 als exakte Lösungswerte von y(x) vor-
liegen.

Es ergibt sich jedoch, dass die Konsistenz allein nicht hinreichend für
die Konvergenz eines MSVs ist. Zusätzlich wird noch die Stabilität
des Verfahrens benötigt. Dabei zeigt sich, dass es ausreicht die Dgl.
y′ ≡ 0 zu betrachten (d.h. f ≡ 0). Ein lineares MSV (3.9) reduziert
sich dann zu der homogenen linearen Differenzengleichung

k∑
ℓ=0

αℓyi+ℓ = α0yi + α1yi+1 + · · ·+ αk−1yi+k−1 + αkyi+k = 0.

Zu Differenzengleichungen kann ein charakteristisches Polynom de-
finiert werden.

Definition 3.4 Das charakteristische Polynom eines linearen
MSVs (3.9) bzw. der zugehörigen Differenzengleichung lautet

p(λ) :=
k∑

ℓ=0

αℓλ
ℓ = α0 + α1λ+ α2λ

2 + · · ·+ αk−1λ
k−1 + αkλ

k.

Das charakteristische Polynom besitzt also reelle Koeffizienten. Da-
mit kann das Stabilitätskriterium angegeben werden.

Definition 3.5 (Stabilität eines MSVs)
Ein lineares MSV (3.9) heißt stabil, wenn die Nullstellen λ1, . . . , λk

(in C) des zugehörigen charakteristischen Polynoms die folgende
Bedingung erfüllen:
i) |λj| ≤ 1 falls λj einfache Nullstelle,
ii) |λj| < 1 falls λj mehrfache Nullstelle.
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Man nennt das Stabilitätskriterium aus Def. 3.5 auch die Dahlquist-
sche Wurzelbedingung. Das Kriterium aus Def. 3.5 gilt für ein p(λ)
genau dann, wenn es auch für γp(λ) mit einer Konstanten γ ̸= 0
erfüllt ist. Gilt α0 = α1 = · · · = αr−1 = 0 und αr ̸= 0, dann kann
statt p(λ) das Polynom

p̃(λ) = αr + αr+1λ+ · · ·+ αk−1λ
k−r−1 + αkλ

k−r

diskutiert werden, denn es folgt p(λ) = λrp̃(λ) mit der (mindestens)
r-fachen Nullstelle λ = 0.

Die Stabilität kann noch wie folgt interpretiert werden. Es seien
y0, y1, . . . , yk−1 und z0, z1, . . . , zk−1 zwei Wahlen von Anfangswerten
für das MSV (3.9) zur Dgl. y′ ≡ 0. Gilt die Stabilität aus Def. 3.5,
dann gibt es eine Konstante C > 0 mit

|yi − zi| ≤ C

k−1∑
j=0

|yj − zj| für alle i.

Die Näherungslösungen hängen somit alle Lipschitz-stetig von den
Eingabedaten ab. Zudem existiert eine feste Lipschitz-Konstante für
alle i.

Damit kann das Hauptergebnis dieses Abschnitts angegeben wer-
den. Dabei wird noch an das AWP y′ = f(x, y) vorausgesetzt, dass
f auf [x0, xend]×Rn stetig in x, p-mal stetig differenzierbar in y und
alle Ableitungen beschränkt sind. Desweiteren seien die im MSV
benötigten Anfangswerte y0, . . . , yk−1 als exakte Lösungswerte vor-
gegeben.

Satz 3.6 (Konvergenz von MSV)
Ein lineares MSV (3.9) ist genau dann konvergent von Ordnung p,
wenn das Verfahren konsistent von Ordnung p und stabil ist.
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Dahlquist 1956 zeigte, dass für ein allgemeines MSV (d.h. linea-
res oder nichtlineares MSV) die Konsistenz und die Stabilität hin-
reichend für die Konvergenz sind. Bei linearen MSV gilt auch die
Umkehrung. Bei nichtlinearen MSV folgt aus der Konvergenz nur
die Stabilität. Den Beweis der Aussagen von Satz 3.6 kann man aus
7.2.10.1, 7.2.10.2 und 7.2.11.4 in [7] entnehmen. Es sei noch erwähnt,
dass diese Aussagen nur für konstante Schrittweiten gelten. Für be-
liebige Schrittweitenwahlen gelten die Resultate nicht immer bzw.
bedürfen intensiver weiterer Untersuchungen.

Ordnungsbedingungen

Wir leiten nun die Konsistenzbedingungen für ein lineares k-Schritt-
Verfahren (3.9) zu beliebiger Ordnung p ≥ 1 her. Die exakte Lösung
eines AWPs sei hinreichend glatt. Der lokale Diskretisierungsfeh-
ler (3.10) kann geschrieben werden als

τ(h) =
1

h

( k∑
ℓ=0

αℓy(x+ ℓh)− h

k∑
ℓ=0

βℓy
′(x+ ℓh)

)
. (3.11)

Taylor-Entwicklungen führen auf

y(x+ ℓh) =

p∑
q=0

y(q)(x) · (ℓh)
q

q!
+O(hp+1)

= y(x) +

p∑
q=1

y(q)(x) · (ℓh)
q

q!
+O(hp+1),

y′(x+ ℓh) =

p−1∑
q=0

y(q+1)(x) · (ℓh)
q

q!
+O(hp)

=

p∑
q=1

y(q)(x) · (ℓh)
q−1

(q − 1)!
+O(hp).
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Einsetzen dieser Entwicklungen in den lokalen Fehler (3.11) ergibt

τ(h) =
1

h

(
k∑

ℓ=0

αℓ

[
y(x) +

p∑
q=1

y(q)(x)
(ℓh)q

q!
+O(hp+1)

]

− h
k∑

ℓ=0

βℓ

[
p∑

q=1

y(q)(x)
(ℓh)q−1

(q − 1)!
+O(hp)

])

=
y(x)

h

k∑
ℓ=0

αℓ +
1

h

k∑
ℓ=0

[
p∑

q=1

y(q)(x)

q!
(αℓℓ

qhq − qβℓℓ
q−1hq)

]
+O(hp)

=
y(x)

h

k∑
ℓ=0

αℓ +

p∑
q=1

y(q)(x)

q!
hq−1

[
k∑

ℓ=0

(αℓℓ
q − qβℓℓ

q−1)

]
+O(hp).

Hier können wir die Ordnungsbedingungen ablesen. Für Konsistenz
von Ordnung p = 1 brauchen wir nur τ(h) = O(h). Es folgen die
Konsistenzbedingungen für Ordnung 1

k∑
ℓ=0

αℓ = 0 und
k∑

ℓ=0

(αℓℓ− βℓ) = 0. (3.12)

Die zusätzlichen Bedingungen für Ordnung p > 1 ergeben sich zu

k∑
ℓ=1

αℓℓ
q = q

k∑
ℓ=1

βℓℓ
q−1 für q = 2, . . . , p.

Man beachte, dass die erste Bedingung in (3.12) für die Konsi-
stenz mit Ordnung 1 äquivalent zu p(1) = 0 mit dem charakte-
ristischen Polynom p(λ) aus Def. 3.4 ist. Daher besitzt das cha-
rakteristische Polynom eines konsistenten linearen MSVs stets eine
Nullstelle λ = 1.

Ist ein MSV konsistent mit Ordnung genau p (d.h. es gilt τ(h) =
O(hp), τ(h) ̸= O(hp+1)), dann besitzt der lokale Diskretisierungs-
fehler die Gestalt

τ(h) = hpy(p+1)(x)
1

(p+ 1)!

[
k∑

ℓ=1

(αℓℓ
p+1 − (p+ 1)βℓℓ

p)

]
+O(hp+1).
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Daher hängt dieser Fehler von den höheren Ableitungen der exakten
Lösung ab, welches relevant für eine Schrittweitensteuerung ist.

Beispiel: Adams-Moulton-Verfahren

Wir bestimmen die Konsistenzordnung der ersten beiden Adams-Moulton-Me-
thoden. Die Koeffizienten sind in Tabelle 2 enthalten.

Das erste Schema ist die Trapezregel

−yi + yi+1 = h
[
1
2
fi +

1
2
fi+1

]
.

Die Koeffizienten sind α0 = −1, α1 = 1, β0 = β1 =
1
2
. Es folgt

1∑
ℓ=0

αℓ = −1 + 1 = 0

und
1∑

ℓ=0

(αℓℓ− βℓ) = (−1) · 0− 1
2
+ 1 · 1− 1

2
= 0.

Damit gilt eine Konsistenzordnung p ≥ 1. Die Bedingung für p = 2 lautet

1∑
ℓ=1

(αℓℓ
2 − 2βℓℓ

1) = 1 · 12 − 2 · 1
2
· 1 = 0.

Es folgt p ≥ 2. Die Bedingung für p = 3 ist verletzt wegen

1∑
ℓ=1

(αℓℓ
3 − 3βℓℓ

2) = 1 · 13 − 3 · 1
2
· 12 = −1

2
̸= 0.

Die Trapezregel ist somit konsistent von genau Ordnung p = 2.

Das zweite Schema ergibt sich zu

−yi+1 + yi+2 = h
[
− 1

12
fi +

8
12
fi+1 +

5
12
fi+2

]
.

Die Koeffizienten sind α0 = 0, α1 = −1, α2 = 1, β0 = − 1
12
, β1 =

8
12
, β2 =

5
12
. Die

Konsistenzbedingungen mit Ordnung p = 1

2∑
ℓ=0

αℓ = 0 + (−1) + 1 = 0
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und
2∑

ℓ=0

(αℓℓ− βℓ) = 0 · 0− (− 1
12
) + (−1) · 1− 8

12
+ 1 · 2− 5

12
= 0

sind erfüllt, d.h. es gilt die Ordnung p ≥ 1. Die Bedingung für Ordnung p = 2
bestätigt sich aus

2∑
ℓ=1

(αℓℓ
2 − 2βℓℓ

1) = (−1) · 12 − 2 · 8
12

· 11 + 1 · 22 − 2 5
12

· 21 = 0.

Es folgt die Ordnung p ≥ 2. Die Bedingung für Ordnung p = 3 ist nun

2∑
ℓ=1

(αℓℓ
3 − 3βℓℓ

2) = (−1) · 13 − 3 · 8
12

· 12 + 1 · 23 − 3 · 5
12

· 22 = 0.

Somit haben wir p ≥ 3. Die Forderung für Ordnung p = 4 ist verletzt:

2∑
ℓ=1

(αℓℓ
4 − 4βℓℓ

3) = (−1) · 14 − 4 · 8
12

· 13 + 1 · 24 − 4 · 5
12

· 23 = −1 ̸= 0.

Dadurch besitzt diese Methode die genaue Ordnung p = 3. Allgemein kann man
zeigen, dass das k-Schritt Adams-Moulton-Vefahren die genaue Ordnung p = k+1
aufweist.

Beispiel von Dahlquist

Das explizite Zweischrittverfahren definiert durch

yi+2 + 4yi+1 − 5yi = h(4f(xi+1, yi+1) + 2f(xi, yi))

besitzt die Konsistenzordnung 3, siehe Abschnitt III.3 in [4]. Das charakteristi-
sche Polynom lautet

p(λ) = λ2 + 4λ− 5.

Die Nullstellen sind daher λ1 = 1 und λ2 = −5. Somit ist das Verfahren instabil.
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Stabilitätsanalyse

Wir untersuchen nun die Stabilität und damit Konvergenz einiger
Typen von linearen MSV.

Einschrittverfahren:

Im Spezialfall k = 1 lautet das charakteristische Polynom eines
linearen Einschrittverfahrens

p(λ) = α0 + α1λ.

Da für die Stabilitätsuntersuchung die Koeffizienten βℓ keine Rolle
spielen (Fall f ≡ 0) sind hier sowohl explizite als auch implizite
Verfahren einbezogen. Ist das Verfahren konsistent, dann folgt α0+
α1 = 0. Immer gilt α1 ̸= 0. Somit ist λ = 1 die einzige Nullstelle und
das Verfahren ist stets stabil. Dieses Verhalten motiviert auch, dass
die Stabilität bei Einschrittverfahren wie Runge-Kutta-Methoden
immer gegeben ist und daher nicht eigens gefordert werden muss.

Verfahren aus numerischer Quadratur:

Die Methoden von Adams-Bashforth (3.4) und Adams-Moulton (3.5)
besitzen beide wegen α0 = · · · = αk−2 = 0, αk−1 = −1, αk = 1 das
charakteristische Polynom

p(λ) = λk − λk−1 = (λ− 1)λk−1

in der k-Schritt-Variante. Die Dahlquistsche Wurzelbedingung ist
somit erfüllt und die Verfahren sind stets stabil. Über die Konver-
genz wird folgende Aussage zitiert.

Satz 3.7 (Konvergenz von Adams-Methoden)
Die k-Schritt-Verfahren von Adams-Bashforth und Adams-Moulton
sind jeweils konsistent von Ordnung k bzw. k + 1 und stabil für
alle k.

55



Für ein allgemeines Verfahren (3.3) aus dem Ansatz über Quadratur
mit l > 1 sind nur die Koeffizienten αk = 1, αk−ℓ = −1 ungleich
null. Es folgt das charakteristische Polynom

p(λ) = λk − λk−ℓ = (λℓ − 1)λk−ℓ.

Eventuell tritt hier die Nullstelle λ = 0 auf. Immer sind als Null-
stellen von p die Einheitswurzeln

λj = ei2π
j−1
ℓ für j = 1, 2, . . . , ℓ

gegeben. Dadurch erhalten wir l einfache Nullstellen mit |λj| = 1.
Die Dahlquistsche Wurzelbedingung ist erfüllt und die Verfahren
sind immer stabil.

Verfahren aus numerischer Differentiation:

Die BDF-Verfahren (3.8) besitzen für verschiedene Schrittzahl k je-
weils unterschiedliche Koeffizienten α0, . . . , αk. Über die Konvergenz
wird folgende Aussage zitiert.

Satz 3.8 (Konvergenz von BDF-Methoden)
Das BDF-Verfahren mit k-Schritten besitzt die Konsistenzordnung k.
Die Methoden sind stabil für alle k ≤ 6 und instabil für alle k ≥ 7.

Da das Konstruktionsprinzip der BDF-Verfahren bereits alle Koeffi-
zienten eindeutig festlegt, existieren keine Freiheitsgrade mit denen
die Konvergenz für hohes k noch erreicht werden kann. Jedoch sind
die Konvergenzordnungen bis p ≤ 6 für die Praxis auch ausreichend.
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Optimale Konvergenzordnung

Wir kehren nun zu allgemeinen Betrachtungen zurück. Es ist nahe-
liegend zu fragen, welche Konvergenzordnung in einem linearen k-
Schritt-Verfahren (3.9) für festes k höchstens erreicht werden kann.
O.E.d.A. sei αk = 1. Wir erhalten somit 2k + 1 Freiheitsgrade in
Form der Koeffizienten α0, . . . , αk−1 und β0, . . . , βk. Wir können ei-
ne Methode konstruieren, die Konsistent von Ordnung p = 2k, da
p + 1 Konsistenzbedingungen erfüllt werden müssen. Jedoch muss
das Verfahren auch stabil sein um die Konvergenz zu erreichen. Das
Dahlquistsche Wurzelkriterium liefert k Bedingungen für die Null-
stellen des charakteristischen Polynoms. Ein konsistentes Schema
besitzt die Nullstelle λ = 1, welche das Wurzelkriterium erfüllt.
Daher verbleiben k − 1 Einschränkungen. Wir erwarten daher als
maximale Konvergenzordnung p ≈ 2k−(k−1) = k+1. Der folgende
Satz von Dahlquist (1956/59) zeigt die exakten Aussage.

Satz 3.9 (erste Dahlquist-Schranke)
Ein lineares k-Schritt-Verfahren (3.9), welches die Stabilitätsbedin-
gung erfüllt, besitzt die maximale Konsistenzordnung

k + 2 für k gerade,

k + 1 für k ungerade,

k für βk

αk
≤ 0 (insbesondere für explizite Verfahren).

Im Vergleich hierzu hat ein implizites Runge-Kutta-Verfahren mit
s Stufen als Freiheitsgrade s2 + s Koeffizienten. (Die Knoten fol-
gen aus den inneren Gewichten über (2.17).) Ein explizites Runge-
Kutta-Verfahren besitzt etwa s2

2 Freiheitsgrade. Zusätzliche Bedin-
gungen für die Stabilität existieren bei Einschrittverfahren nicht.
Die optimale Konvergenzordnung bei fester Stufenzahl s lautet p =
2s für implizite Methoden (Gauss-Runge-Kutta) und p ≤ s für ex-
plizite Methoden. Man beachte, dass die maximale Ordnung linear
bzw. sublinear mit der Stufenzahl anwächst, während die Anzahl
der Koeffizienten quadratisch ansteigt.
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3.4 Prädiktor-Korrektor-Verfahren

Wir betrachten ein AWP eines Systems gew. Dgln. y′ = f(x, y),
y(x0) = y0. In diesem Abschnitt diskutieren wir die Lösung des
nichtlinearen Gleichungssystems aus algebraischen Gleichungen, das
bei impliziten MSV auftritt. Ein lineares k-Schritt-Verfahren mit
konstanter Schrittweite kann geschrieben werden als

yi+1 − hβ0f(xi+1, yi+1) = h
k∑

ℓ=1

βℓf(xi+1−ℓ, yi+1−ℓ)−
k∑

ℓ=1

αℓyi+1−ℓ.

(3.13)
Die Formel (3.13) stellt ein System aus n algebraischen Gleichungen
für die Unbekannten yi+1 ∈ Rn dar. Die rechte Seite

wi := h

k∑
ℓ=1

βℓf(xi+1−ℓ, yi+1−ℓ)−
k∑

ℓ=1

αℓyi+1−ℓ

ist bereits gegeben durch die alten Näherungswerte.

Das nichtlineare Gleichungssystem

yi+1 − hβ0f(xi+1, yi+1)− wi = 0

kann numerisch mittels des Newton-Verfahrens gelöst werden. Wir
definieren die Matrizen A(ν) ∈ Rn×n

A(ν) = I − hβ0(Df)(xi+1, y
(ν)
i+1)

mit der Einheitsmatrix I ∈ Rn×n und der Jacobi-Matrix Df ∈ Rn×n.
Die Iteration aus dem Newton-Verfahren lautet

A(ν)∆y
(ν)
i+1 = y

(ν)
i+1 − hβ0f(xi+1, y

(ν)
i+1)− wi

y
(ν+1)
i+1 = y

(ν)
i+1 −∆y

(ν)
i+1

für ν = 0, 1, 2, . . . mit einem Startwert y
(0)
i+1 ∈ Rn. Somit erhalten

wir eine Folge aus linearen Gleichungssystemen. In dieser Situation
sind geeignete Startwerte gegeben durch y

(0)
i+1 = yi. Die Konvergenz-

geschwindigkeit der Iteration ist quadratisch.
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Wir verwenden das vereinfachte Newton-Verfahren um Rechenauf-
wand einzusparen. Die Iteration ändert sich zu

A(0)∆y
(ν)
i+1 = y

(ν)
i+1 − hβ0f(xi+1, y

(ν)
i+1)− wi

y
(ν+1)
i+1 = y

(ν)
i+1 −∆y

(ν)
i+1

(3.14)

für ν = 0, 1, 2, . . .. Die Konvergenzgeschwindigkeit der Iteration ist
linear. Der Rechenaufwand diese vereinfachten Newton-Iteration be-
steht aus folgenden Anteilen:

Start-Phase:

1. Berechne die Jacobi-Matrix Df bei x = xi+1, y = y
(0)
i+1. Falls

numerische Differentiation verwendent wird, so sind n zusätz-
liche Auswertungen von f erforderlich.

2. Zerlege A(0) = L ·R in eine linke untere Dreiecksmatrix L und
eine rechte obere Dreiecksmatrix R. Der Rechenaufwand ist
proportional zu n3.

In jedem Schritt:

1. Werte f bei x = xi+1, y = y
(ν)
i+1 aus.

2. Löse das lineare Gleichungssystem in (3.14) mit der vorhande-
nen LR-Zerlegung. Der Rechenaufwand für jede Vorwärts- und
Rückwärtssubstitution ist proportional zu n2.

Falls eine Schrittweitensteuerung verwendet wird und die Newton-
Iteration nicht konvergiert, dann wird die Schrittweite hi = xi+1−xi
reduziert. Beispielsweise wird die Iteration neu gestartet mit dem
veränderten Gitterpunkt xi+1 = xi +

hi

2 , weil der verfügbare Start-

wert y
(0)
i+1 = yi dazu eine bessere Approximation darstellt wegen der

Stetigkeit der exakten Lösung.

Wir betrachten eine alternative Technik, welche noch deutlich an
Rechenaufwand einspart. Das nichtlineare Gleichungssystem (3.13)
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kann als Fixpunktproblem

yi+1 = Φ(yi+1)

mit der Funktion

Φ(yi+1) = hβ0f(xi+1, yi+1) + wi

geschrieben werden. Nach dem Banachschen Fixpunktsatz konver-
giert die Fixpunktiteration

y
(ν+1)
i+1 = Φ(y

(ν)
i+1) für ν = 0, 1, 2, . . . (3.15)

falls die Abbildung Φ kontraktiv ist. In einer beliebigen Vektornorm
folgt

∥Φ(y)− Φ(z)∥ = ∥hβ0f(xi+1, y) + wi − (hβ0f(xi+1, z) + wi)∥
= h · |β0| · ∥f(xi+1, y)− f(xi+1, z)∥
≤ h · |β0| · L · ∥y − z∥

unter der Voraussetzung der Lipschitz-Bedingung (1.2) an die rechte
Seite mit Konstante L > 0. Folglich ist die Abbildung Φ kontraktiv
falls

h · |β0| · L < 1 ⇔ h <
1

|β0|L
. (3.16)

Daher erhalten wir eine konvergente Fixpunktiteration für hinrei-
chend kleine Schrittweite. Die Konvergenzgeschwindigkeit ist line-
ar mit der Konstanten h|β0|L. Der Rechenaufwand pro Iterations-
schritt (3.15) besteht nur aus einer einzelnen Auswertung der rech-
ten Seite f . Insbesondere müssen hier keine linearen Gleichungssy-
steme gelöst werden.

Jedoch schränkt die Kontraktivitätsbedingung (3.16) die Schrittwei-
te h stark ein im Falle von hohen Konstanten L. Große Lipschitz-
Konstanten L treten bei steifen Differentialgleichung auf, die als
mathematisches Modell in vielen Anwendungen vorliegen. In diesen
Fällen wird die Fixpunktiteration (3.15) nutzlos, da eine extrem ho-
he Anzahl von Integrationsschritten erforderlich ist. Im Gegensatz

60



dazu liefert das Newton-Verfahren immer noch geeignete Näherun-
gen auch für große Schrittweiten h.

Nun betrachten wir implizite MSV (3.13) für moderate Konstan-
ten L. Die Bestimmung der Unbekannten yi+1 kann durch ein so-
genanntes Prädiktor-Korrektor-Verfahren erfolgen. Die Technik be-
steht aus zwei Teilen:

• Prädiktor-Methode: Ein Verfahren, das einen guten Startwert
liefert.

• Korrektor-Methode: Ein Iterationsverfahren, das gegen den a
priori unbekannten Wert konvergiert, wobei eine feste Anzahl
an Iterationsschritten durchgeführt wird.

Als Beispiel betrachten wir die Adams-Moulton-Verfahren. Das k-
Schritt (implizite) Adams-Moulton-Verfahren (3.5) besitzt die Ord-
nung k + 1, während das k-Schritt (explizite) Adams-Bashforth-
Verfahren (3.4) die Ordnung k hat. Die Fixpunktiteration (3.15)
in der k-Schritt Adams-Moulton-Methode wird nun als Korrektor-
Schritt gewählt. Die k-Schritt Adams-Bashforth-Methode wird im
Prädiktor-Schritt verwendet.

Wir bezeichnen die Anwendung des Prädiktors mit P, einen Korrek-
tor-Schritt mit C und eine benötigte Funktionsauswertung der rech-
ten Seite f mit E (da der Rechenaufwand durch die Anzahl dieser
Funktionsauswertungen charakterisiert ist). Sei fi := f(xi, yi). Es
folgt die P(EC)mE-Methode zu einer konstanten ganzen Zahlm. Ta-
belle 4 spezifiziert den Algorithmus. Üblicherweise wird nur m = 1
oder m = 2 verwendet, da mehr Korrektor-Schritte die Genauigkeit
im Ergebnis nicht wesentlich erhöhen.

In der Praxis wird die P(EC)mE-Methode mit lokaler Fehlerkontrol-
le (d.h. Schrittweitensteuerung) verwendet. Dabei müssen in jedem
Integrationsschritt die Koeffizienten erneut berechnet werden mit-
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Algorithmus: P(EC)mE Verfahren

P: y
(0)
i+1 := yi + h(β1fi + β2fi−1 + · · ·+ βkfi−k+1)

(Adams-Bashforth)

für ν = 0, 1, . . . ,m− 1

E: f
(ν)
i+1 := f(xi+1, y

(ν)
i+1)

C: y
(ν+1)
i+1 := yi + h(β∗

0f
(ν)
i+1 + β∗

1fi + β∗
2fi−1 + · · ·+ β∗

kfi−k+1)

(Fixpunktiteration für Adams-Moulton)

E: fi+1 := f(xi+1, y
(m)
i+1)

(Auswertung für nächsten Integrationsschritt)

Tabelle 4: Algorithmus des Prädiktor-Korrektor-Verfahrens für einen Integrati-
onsschritt.

tels dividierter Differenzen (Newton-Interpolation). Die Differenz

y
(m)
i+1 − y

(0)
i+1 = O(hk+1)

ergibt einen Fehlerschätzer für die Schrittweitensteuerung, da y
(0)
i+1

eine Approximation der Ordnung k und y
(m)
i+1 eine Approximation der

Ordnung k+1 darstellt, vergleiche Abschnitt 2.5. Zudem kann eine
variable Ordnung durch eine Ordnungssteuerung verwendet werden.
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3.5 Ordnungssteuerung

Die Schrittweitensteuerung schätzt die größtmögliche Schrittweite,
so dass der lokale Fehler unterhalb einer gegebenen Schranke ver-
bleibt, siehe Abschnitt 2.5. Das Ziel ist die Anzahl der benötig-
ten Schritte in der Integration niedrig zu halten. Die Anzahl der
Schritte kann weiter reduziert werden durch Hinzunahme einer Ord-
nungssteuerung. Hierzu setzen wir voraus, dass mehrere Verfahren
mit den Konvergenzordnungen p = 1, 2, . . . , pmax verfügbar sind
(pmax = 5− 15 in der Praxis). Die Idee ist nun dasjenige Verfahren
auszuwählen, bei dem die Schrittweitenkontrolle die größte Schritt-
weitenschätzung im nächsten Schritt ergibt.

Es sei die Schrittweite h bereits gewählt und die Ordnung p vorge-
schlagen. Wir berechnen dann drei Näherungen mittels der Ver-
fahren für Ordnung p− 1, p, p + 1. Zu jeder Methode wird eine
Schätzung der optimalen Schrittweite hp−1, hp, hp+1 bestimmt. Falls
eine dieser Schrittweiten größergleich h ist, so wird der Schritt mit
der entsprechenden Näherung akzeptiert.

Desweiteren benötigen wir eine Zahl wp, welche den Rechenaufwand
im Verfahren der Ordnung p quantifiziert. (Beispielsweise kann dies
die Anzahl der Funktionsauswertungen der rechten Seite der Dgl.
sein.) Nun folgt aus jedem Verfahren eine Schätzung

σp−1 =
wp−1

hp−1
, σp =

wp

hp
, σp+1 =

wp+1

hp+1

des Rechenaufwands pro Einheitsschrittweite (h = 1). Wir verwen-
den im nächsten Integrationsschritt die Ordnung p̂ mit dem klein-
sten Wert σp̂ als Vorschlag für eine optimale Ordnung. Die Schritt-
weite hp̂ wird im nächsten Schritt wieder in allen drei Methoden für
p̂− 1, p̂, p̂+ 1 verwendet.

Algorithmen zu linearen MSV verwenden üblicherweise Ordnungs-
steuerung, beispielsweise die Adams-Methoden oder die BDF-Me-
thoden. Der Grund ist, dass der Rechenaufwand wp nahezu un-
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abhängig vom Wert p in diesen Verfahren ist. Man beachte, dass
nur m+1 zusätzliche Funktionsaufswertungen in jedem Schritt der
P(EC)mE-Method bei beliebiger Ordnung erforderlich sind, da die
anderen Funktionsauswertungen bereits aus den vorangegangenen
Schritten vorliegen. Im Gegensatz dazu ist der Aufwand bei explizi-
ten Runge-Kutta-Verfahren ungefähr wp ≈ Cp mit einer Konstan-
ten C, weil p ≈ s mit der Stufenzahl s gilt und die Anzahl der
Funktionsauswertungen identisch mit s ist.

Eine weitere Klasse von Verfahren, bei der sich eine Ordnungssteue-
rung in natürlicher Weise anbietet, sind die Extrapolationsmetho-
den. Diese Techniken können auf der Grundlage von sowohl Ein-
schrittverfahren als auch Mehrschrittverfahren konstruiert werden.

Es sei betont, dass die Implementierung einer Ordnungssteuerung
noch viele hochentwickelte Einzelheiten in Abhängigkeit von den
jeweiligen Verfahren enthält, auf die in diesem Abschnitt nicht näher
eingegangen wurde.
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4 Methoden für steife Differentialgleichungen

Steife Systeme von gewöhnlichen Differentialgleichungen treten in
vielen Anwendungen auf wie beispielsweise in der chemischen Re-
aktionskinetik, in der Mechanik und bei der Simulation elektrischer
Schaltungen. Theoretisch können diese Systeme mit jedem konver-
genten Verfahren aus den vorhergehenden beiden Kapiteln nume-
risch gelöst werden. Jedoch sind explizite Methoden vollkommen in-
effizient bei steifen Differentialgleichungen. Dies motiviert die Not-
wendigkeit von impliziten Methoden.

4.1 Beispiele

Um das Phänomen der Steifheit zu verdeutlichen betrachten wir
zwei Beispiele: ein lineares System und den Van-der-Pol Oszillator.

Lineares System gew. Dgln.

Wir untersuchen ein bestimmtes lineares System aus gew. Dgln.,
nämlich (

y′1(x)
y′2(x)

)
=

(
−298 99
−594 197

)(
y1(x)
y2(x)

)
. (4.1)

Die Matrix besitzt die Eigenwerte λ1 = −1 und λ2 = −100 mit den
Eigenvektoren v1 = (1, 3)⊤ und v2 = (1, 2)⊤. Die allgemeine Lösung
des Systems (4.1) lautet

y(x) = C1e
−x

(
1
3

)
+ C2e

−100x

(
1
2

)
mit beliebigen Konstanten C1, C2 ∈ R. Alle Lösungen besitzen die
Eigenschaft

lim
x→∞

y(x) = 0.

Jedoch fällt einer der beiden Terme (der zu λ2) sehr schnell ab,
während der andere Term (der zu λ1) sich relativ langsam verändert.
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Abbildung 11: Steifes lineares System: exakte Lösung (links) – y1 (—) und y2
(- - -) – und Näherungen aus der expliziten Methode mit Schrittweitenkontrolle
(rechts).

Wir betrachten das Anfangswertproblem y1(0) = −1
2 , y2(0) = 1

2 .
Abb. 11 (links) zeigt die zugehörige Lösung. Wir verwenden wie-
der ein explizites Runge-Kutta-Verfahren der Ordnung 2(3) und
die implizite Trapezregel jeweils mit Schrittweitensteuerung (rtol =
10−3, atol = 10−6). Im Intervall x ∈ [0, 10] benötigt das explizite
Verfahren 413 Schritte und das implizite Verfahren führt 94 Schrit-
te durch. Abb. 11 (rechts) zeigt, dass die explizite Methode auch
kleine Schrittweiten gegen Ende des Intervalls wählt, während die
Lösung dort nahezu konstant ist. Wenn die Schrittweiten in der ex-
pliziten Methode vergrößert werden, dann entstehen vollkommen
falsche Näherungen. Wir möchten dieses unterschiedliche Verhalten
der Integrationsverfahren verstehen.

In diesem Beispiel kann das steife Verhalten wie folgt charakteri-
siert werden: Die Lösungen von Anfangswertproblemen nähern sich
schnell einer Lösung, welche sich nur langsam verändert. Jedoch
gibt es sich schnell verändernde Lösungen in einer Umgebung der
sich langsam verändernden Lösung.
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Abbildung 12: Lösungen des Van-der-Pol Oszillators.

Van-der-Pol Oszillator

Der Van-der-Pol Oszillator wird beschrieben durch eine gew. Dgl.
zweiter Ordnung

z′′(t) + µ(z(t)2 − 1)z′(t) + z(t) = 0

mit dem Parameter µ > 0. Die Lösung ist jeweils periodisch, wobei
die Periode von µ abhängt. Damit die Periode (nahezu) unabhängig
von µ wird, verwenden wir die Transformation x = t

µ . Es folgt mit
y(x) = z(µx)

1
µ2y

′′(x) + (y(x)2 − 1)y′(x) + y(x) = 0.

Die Anfangswerte seien y(0) = 2 und y′(0) = 0. Wir lösen das
äquivalente System erster Ordnung

y′1(x) = y2(x),

y′2(x) = −µ2((y1(x)
2 − 1)y2(x) + y1(x)).

Abb. 12 zeigt Lösungen für unterschiedliche Parameter µ.

Wir lösen das System mit zwei Methoden: ein explizites Runge-
Kutta-Verfahren der Ordnung 2(3) und die implizite Trapezregel
(Ordnung 2). In beiden Varianten wird eine lokale Fehlerkontrol-
le durchgeführt mit den Genauigkeitsforderungen rtol = 10−2 und
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explizites Verfahren implizites Verfahren
µ = 5 145 201
µ = 10 434 294
µ = 50 9017 483
µ = 100 36.067 542
µ = 200 144.453 616
µ = 1000 3.616.397 624

Tabelle 5: Anzahl der Schritte in der Simulation des Van-der-Pol Oszillators.

atol = 10−4. Die Integration erfolgt im Intervall x ∈ [0, 5]. Tabelle 5
enthält die Anzahl der benötigten Schritte für verschiedene Parame-
ter µ. Der Rechenaufwand ist proprotional zur Anzahl der Schritte
in jeder Methode. Wir bemerken, dass das explizite Verfahren mehr
Schritte benötigt je größer der Parameter µ ist. Falls die Schrittwei-
te im expliziten Verfahren erhöht wird, dann werden die Ergebnisse
deutlich falsch. Im Gegensatz dazu steigt die Anzahl der Schritte
im impliziten Verfahren nur geringfügig an. Damit ist die implizite
Variante überlegen. Das Verhalten des Systems aus gew. Dgln. für
hohe Parameter µ nennt man steif.

4.2 Testgleichungen

Wir analysieren das obige lineare Beispiel nun im allgemeinen Fall.
Gegeben sei ein lineares System von gew. Dgln.

y′(x) = Ay(x), y : R→ R
n, A ∈ Rn×n. (4.2)

Wir nehmen an, dass die Koeffizientenmatrix diagonalisierbar ist:

A = T−1DT, T ∈ Cn×n, D = diag(λ1, . . . , λn).

Die Eigenwerte λ1, . . . , λn ∈ C können auch für reellwertige Ma-
trix A komplexe Zahlen sein. Die Transformation z(x) = Ty(x)
entkoppelt das System in unabhängige skalare lineare gew. Dgln.

z′j(x) = λjzj(x) für j = 1, . . . , n. (4.3)

Entsprechend transformieren sich die Anfangswerte z(x0) = Ty(x0).
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Dahlquist’sche Testgleichung

Motiviert durch die entkoppelten Dgln. (4.3) diskutieren wir die
skalare lineare Dgl.

y′(x) = λy(x), y : R→ C, λ ∈ C. (4.4)

Die Dgl. (4.4) nennt man Dahlquist’sche Testgleichung (1963). Zu
einem Anfangswert y(0) = y0 lautet die exakte Lösung

y(x) = y0e
λx = y0e

Re(λ)x · ei·Im(λ)x.

Es folgt
|y(x)| = |y0| · eRe(λ)x.

Falls Re(λ) < 0 gilt, dann fällt die Lösung streng monoton.

Wir wenden das explizite und implizite Euler-Verfahren auf dieses
Testproblem an. Abb. 13 verdeutlicht die numerischen Lösungen für
λ = −10 und y0 = 1. Wir erkennen, dass das implizite Verfahren
das qualitative Verhalten der exakten Lösung für alle Schrittwei-
ten reproduziert. Andererseits liefert das explizite Verfahren nur
für kleine Schrittweiten das qualitativ korrekte Verhalten.

Es ist einfach dieses Verhalten der Euler-Methoden zu erklären:

(i) explizites Euler-Verfahren
Anwendung auf die Dahlquist-Testgleichung (4.4) ergibt

y1 = y0 + hλy0 = (1 + hλ)y0.

Es folgt sukzessive (yj ist Näherung zu y(jh))

yj = (1 + hλ)j y0.

Somit gilt |yj| ≤ |yj−1| genau dann, wenn

|1 + hλ| ≤ 1.

Für λ ∈ R und λ < 0 (und natürlich h > 0), erhalten wir eine
Schrittweitenrestriktion

h ≤ 2
|λ| .
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explizites Euler-Verfahren :

−1 0 1 2 3 4 5

−1

0

1

x

y
h=0.1

−1 0 1 2 3 4 5

−1

0

1

x

y
h=0.18

−1 0 1 2 3 4 5

−1

0

1

x

y
h=0.2

−1 0 1 2 3 4 5

−1

0

1

x

y
h=1

implizites Euler-Verfahren :
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Abbildung 13: Lösungen der Dahlquist’schen Testgleichung mit λ = −10: exakte
Lösung (—) und Näherungen (◦).
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Nur Schrittweiten, die diese Bedingung erfüllen, ergeben Ap-
proximation, die nicht ansteigen. Für hohe |λ| muss die Schritt-
weite h klein sein.

(ii) Implizites Euler-Verfahren
Nun führt die Dahlquist-Testgleichung (4.4) auf die Formel

y1 = y0 + hλy1 ⇒ y1 =
1

1− hλ
y0.

Wir erhalten die Näherungen

yj =

(
1

1− hλ

)j

y0.

Die Eigenschaft |yj| ≤ |yj−1| ist erfüllt genau dann, wenn∣∣∣∣ 1

1− hλ

∣∣∣∣ ≤ 1 ⇔ 1 ≤ |1− hλ|

gilt. Für λ ∈ R und λ < 0 ist diese Eigenschaft bei beliebiger
Schrittweite h > 0 gegeben. Daher tritt keine Schrittweitenre-
striktion auf.

Wir untersuchen die Dahlquist’sche Testgleichung im Fall von Pa-
rametern λ mit hohem negativen Realteil. Man beachte, dass die
zugehörige Lipschitz-Konstante der rechten Seite dann auch groß
wird, da mit f(x, y) = λy folgt

|f(x, y)− f(x, z)| = |λy − λz| = |λ| · |y − z|.

Bei einer Fixpunktiteration in einer Prädiktor-Korrektor-Methode,
siehe Abschnitt 3.4, wäre eine deutliche Schrittweitenrestriktion er-
forderlich um die Konvergenz der Iteration sicherzustellen.
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Abbildung 14: Lösungen von verschiedenen Anfangswertproblemen zur Prothero-
Robinson Testgleichung mit Parameter λ = −100 und den Funktionen φ(x) =
2x− 1 (links) sowie φ(x) = sin(2πx) (rechts).

Prothero-Robinson Testgleichung

Ein anderes skalares Problem, welches das steife Verhalten verdeut-
licht, ist die Prothero-Robinson Testgleichung (1973)

y′(x) = λ(y(x)− φ(x)) + φ′(x), y(x0) = y0 (4.5)

mit der Lösung y : R → R und einem reellen Parameter λ < 0.
Die glatte Funktion φ : R → R sei vorgegeben. Die Lösungen von
Anfangswertproblemen zu (4.5) lauten

y(x) = (y0 − φ(x0))e
λ(x−x0) + φ(x).

Die spezielle Lösung y ≡ φ stellt die asymptotische Phase dar, d.h.
die anderen Lösungen nähern sich dieser Funktion schnell an im
Fall von hohen negativen Werten λ. Abb. 14 zeigt zwei Beispiele.
Desweiteren ergibt der Spezialfall φ ≡ 0 die Dahlquist’sche Test-
gleichung (4.4).
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Definition von steifen linearen Systemen

Wir definieren nun das Phänomen der Steifheit für lineare Differen-
tialgleichungssysteme. Man beachte, dass es keine exakte Definition
von Steifheit (für lineare oder nichtlineare Systeme) gibt. Ein Grund
dafür ist, dass Steifheit nicht nur eine qualitatives Eigenschaft son-
dern auch ein quantitatives Verhalten bedeutet. Wir geben zwei
Definitionen an:

• Wir nehmen an, dass im linearen System y′ = Ax die Ei-
genwerte λj alle negativen Realteil besitzen. Das System ist
steif, wenn sowohl Eigenwerte mit kleinem negativen Realteil
als auch Eigenwerte mit hohem negativen Realteil existieren,
d.h. das Verhältnis

max
j=1,...,n

|Re(λj)|

min
j=1,...,n

|Re(λj)|
(4.6)

ist sehr groß. (Falls alle Eigenwerte einen hohen negativen Real-
teil in der gleichen Größenordnung besitzen, d.h. das Verhält-
nis (4.6) ist klein, dann kann das steife Verhalten aus dem
System heraustransformiert werden.)

• Die folgende Charakterisierung von Curtis und Hirschfelder
(1952) geht auf ihre Beobachtungen bei der Simulation von
chemischer Reaktionskinetik zurück (und gilt auch für nichtli-
neare Systeme):

”
Stiff equations are equations, where certain

implicit methods perform better – usually tremendously better
– than explicit ones.“ In Kurzform:

Implizit ist besser als explizit.
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4.3 A-Stabilität für Einschrittverfahren

Die Eigenschaften der Euler-Verfahren bei Anwendung auf die Dahl-
quist’sche Testgleichung (4.4) motiviert die Definition eines Stabi-
litätskonzepts. Stabilität bedeutet hier eine notwendige (nicht hin-
reichende) Bedingung um geeignete Näherungen zu erhalten. In die-
sem Abschnitt betrachten wir nur Einschrittverfahren.

Definition 4.1 (A-Stabilität für Einschrittverfahren)
Ein Einschrittverfahren heißt A-stabil, wenn die zugehörige Folge
von Näherungen (yj)j∈N zur Dahlquist-Gleichung (4.4) mit Re(λ) ≤
0 für alle Schrittweiten h > 0 nicht ansteigt, d.h. |yj+1| ≤ |yj| gilt
für alle j.

Wenn ein Einschrittverfahren A-stabil ist, dann ist es geeignet zur
numerischen Lösung von steifen linearen Differentialgleichungssy-
stemen. Umgekehrt sollte eine Methode, die nicht A-stabil ist, auch
nicht bei (linearen oder nichtlinearen) steifen Problemen verwendet
werden.

Wir möchten eine Technik erhalten, mit der nachgewiesen werden
kann, ob ein Verfahren A-stabil ist oder nicht. Als Abkürzung sei
z := hλ ∈ C. Auf einem äquidistanten Gitter xj = x0 + jh erfüllt
die exakte Lösung der Dahlquist-Gleichung (4.4)

y(xj+1) = ehλy(xj) = ezy(xj).

Dadurch gilt |y(xj+1)| ≤ |y(xj)| genau dann, wenn Re(λ) ≤ 0, wel-
ches äquivalent ist zu Re(z) ≤ 0.

Definition 4.2 (Stabilitätsfunktion zu Einschrittverfahren)
Falls ein Einschrittverfahren bei Anwendung auf die Dahlquist-Glei-
chung in der Form yj+1 = R(z)yj mit z = hλ geschrieben werden
kann, dann heißt R : C→ C die Stabilitätsfunktion des Verfahrens.
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Die Euler-Verfahren angewendet auf die Dahlquist’sche Testglei-
chung lauten

yj+1 = R(z)yj

mit

expl. Euler : R(z) = 1 + z, impl. Euler : R(z) =
1

1− z
.

Wir möchten, dass |R(z)| ≤ 1 für alle z mit Re(z) ≤ 0 erfüllt
ist. Jedes Einschrittverfahren besitzt eine Darstellung y1 = R(z)y0.
Die Abbildung R : C → C nennt man die Stabilitätsfunktion des
Verfahrens.

Definition 4.3 (Stabilitätsgebiet von Einschrittverfahren)
Das Stabilitätsgebiet S ⊂ C eines Einschrittverfahrens y1 = R(z)y0
ist die Menge

S := {z ∈ C : |R(z)| ≤ 1}.

Desweiteren sei C− := {z ∈ C : Re(z) ≤ 0}. Dadurch lässt sich die
A-Stabilität charakterisieren durch

A-stabil ⇔ |R(z)| ≤ 1 für alle z ∈ C− ⇔ C
− ⊆ S.

Für die Euler-Verfahren erhalten wir die Stabilitätsgebiete

expl. Euler: S = {z ∈ C : |1 + z| ≤ 1},
impl. Euler: S =

{
z ∈ C :

∣∣ 1
1−z

∣∣ ≤ 1
}
= {z ∈ C : 1 ≤ |1− z|}.

Diese Stabilitätsgebiete sind das Innere eines Kreises um z = −1 mit
Radius 1 bzw. das Äußere eines Kreises um z = 1 mit Radius 1, siehe
Abb. 15. Dadurch gilt C− ⊆ S für das implizite Euler-Verfahren,
jedoch nicht für das explizite Euler-Verfahren.
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Beispiel: Trapezregel

Die Trapezregel angewendet auf die Dahlquist’sche Testgleichung
(4.4) liefert

y1 = y0 +
h
2 [λy0 + λy1] .

Es folgt

y1 =
1 + 1

2hλ

1− 1
2hλ

y0.

Die Stabilitätsfunktion ergibt sich zu

R(z) =
1 + 1

2z

1− 1
2z

.

Eine genauere Untersuchung ergibt, dass hier S = C
− erfüllt ist.

Somit ist die Trapezregel A-stabil.

Beispiel: Explizite Mittelpunktregel (Collatz-Verfahren)

Die explizite Mittelpunktregel (2.6) führt auf

y1 = y0 + hλ
(
y0 +

h
2λy0

)
=
(
1 + hλ+ 1

2h
2λ2
)
y0

bei der Dahlquist-Gleichung (4.4). Es folgt die Stabilitätsfunktion

R(z) = 1 + z + 1
2z

2.

Die explizite Mittelpunktregel ist nicht A-stabil, da das Stabilitäts-
gebiet beschränkt ist.

Abb. 15 demonstriert die Stabilitätsgebiete dieser vier grundlegen-
den Einschrittverfahren, vergleiche Abschnitt 2.2.
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Abbildung 15: Stabilitätsgebiete für einige wichtige Einschrittverfahren.
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Allgemeines Runge-Kutta-Verfahren

Ein allgemeines Runge-Kutta-Verfahren mit s Stufen zum Anfangs-
wertproblem y′ = f(x, y), y(x0) = y0 lautet

ki = f
(
x0 + cih, y0 + h

s∑
j=1

aijkj

)
für i = 1, . . . , s ,

y1 = y0 + h
s∑

i=1

biki.

Die Methode ist eindeutig festgelegt durch ihre Koeffizienten

c = (ci) ∈ Rs, b = (bi) ∈ Rs, A = (aij) ∈ Rs×s.

Im Fall der Dahlquist’schen Testgleichung y′ = λy kann eine Formel
für die Stabilitätsfunktion des Verfahrens hergeleitet werden. Diese
Formel gilt für sowohl explizite als auch implizite Verfahren.

Satz 4.4 (Stabilitätsfunktion bei Runge-Kutta-Verfahren)
Die Stabilitätsfunktion eines Runge-Kutta-Verfahrens ist gegeben
durch

R(z) = 1 + zb⊤(I − zA)−1
1 (4.7)

mit 1 := (1, . . . , 1)⊤ ∈ R
s und der Einheitsmatrix I ∈ R

s×s oder
äquivalent

R(z) =
det(I − zA+ z1b⊤)

det(I − zA)
. (4.8)

Satz 4.4 zeigt, dass die Stabilitätsfunktion eines Runge-Kutta-Ver-
fahrens eine rationale Funktion in der unabhängigen Veränderli-
chen z darstellt. Die Stabilitätsfunktion ist nicht definiert an Stellen
mit det(I − zA) = 0. Daher kann eine endliche Anzahl von Polen
auftreten.

Für A-stabile Runge-Kutta Verfahren zeigt sich folgende Einschränk-
ung.
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Satz 4.5 Ein konvergentes explizites Runge-Kutta-Verfahren ist nie-
mals A-stabil.

Beweis:

Ein explizites Runge-Kutta-Verfahren besitzt eine strikte untere
Dreiecksmatrix A. Es folgt det(I − zA) = 1 für alle z ∈ C. Die
Stabilitätsfunktion eines expliziten Runge-Kutta-Verfahrens ist laut
Formel (4.8) somit ein Polynom

R(z) = α0 + α1z + α2z
2 + · · ·+ αs−1z

s−1 + αsz
s.

Damit gilt

|R(z)| Re(z)→−∞−→ +∞
sofern das Polynom nicht konstant ist.

Wäre das Polynom konstant, d.h. R(z) = C, dann hätte man bei
der Dahlquist’schen Testgleichung die Näherungen yj+1 = Cyj und
insbesondere |yj| = |C|j|y0|. Die Folge der Näherungen wäre damit
entweder monoton fallend oder streng monoton steigend je nach
Konstante C. Mit der Konvergenz des Verfahrens muss jedoch die
Folge streng monoton steigen für Re(λ) > 0 und streng monoton fal-
len für Re(λ) < 0. Dies ergibt einen Widerspruch und das Polynom
muss konstant sein.

Ein explizites Runge-Kutta-Verfahren kann daher nicht A-stabil
sein. □

Nur implizite Runge-Kutta-Verfahren können somit A-stabil sein.
Jedoch ist nicht jedes implizite Runge-Kutta-Verfahren A-stabil.

L-Stabilität

Das Konzept der L-Stabilität stellt eine Verschärfung der A-Stabilität
dar. Wieder beruht diese Bedingung auf der Dahlquist’schen Test-
gleichung (4.4). Die exakte Lösung erfüllt die Gleichung

y(h) = ezy(0) mit z = hλ.
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Im Grenzfall von Parametern λ mit riesigem negativen Realteil folgt

lim
Re(z)→−∞

y(h) = y(0) lim
Re(z)→−∞

ez = 0.

Wir möchten, dass die Näherungen

y1 = R(z)y0

aus einem Einschrittverfahren diese Eigenschaft erben.

Definition 4.6 (L-Stabilität für Einschrittverfahren)
Ein Einschrittverfahren heißt L-stabil, wenn es A-stabil ist und zu-
sätzlich gilt

lim
z→∞

R(z) = 0.

L-stabile Verfahren eignen sich zur numerischen Lösung von extrem
steifen Differentialgleichungen. Man beachte, dass R(z) eine ratio-
nale Funktion bei Runge-Kutta-Verfahren ist. Daher gilt

lim
Re(z)→−∞

R(z) = lim
|z|→∞

R(z) = lim
z→∞

R(z)

vorausgesetzt die Grenzwerte existieren. Eine rationale Funktion
R(z) besitzt die Gestalt

R(z) =
a0 + a1z + · · ·+ an−1z

n−1 + anz
n

b0 + b1z + · · ·+ bm−1zm−1 + bmzm

mit an, bm ̸= 0. Somit folgt

lim
z→∞

|R(z)|


= 0 für n < m,

=
∣∣∣anbn ∣∣∣ für n = m,

→ ∞ für n > m.

Das implizite Euler-Verfahren ist auch L-stabil, weil

lim
z→∞

R(z) = lim
z→∞

1

1− z
= 0.
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Jedoch folgt bei der Trapezregel für ω ∈ R

|R(iω)|2 =
|1 + 1

2 iω|
2

|1− 1
2 iω|2

=
1 + 1

4ω
2

1 + 1
4ω

2
= 1.

Da R(z) eine rationale Funktion ist, ergibt sich

lim
z→∞

R(z) = 1

und daher ist die Trapezregel nicht L-stabil. Somit ist die Trapez-
regel ungeeignet für extrem steife lineare Probleme.

Lösung der nichtlinearen Gleichungssysteme

Es wird noch die effiziente Lösung der nichtlinearen Gleichungssy-
steme, die bei impliziten Runge-Kutta-Verfahren entstehen, ange-
sprochen. In einem einzelnen Integrationsschritt zu einem nichtli-
nearen Differentialgleichungssystem y′ = f(x, y) mit y : R → R

n

entsteht das Verfahren

ki = f
(
xi, y0 + h

s∑
j=1

aijkj

)
für i = 1, . . . , s

y1 = y0 + h

s∑
i=1

biki

mit xi = x0 + cih. Darin enthalten ist das nichtlineare Gleichungs-
system G(K) = 0 mit K ∈ Rsn und G : Rsn → R

sn

K :=

k1
...
ks

 , G(K) :=


k1 − f

(
x1, y0 + h

s∑
j=1

a1jkj

)
...

ks − f
(
xs, y0 + h

s∑
j=1

asjkj

)


.

Dieses nichtlineare Gleichungssystem wird mit dem vereinfachten
Newton-Verfahren iterativ gelöst. Da ki = O(h) gilt, sind als Start-

werte k
(0)
i = 0 für i = 1, . . . , s geeignet. Die Iterationsvorschrift
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lautet

DG(K(0))∆K(ν) = −G(K(ν))

K(ν+1) = K(ν) +∆K(ν) für ν = 0, 1, 2, . . . .

Die darin auftretende Iterationsmatrix besitzt wegen K(0) = 0 die
Gestalt

DG(K(0)) := Isn − h

a11Df (x1, y0) · · · a1sDf (x1, y0)
...

...
as1Df (xs, y0) · · · assDf (xs, y0)

 .

Da xi = x0 = cih = x0 + O(h) gilt, kann man die Matrix wei-
ter vereinfachen, indem Df (xi, y0) durch Df (x0, y0) für alle i =
1, . . . , s ersetzt wird. Dadurch ist zur Berechnung der Iterationsma-
trix DG(K(0)) nur eine Jacobi-Matrix der Funktion f auszuwerten.

Der Rechenaufwand für eine LR-Zerlegung der Matrix DG beträgt
etwa 2

3(sn)
3 Operationen, d.h. eine Proportionalität zu s3n3. Ist die

Matrix A−1 jedoch reell diagonalisierbar, dann kann die Iterations-
matrix DG mit einem Rechenaufwand von nur ca. sn Operationen
auf eine Block-Diagonalform mit s Blöcken der Dimension n trans-
formiert werden. Somit sind nur s separate LR-Zerlegungen erfor-
derlich und der Rechenaufwand ca. 2

3n
3 pro Teilsystem.

Zudem kann ein besonders günstiger Rechenaufwand in den fol-
genden beiden Spezialfällen von Runge-Kutta-Verfahren erhalten
werden.

Definition 4.7 (Diagonal-implizite Verfahren)
Ein Runge-Kutta-Verfahren (2.20) mit der Matrix A ∈ R

s×s der
inneren Gewichte heißt

• diagonal-implizites R.-K.-V. (DIRK), wenn A eine untere Drei-
ecksmatrix ist (d.h. aij = 0 für i < j) und aii ̸= 0 für ein i gilt,

• einfach diagonal-implizites R.-K.-V. (SDIRK von engl. singly
DIRK), falls zudem noch a11 = a22 = · · · = ass gilt.
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In einem DIRK Verfahren vereinfachen sich die nichtlinearen Glei-
chungssysteme zu

ki = f
(
x0 + cih, y0 + h

i∑
j=1

aijkj

)
für i = 1, . . . , s. Diese Gleichungen können in Nullstellenform ge-
schrieben werden mit Funktionen Gi : R

n → R
n

Gi(ki) = ki − f
(
x0 + cih, y0 + haiiki + h

i−1∑
j=1

aijkj

)
für i = 1, . . . , s. Somit liegen hier s nichtlineare Gleichungssyste-
me jeweils für die Unbekannten k1, . . . , ks vor. Für festes i sind die
Näherungen für k1, . . . , ki−1 bereits berechnet und nur ki ist unbe-
kannt. Die Jacobi-Matrizen der einzelnen Funktionen Gi lauten

DGi(ki) = In − haiiDf
(
x0 + cih, y0 + haiiki + h

i−1∑
j=1

aijkj

)
für i = 1, . . . , s mit der Einheitsmatrix I ∈ Rn×n. Im vereinfachten
Newton-Verfahren werden die Startwerte k

(0)
i = 0 verwendet, wo-

durch die Koeffizientenmatrizen DGi(0) entstehen. Mit den zusätz-
lichen Vereinfachungen x0 + cjh ≈ x0 und kj ≈ 0 folgen in den
linearen Gleichungssystemen die Koeffizientenmatrizen

Mi = In − haiiDf(x0, y0)

für i = 1, . . . , s. Dadurch die nur eine Jacobi-Matrix Df pro Inte-
grationsschritt auszuwerten. Bei einer DIRK Methode müssen da-
her nur s separate LR-Zerlegungen der Dimension n durchgeführt
werden.

Bei einer SDIRK Methode sind wegen a11 = · · · = ass die verein-
fachten Koeffizientenmatrizen Mi identisch. Nun ist sogar nur eine
einzige LR-Zerlegung der Dimension n erforderlich.
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4.4 A-Stabilität für Mehrschrittverfahren

Nun erfolgt die Untersuchung von linearen MSVen (3.9) bei Anwen-
dung auf steife Differentialgleichungen. Ein lineares Mehrschrittver-
fahren ist (numerisch) stabil genau dann, wenn sein charakteristi-
sches Polynom die Wurzelbedingung aus Def. 3.5 erfüllt.

Die Anwendung eines linearen k-Schritt-Verfahrens (3.9) auf die
Dahlquist-Testgleichung (4.4) führt auf die homogene lineare Diffe-
renzengleichung

k∑
ℓ=0

αℓyi+ℓ = h

k∑
ℓ=0

βℓλyi+ℓ ⇒
k∑

ℓ=0

(αℓ − hλβℓ) yi+ℓ = 0.

Mit z := hλ lautet das zugehörige charakteristische Polynom

qz : C→ C, qz(ξ) =
k∑

ℓ=0

(αℓ − zβℓ)ξ
ℓ. (4.9)

Man kann zeigen, dass alle Lösungen dieser Differenzengleichung
beschränkt sind genau dann, wenn das charakteristische Polynom
die Wurzelbedingung erfüllt. Die Nullstellen ξ1, . . . , ξk von qz hängen
von z ab.

Sei Re(λ) ≤ 0 in der Dahlquist’schen Testgleichung (4.4). Die exak-
ten Lösungen sind vom Betrag her dann monoton fallend. Insbeson-
dere sind sie dadurch beschränkt. Die numerische Lösung aus einem
linearen Mehrschrittverfahren kann zunächst leicht ansteigen. Da-
her wird nur gefordert, dass die numerische Lösung für alle Schritt-
weiten beschränkt ist. Die Wurzelbedingung führt auf die folgende
Definition.

Definition 4.8 (Stabilitätsgebiet eines Mehrschrittverf.)
Das Stabilitätsgebiet S ⊂ C zu einem linearen Mehrschrittverfahren
lautet

S := {z ∈ C : für alle Nullstellen ξ von qz gilt

|ξ| ≤ 1 und |ξ| < 1 für mehrfache Nullstellen}.
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Jetzt kann die A-Stabilität von Mehrschrittverfahren wie bei Ein-
schrittverfahren festgelegt werden.

Definition 4.9 (A-Stabilität von Mehrschrittverfahren)
Ein lineares Mehrschrittverfahren heißt A-stabil, wenn sein Stabi-
litätsgebiet die Bedingung C− ⊆ S erfüllt.

Man kann zeigen, dass die A-Stabilität von Einschrittverfahren aus
Def. 4.1 äquivalent ist zur A-Stabilität von linearen Einschrittver-
fahren aus Def. 4.9. Ein lineares Einschrittverfahren (k = 1) besitzt
die Gestalt

α1y1 + α0y0 = h [β1f(x1, y1) + β0f(x0, y0)] .

Bei Anwendung auf die Testgleichung (4.4) folgt

α1y1 + α0y0 = h [β1λy1 + β0λy0] ⇒ y1 =
−α0 + zβ0
α1 − zβ1︸ ︷︷ ︸

R(z)

y0.

Das zugehörige charakteristisches Polynom lautet

qz(ξ) = (α1 − zβ1)ξ + (α0 − zβ0).

Dieses Polynom besitzt nur die einfache Nullstelle

ξ1(z) =
−α0 + zβ0
α1 − zβ1

.

Andererseits stimmt die Stabilitätsfunktion R(z) dieses Einschritt-
verfahrens mit der Nullstelle ξ1(z) des Polynoms überein. Folglich
sind die Bedingungen |R(z)| ≤ 1 und |ξ1(z)| ≤ 1 für alle z mit
Re(z) ≤ 0 äquivalent.

Das Konzept der A-Stabilität für lineare k-Schritt-Verfahren ist im
Fall k > 1 etwas schwächer als bei Einschrittverfahren. Der Spezi-
alfall z = 0 entspricht der numerischen Stabiltiät des Mehrschritt-
verfahrens, siehe Def. 3.5.

Wieder ergibt sich, dass explizite Verfahren nicht geeignet für steife
Differentialgleichungen sind.
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Satz 4.10 Ein konvergentes explizites lineares Mehrschrittverfah-
ren hat ein beschränktes Stabilitätsgebiet und ist somit nie A-stabil.

Beweis:

Ein explizites lineares Mehrschrittverfahren (3.9) besitzt die Eigen-
schaft βk = 0. O.E.d.A. sei αk = 1. Das charakteristische Polynom
bei Anwendung auf die Dahlquist’sche Testgleichung (4.4) lautet

qz(ξ) = ξk + (αk−1 − zβk−1)ξ
k−1 + · · ·+ (α1 − zβ1)ξ + (α0 − zβ0).

Das Polynom kann in der Gestalt

qz(ξ) = ξk + γk−1(z)ξ
k−1 + · · ·+ γ1(z)ξ + γ0(z)

= (ξ − ξ1(z))(ξ − ξ2(z)) · · · (ξ − ξk(z))

geschrieben werden mit den Nullstellen ξ1, . . . , ξk ∈ C abhängig
von z. Der Satz von Vieta, siehe S. 171 in [8], liefert die Formel

γk−i(z) = (−1)i
∑

1≤j1<j2<···<ji≤k

ξj1(z)ξj2(z) · · · ξji(z).

Angenommen das Stabilitätsgebiet S wäre unbeschränkt. Dann gibt
es eine Folge (zi)i∈N ⊂ S mit |zi| → ∞. Da das Verfahren kon-
vergent ist, muss mindestens ein Koeffizient βℓ ̸= 0 auftreten. Es
folgt |αℓ − ziβℓ| → ∞. Somit wird ein Koeffizient γℓ(z) von qz un-
beschränkt entlang der Folge. Wären alle Nullstellen beschränkt
entlang der Folge, dann wären durch die Formel von Vieta alle Ko-
effizienten beschränkt. Also muss mindestens eine Nullstelle ξj(z)
unbeschränkt entlang der Folge sein. Dadurch gilt |ξj(zi)| > 1 für
unendlich viele i. Aus Def. 4.8 des Stabilitätsgebiets S folgt dann
zi /∈ S für unendlich viele i. Dies steht im Widerspruch zu zi ∈ S für
alle i. Also ist S beschränkt. Die Bedingung C− ⊆ S aus Def. 4.9
kann nicht gelten. □
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Für implizite lineare Mehrschrittverfahren gilt βk ̸= 0 und das cha-
rakteristische Polynom lautet

qz(ξ) = (αk−zβk)ξ
k+(αk−1−zβk−1)ξ

k−1+· · ·+(α1−zβ1)ξ+(α0−zβ0).

die Nullstellen dieses Polynoms sind die gleichen wie von

q̃z(ξ) = ξk +
αk−1 − zβk−1

αk − zβk
ξk−1 + · · ·+ α1 − zβ1

αk − zβk
ξ +

α0 − zβ0
αk − zβk

unter der Voraussetzung αk − zβk ̸= 0. Nun sind die Koeffizien-
ten rationale Funktionen in der Variablen z. Die Koeffizienten sind
beschränkt für |z| → ∞. A-stabile Mehrschrittverfahren sind eine
Teilmenge der impliziten Verfahren. Jedoch gilt für die A-Stabilität
von Mehrschrittverfahren noch eine wesentliche Einschränkung.

Satz 4.11 (zweite Dahlquist-Schranke)
Ein lineares Mehrschrittverfahren, das konvergent von einer Ord-
nung p > 2 ist, kann nicht A-stabil sein.

Für ein k-Schritt-Verfahren möchte man eine Konvergenzordnung
p ≥ k erhalten (z.B. Adams-Verfahren, BDF-Methoden). Daher gibt
es keine A-stabilen Verfahren mit k > 2 Schritten und Konvergen-
zordnung p ≥ k.

A(α)-Stabilität

Die BDF-Verfahren mit k = 1 und k = 2 Schritten sind A-stabil,
während die BDF-Verfahren für k ≥ 3 nicht A-stabil sind. Trotzdem
zeigen die BDF-Methoden für k = 3, 4, 5 ein gutes Verhalten bei der
Lösung von steifen Problemen. Die Gestalt ihrer Stabilitätsgebiete
legt eine Modifikation des Konzepts der A-Stabilität nahe. Für 0 ≤
α ≤ π

2 sei Cα ⊂ C mit

Cα :=
{
z = |z| · eiφ ∈ C : |π − φ| ≤ α

}
.

Abb. 16 verdeutlicht dieses Gebiet.
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Abbildung 16: Gebiet Cα zur A(α)-Stabilität.

Definition 4.12 (A(α)-Stabilität)
Ein (Einschritt- oder Mehrschritt-) Verfahren heißt A(α)-stabil mit
einem Winkel α ∈ [0, π2 ], wenn sein Stabilitätsgebiet S die Bedin-
gung Cα ⊆ S erfüllt.

Ein Verfahren wird natürlicherweise durch das maximale α gekenn-
zeichnet, für das die A(α)-Stabilität noch gilt. Der Spezialfall α = π

2

entspricht der gewöhnlichen A-Stabilität wegen Cπ/2 = C
−. Ist α

nahe π
2 , dann ist die Methode für steife Differentialgleichungen noch

geeignet.

Die k-Schritt BDF-Verfahren besitzen die maximalen Winkel:

k 1 2 3 4 5 6

α 90◦ 90◦ 86.03◦ 73.35◦ 51.84◦ 17.84◦

Die BDF-Methoden für k ≥ 7 sind nicht A(α)-stabil für beliebiges
α ≥ 0. Diese Methoden sind auch nicht mehr numerisch stabil und
daher uninteressant.
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L-Stabilität

Eine Übertragung des Konzepts der L-Stabilität von Einschrittver-
fahren auf Mehrschrittverfahren kann wie folgt geschehen.

Definition 4.13 (L-Stabilität für Mehrschrittverfahren)
Ein Mehrschrittverfahren heißt L-stabil, wenn es A-stabil ist und
zusätzlich für die Nullstellen ξ1(z), . . . , ξk(z) des Polynoms qz(ξ)
aus (4.9) gilt

lim
z→∞

(
max

j=1,...,k
|ξj(z)|

)
= 0. (4.10)

Die Def. 4.13 ist im Einklang mit Def. 4.6 bei linearen Einschritt-
verfahren. Für lineare Einschrittverfahren liegt nur eine Nullstelle
ξ1(z) vor und diese erfüllt ξ1(z) = R(z). Somit gilt die Äquivalenz

lim
z→∞

|ξ1(z)| = 0 ⇔ lim
z→∞

|R(z)| = 0.

Nur wenige lineare Mehrschrittverfahren sind L-stabil. Ein Beispiel
eines L-stabilen Verfahren ist die BDF2-Methode.

Wegen Satz 4.11 kann es kein L-stabiles Mehrschrittverfahren mit
einer Ordnung p > 2 geben, obwohl die Bedingung (4.10) mögli-
cherweise erfüllt ist.
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4.5 Vergleich der Verfahrensklassen

In diesem Abschnitt werden die allgemeinen Eigenschaften von Ein-
schrittverfahren und Mehrschrittverfahren diskutiert und verglichen.
Jeder Typ hat seine eigenen Vor- und Nachteile.

Zuerst erfolgt eine Charakterisierung des Rechenaufwands bei ei-
nem einzelnen Integrationsschritt in der nachfolgenden Tabelle. Da-
bei wird davon ausgegangen, dass nichtlineare Gleichungssysteme
mit dem vereinfachten Newton-Verfahren iterativ gelöst werden. Zu-
dem wird im Runge-Kutta-Verfahren vorausgesetzt, dass die linea-
ren Gleichungssysteme auf Block-Diagonalform transformiert wer-
den können.

Runge-Kutta-Verfahren lineares Mehrschrittverfahren
s Stufen k Schritte

expl. s Aufwertungen von f eine Auswertung von f
impl. eine Jacobi-Matrix von f eine Jacobi-Matrix von f

LR-Zerl.: ≥ s · 2
3
n3 Operationen LR-Zerl.: ca. 2

3
n3 Operationen

(ca. 2
3
n3 Op. bei SDIRK)

pro Newton-Schritt: pro Newton-Schritt:
s Auswertungen von f eine Auswertung von f
s lineare Gl.sys. der Dim. n ein lineares Gl.sys. der Dim. n

Zusammenfassend ergibt sich in einem einzelnen Integrationsschritt
mit einem Runge-Kutta-Verfahren ein höherer Rechenaufwand als
bei einem linearen Mehrschrittverfahren. Jedoch ist für eine Beur-
teilung der Effizienz der Verfahren noch die Genauigkeit einzube-
ziehen, d.h. die Anzahl der benötigten Integrationsschritte für eine
vorgegebene Genauigkeit.

Die nachfolgende Tabelle zeigt einige Vorteile und Nachteile der
Einschrittverfahren gegenüber den Mehrschrittverfahren.
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Runge-Kutta-Verfahren lineare Mehrschrittverfahren

⊖ relativ hoher Rechenaufwand ⊕ relativ geringer Rechenaufwand
pro Schritt (abhängig von s) pro Schritt (unabhängig von k)

⊕ viele Koeffizienten (s2 + s) ⊖ nur 2k + 1 Koeffizienten
(zusätzliche Bedingungen erfüllbar) (niedrige Anzahl an Freiheitsgraden)

⊕ immer (numerisch) stabil ⊖ Wurzelbedingung für Stabilität
(keine Reduzierung der erforderlich
Freiheitsgrade) (Reduzierung der Freiheitsgrade,

erste Dahlquist-Schranke)

⊕ Verfahren hoher Ordnung für ⊖ nur Verfahren niedriger Ordnung sind
steife Probleme A-stabil (zweite Dahlquist-Schranke),
(A-Stabilität) nur A(α)-stabile Verfahren

höherer Ordnung

⊕ robuste Schrittweitensteuerung ⊖ Stabilitätsbedingung erfordert kleine
Änderungen in der Schrittweite
(z.B. bei BDF-Verfahren)

⊖ keine effiziente Ordnungssteuerung ⊕ effiziente Ordnungssteuerung

Man kann nicht folgern, dass Einschrittverfahren oder Mehrschritt-
verfahren im allgemeinen besser sind. Es hängt stets vom System
der Differentialgleichungen ab, ob ein Verfahren besser geeignet als
eine andere Methode ist.

Verfahren in MATLAB

In der Software MATLAB (MATrix LABoratory), Version 9.8.0
(R2020a) sind sieben Funktionen zur numerischen Lösung von An-
fangswertproblemen zu gewöhnlichen Differentialgleichungen y′ =
f(x, y), y(x0) = y0 verfügbar. Die nachfolgende Tabelle listet diese
Algorithmen auf. Die meisten dieser Methoden wurden in den vor-
angegangenen Kapiteln besprochen. Der Problemtyp, für das ein
Verfahren geeignet ist, wird angegeben. Alle Verfahren verwenden
eine Schrittweitensteuerung zur Kontrolle des lokalen Diskretisie-
rungsfehlers. Die Tabelle zeigt, welche Technik zur Schätzung des
lokalen Fehlers verwendet wird. Desweiteren benutzen zwei der Me-
thoden eine Ordnungssteuerung. Für weitere Einzelheiten zu diesen
Verfahren siehe [6].
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