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1 Problemstellung und Beispiele

Diese Veranstaltung behandelt die numerische Losung von Anfangs-
wertproblemen zu gewohnlichen Differentialgleichungen. Systeme
aus gewohnlichen Differentialgleichungen (gew. Dgln.) erster Ord-
nung besitzen die Gestalt

Y (@) = f(z,y(x)),
oder komponentenweise geschrieben

yll(x) - fl(xayl(x)v"'7yn(x))
yé@:) = f2($,y1($),...,yn($>>

@) = fule (@), .., yala).

Ein solches System besitzt im allgemeinen unendlich viele Losungen.
Daher sind zusétzliche Bedingungen notwendig, um eine eindeutige
Losung zu identifizieren.

Ein Anfangswertproblem (AWP) ergibt sich durch Vorgabe eines
Anfangswerts

y(wo) = Yo
zu einem bestimmten Anfangspunkt xgp € R zusammen mit einem

vorgegebenem Wert y, € R". Abb. 1 verdeutlicht diese Problem-
stellung.

Demgegeniiber liegt bei einem Randwertproblem (RWP) eine Be-
dingung vor, die sowohl einen Anfangszustand als auch einen End-
zustand einbezieht, d.h.

r(y(a), y(b)) =0
mit gegebener Funktion 7 : R x R"” — R" zu einem Intervall [a, b].
Beispielsweise ergibt sich ein periodisches RWP durch die Forderung

y(a) —y(b) = 0.
Eine gew. Dgl. n-ter Ordnung lautet
() = g(x, 2(x), 2 (), 2" (2), ..., 2"V (x)).
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Abbildung 1: Anfangswertproblem einer gewchnlichen Differentialgleichung.

Wir erhalten ein dquivalentes System erster Ordnung durch die De-
finition

— — ! —— —
Y1 = Z, Yo = 2, Ys ‘= 2, , Yp ‘= 2

Es folgt das System

Y=Y Yo=Us o s Un1=Yn» Yn=0T, Y1, ., Yn)

Daher betrachten wir in dieser Veranstaltung o.E.d.A. nur Systeme
erster Ordnung.

Desweiteren gibt es die Klasse der partiellen Differentialgleichungen
(part. Dgln.), wobei die Losung nicht mehr nur von einer unabhéngi-
gen Verdnderlichen sondern mehreren unabhéngigen Verdnderlichen
abhéngt. Hier konnen AWPe, RWPe oder Kombinationen aus bei-
den vorliegen.

In den meisten Féllen konnen AWPe oder RWPe von Dgln. nicht
analytisch gelost werden, d.h. es existiert keine geschlossene Formel
fiir die Losung. Auch wenn ein analytischer Losungsweg moglich ist,
so mochte man diesen meist vermeiden wegen des hohen Aufwands.
Daher sind numerische Verfahren fiir diese Probleme erforderlich.

Wir préasentieren spater Beispiele von Modellen aus gew. Dgln., die
in verschiedenen Anwendungsgebieten auftreten: in der Chemie (Re-
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aktionskinetik), in der Elektrotechnik (elektrische Schaltung) und
in der Mechanik (Mehrkérperproblem). In allen Féllen werden diese
mathematischen Modelle zur (ndherungsweisen) Beschreibung von
realen Prozessen eingesetzt. Wegen vereinfachender Modellannah-
men stellt die Losung der Dgln. eine Approximation der realen
Zustande dar.

1.1 Existenz und Eindeutigkeit

Gegeben sei das AWP

y'(x) = flz,y(x)), y(wo) =10 (1.1)

mit der rechten Seite f : G — R" auf einer offenen Menge G C
R x R". Es gilt (zg,y0) € G fiir den Anfangswert. Wir benttigen
als Voraussetzung die Existenz und Eindeutigkeit der Losung y. Der
Satz von Peano liefert eine Existenzaussage fiir eine stetige rech-
te Seite, jedoch keine Eindeutigkeitsaussage. Fiir die Eindeutigkeit
wird eine stérkere Eigenschaft benotigt.

Definition 1.1 Die rechte Seite f geniigt auf der offenen Menge G
einer globalen Lipschitz- Bedingung, wenn eine Konstante L > 0 exi-
stiert mat

1z, y) = f@, 2)[| < L-ly = =] (1.2)

fir alle (x,y),(x,z) € G. Die rechte Seite f erfillt eine lokale
Lipschitz-Bedingung, wenn zu jedem (z,9) € G eine Umgebung
U C G exisitert, so dass f auf U eine Lipschitz-Bedingung mit
einer von U abhdngigen Konstanten L > 0 erfiillt.

In dieser Definition wird eine beliebige Vektornorm || - || auf dem R"
verwendet. Hinreichend fiir die lokale Lipschitz-Bedingung ist, dass
f auf G beziiglich der Variablen y stetig differenzierbar ist. Der Satz
von Picard-Lindelof gibt nun eine Existenz- und Eindeutigkeitsaus-
sage.



Satz 1.2 (Picard-Lindel6f) Sei G C R x R" offen und f : G —
R" eine stetige Funktion, die eine lokale Lipschitz- Bedingung erfiillt.
Dann gibt es zu jedem Anfangswert (xg,yo) € G ein ¢ > 0 und eine
eindeutige Losung y : [xg — €,2¢0 + €] = R" des AWPs (1.1).

Beweis: sieche Satz 4 in Kapitel 12 aus [3].

1.2 Chemische Reaktionskinetik

Chemische Prozesse enthalten typischerweise bimolekulare Reaktio-
nen der Gestalt

A+ B — C + D.

Sei cg die Konzentration der Substanz S, welche von der Zeit ¢
abhéngt. Das zugehorige System gew. Dgln. lautet

A(t) = —kca(t)ep(t)
cg(t) = —kca(t)en(?)
ca(t) = +k ca(t)es(t) (13)

cp(t) = +kca(t)es(t).
Die Reaktionsrate k£ > 0 charakterisiert die Wahrscheinlichkeit der
chemischen Reaktion im Fall einer Kollision der Molekiile A und
B. Der Koeffizient k£ kann daher Geschwindigkeit der Reaktion in-
terpretiert werden. Die physikalische Einheit des Parameters £ ist
liter /(s mol). Anfangswerte sind fiir das System (1.3) vorzugeben.

Nun betrachten wir eine Menge aus m allgemeinen chemischen Re-
aktionen zwischen n verschiedenen Stoffen Aq,... A, (Molekiile

oder Atome), d.h.

k‘
ozlel + OéQjAQ + -4 OénjAn -2 71jA1 + ’YQ]'AQ + -+ ’anAn

fiir y =1,...,m oder dquivalent
i=1 i=1
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Die Parameter o;;,vi; € Ny stellen die stoichiometrischen Konstan-
ten dar. Die j-te Reaktion besitzt die Geschwindigkeit k; € R*. Es
entsteht als mathematisches Modell

dea. = - . .
a > (vij— ik [ Jea™  fir i=1,...n,
; I=1

1

welches ein System aus n gew. Dgln. fiir die unbekannten Konzen-
trationen darstellt. Die Auswertung der rechten Seite kann auto-
matisch erfolgen, wenn die Reaktionsgleichungen (1.4) spezifiziert
sind.

Die Hydrolyse von Harnstoff ist ein Beispiel fiir ein chemisches Reak-
tionssystem. Dabei reagiert Harnstoff (Urea) zusammen mit Wasser
zu Ammoniumcarbonat. Fiir eine geniigende Schnelligkeit der Re-
aktion ist die Hilfe des Enzyms Urease erforderlich, da es die Akti-
vierungsenergie verringert, d.h. das Enzym fungiert als Katalysator.
Das gesamte Reaktion lautet

(NH5)oCO 4+ 2 H,O + Urease —  (NH4)2COg + Urease. (1.5)

Dieser Prozess ergibt sich aus drei einfacheren Reaktionen. Mit den
Abkiirzungen U: Urea, E: Urease, UE: Kombination aus Urea and
Urease, A: Ammoniumcarbonat besteht die Reaktion (1.5) aus den
drei Anteilen

U+E — UE
UE 2 U+E (1.6)
k3

UE + 2 H,O

Die Parameter ki, ko, k3 spezifizieren die Reaktionsgeschwindigkei-
ten.

Wir konstruieren ein mathematisches Modell fiir dieses Reaktions-
system. Sei wieder cg die Konzentration der Substanz S in der Ein-
heit mol/liter (mol/1). Die zeitliche Anderung der Konzentrationen
soll bestimmt werden. Da alle Reaktionen in Wasser stattfinden und
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Abbildung 2: Simulation der Hydrolyse von Harnstoff.

die anderen Konzentrationen demgegeniiber relativ klein sind, neh-
men wir eine konstante Wasserkonzentration (55.56 mol/l) an. Die
Reaktionsgeschwindigkeiten sind

k=301 —l ky=002% k=014 (1.7)

Es folgt ein System aus vier gew. Dgln. fiir die unbekannten Kon-
zentrationen

¢y, = — kicucs + kaocug

/

¢y = — kicyeg + kocyp + kscue (1.8)
F )
Cug — kicucy — kocyp — kscug

/

CA — kSCUE'

Dieses System besitzt eine eindeutige Losung fiir vorgegebene An-
fangswerte. Wir verwenden die Anfangsbedingungen

cp =010 o =002 op=ci=0.  (19)



Wie bei vielen anderen Anwendungen ist eine analytische Losung
des Systems aus gew. Dgln. nicht moglich, d.h. wir konnen keine
explizite Formel fiir die unbekannte Losung erhalten. Daher ver-
wenden wir eine numerisches Verfahren um eine Néherungslosung
zu erhalten. Abb. 2 zeigt das Ergebnis.

Zum einen verringert sich die Konzentration von Harnstoff mit der
Zeit bis auf null, da die Substanz in der Hydrolyse abgebaut wird.
Zum anderen erhoht sich die Konzentration des Reaktionsprodukts
Ammoniumcarbonat bis kein Harnstoff mehr vorhanden ist. Die
Konzentration des Enzyms verringert sich zwar anfangs, jedoch liegt
am Ende wieder genau soviel Enzym vor wie zu Beginn.

1.3 Elektrische Schaltungen

Als ein einfaches Beispiel einer elektrischen Schaltung betrachten
wir den elektromagnetischen Schwingkreis. Dieser besteht aus einer
Kapazitdat C') einer Induktivitdt L und einem Widerstand R, siehe
Abb. 3 (links). Die Kirchhoffsche Knotenregel liefert die Gleichung

Ic+ 1,4+ 1 =0.

Die Kirchhoffsche Maschenregel impliziert U := Ugs = Uy, = Ug. Je-
des Element der Schaltung ist durch eine Strom-Spannungs-Relation
gekennzeichnet, ndmlich

U
CUL=1Ic, LI,=U, R=-=2
Ig
Es folgt ein lineares System aus zwei gew. Dgln.
U = -1, - LU
C RC 1.1
o= iU 140

fiir die unbekannten Funktionen U und [;. Weitere Umformungen
liefern eine gew. Dgl. zweiter Ordnung fiir die unbekannte Spannung

1 1 —
U"+ U+ 75U = 0.

7



U

i) g ar é

Abbildung 3: Elektromagnetischer Schwingkreis ohne (links) und mit (rechts)
Stromquelle.

e

Wenn der Widerstand hinreichend klein ist, dann entsteht als Losung
eine geddmpfte Schwingung

U(t) = e 770! [Asin (wt) + Beos (wt)] mit w = 1o — TRICE-

Die Konstanten A und B bestimmen sich aus Anfangsbedingungen.

Das System (1.10) aus gew. Dgln. ist autonom. Wir erhalten ei-
ne zeitabhéngiges System durch Hinzufiigen einer unabhéngigen
Stromquelle, siche Abb. 3 (rechts). Als Eingabe verwenden wir

Ii (t) = I() sin (Luot) .
Es folgen dann die Dgln.

U = %I — 35U — &1un(?)

I - 10 (1.11)

In diesem Fall entstehen als Spannungen und Stréme dann erzwun-
gene Schwingungen. Abb. 4 zeigt Beispiele zu Losungen von An-
fangswertproblemen der Systeme (1.10) und (1.11).



Spannung [V]
Spannung [V]

O‘ielt ;[ms]“Z “4 “6 T‘B 2 ) 0‘2 0‘4 U‘G U‘ieit ;[ms]“z
Abbildung 4: Losung U der Dgl. (1.10) (links) und der Dgl. (1.11) (rechts).

1.4 Mehrkorpersysteme

Wir betrachten ein Zwei-Koérper-Problem bestehend aus Partikeln
mit den Massen m;j, mo. Sel X, = (x;,yi, z;) die Position der i-ten
Masse. Die Positionen und die Geschwindigkeiten der Kérper héngen
von der Zeit ab. Die Gravitation bewirkt Kréafte zwischen den Mas-
sen. Das Newtonsche Bewegungsgesetz liefert ein System aus gew.
Dgln. zweiter Ordnung

- (olt) - Xa(1))

miX!'(t) = G— 2
[ X1(t) — Xa(t)]

‘le(t) B X:Q(t)‘?’ (Xl(t) _ X2(t))

me X2 (t) = G

mit der Gravitationskonstanten G > 0. Setzen wir V; := )Z'Z’ fiir die
Geschwindigkeiten, so folgt ein System erster Ordnung

X =W

—»/_ m2 — _ —
= G\)_ﬁ — )22|3(X2 )
X =",

—)/_ ml — _ —
2= G\)a — )_(’2|3(X1 )



Abbildung 5: Trajektorien (Positionen) eines Zwei-Kérper-Problems mit Massen
my > mgy aus zwei unterschiedlichen Blickwinkeln (Linie: erster Korper, Punkte:
zweiter Korper).

bestehend aus zwolf Gleichungen. Dieses System ist autonom. An-
fangsbedingungen )Zi(()), ‘_/;(0) miissen vorgegeben werden. Abb. 5
zeigt die Trajektorien eines Zwei-Korper-Problems mit unterschied-
lichen Massen m; > mso. Die Bewegung erfolgt hier typischerweise
ungefiahr entlang von Ellipsen.

Wir leiten nun das N-Korper-Problem fiir Massen my, ..., my her.
Sei Fj; die Gravitationskraft auf die ¢-te Masse verursacht von der
j-ten Masse. Das Newtonsche Bewegungsgesetz impliziert

N N
> = mM;m,; = >
mXl= 3 Fj= Y ¢ (X - X))
j=1.j#i jorgei X=Xl

fire = 1,..., N. Es folgt ein System erster Ordnung aus 6 N gew.
Dgln.

X'=V,
N .
! — " (XX ir g —
V. —Gj_lgj#‘ ¢ X (X;—-X,;,) furi=1,...,N.

Das Zwei-Korper-Problem kann noch analytisch gelost werden, wéh-
rend dies nicht mehr fiir das N-Koérper-Problem mit N > 2 gilt.
Daher benotigen wir numerische Verfahren fiir diese Aufgabenstel-
lung.
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Weitere Modelle

In den vorangehenden Abschnitten wurden Probleme aus dem Be-
reich der Chemie, der Elektrotechnik und der Mechanik besprochen.

Systeme aus gew. Dgln. treten ebenfalls in den folgenden Anwen-
dungen auf:

e Biologie (z.B. Réduber-Beute-Modelle, Epidemiologische
Modelle),

e Simulation von Kriegsgefechten (Lanchester Modelle),
e Diskretisierung von partiellen Differentialgleichungen,

e und andere.

Weitere Literatur zu Modellen mit gewohnlichen Differentialglei-
chungen ist beispielsweise [1, 2].
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2 Einschrittverfahren

Wir besprechen jetzt numerische Methoden fiir die Anfangswert-
probleme, die im vorhergehenden Kapitel eingefithrt wurden. Dabei
wird mit Einschrittverfahren begonnen, wahrend Mehrschrittver-
fahren im néchsten Kapitel behandelt werden.

2.1 Vorbereitungen

Wir mochten ein AWP (1.1) eines Systems gew. Dgln. in einem
Intervall [xg, Tend] (o < Teng) numerisch 16sen. Alle Verfahren fiir
AWPe, die in dieser Veranstaltung betrachtet werden, verwenden
eine endliche Anzahl von Gitterpunkten

T <1 < Tog <3<+ <IN-1 <IN = Zend-

Eine mogliche Wahl sind dquidistante Gitterpunkte

Lend — To

x; = x0+ th mit A = fir ¢ =20,1,...,N.

Numerische Losungen y; =~ y(x;) werden sukzessive berechnet. In
einem Einschrittverfahren ist die Abhéngigkeit der Werte einfach

Yo > Y1 > Y2 ? s —> YN-1 — YN.

N

Im Gegensatz dazu liegt bei einem Mehrschrittverfahren mit k& Schrit-
ten eine Abhéngigkeit vor der Gestalt

Yiks Yiktls YY1 — Y fur i=kk+1,...,N.

Dabei miissen die ersten Werte ¥, ..., yr_1 durch eine andere Me-
thode bestimmt werden im Fall £ > 1. Ein Einschrittverfahren liegt
auch in einer Mehrschrittmethode im Spezialfall £ = 1 vor.

Ein allgemeines Einschrittverfahren kann in der Form
Yir1 = yi + hi® (i, yi, hi), (2.1)

geschrieben werden mit einer Inkrementfunktion ®, die von sowohl
dem Verfahren als auch der rechten Seite f abhéngt.
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2.2 Elementare Integrationsverfahren

Die meisten Methoden fiir AWP (1.1) basieren auf einer Approxi-
mation der dquivalenten Integralgleichung

yix) = yloo) + [ " f(s.y(s)) ds. (2.2)

Im Intervall [z, xo + h] erhalten wir

ro+h
y(wo+h) = o+ / £(s,(s)) s s

o 1
= Yo+ h/ f(zo + sh,y(xg+ sh)) ds.
0

Nun wird das Integral auf der rechten Seite durch eine Quadratur-
formel ersetzt. Die Schwierigkeit besteht darin, dass die Funktion
y, welche im Integranden auftritt, a priori unbekannt ist.

Da die Schrittweite h klein ist, verwenden wir einfache Quadra-
turformeln und keine zusammengesetzten Quadraturformeln. Wir
diskutieren die folgenden Beispiele, sieche Abb. 6:
(a) Rechteckregel (linksseitig):
Als Naherung ergibt sich
y1 = Yo + hf(zo, yo)-

Diese Methode wird (explizites) Euler-Verfahren genannt. Es ist
die einfachste Methode, die durchfiihrbar ist. Ist der Anfangswert
y(rg) = yo gegeben, dann kann die Naherung y; direkt iiber eine
Funktionsauswertung von f berechnet werden.
(b) Rechteckregel (rechtsseitig):
Nun folgt als Methode

y1 = yo + hf(zo+ h,y1). (2.4)

13



\ (a) | (b) , © , @

y Bl

Abbildung 6: Elementare Quadraturregeln: (a) Rechteck (linksseitig), (b) Recht-
eck (rechtsseitig), (c) Trapezregel, (d) Mittelpunktregel.

Diese Technik wird implizites Euler-Verfahren genannt. Der unbe-
kannte Wert y; tritt auf beiden Seiten der Gleichung auf. Im all-
gemeinen kann hier keine explizite Formel fiir y; bestimmt wer-
den. Die Vorschrift (2.4) stellt ein nichtlineares Gleichungssystem
(aus algebraischen Gleichungen) fiir die Unbekannte y; dar, d.h.
der Wert g; ist implizit definiert. Beispielsweise kann mit einer
Newton-Iteration eine Naherungslosung erhalten werden. Der Re-
chenaufwand fiir einen Integrationsschritt ist somit aber deutlich
hoher als im expliziten Euler-Verfahren.

(c) Trapezregel:

Wird das Integral mit der Trapezregel approximiert, dann folgt die
Vorschrift

y1 = yo + hg (f(z0,w0) + f(zo+ h, 1))

Dieser Ansatz fithrt daher wieder auf eine implizite Methode. Der
Rechenaufwand fiir einen Integrationsschritt ist ungefdhr so hoch
wir im impliziten Euler-Verfahren. Jedoch kann man eine deutlich
besser Naherung erwarten, da die Trapeze besser approximieren als
die Rechtecke in der Quadratur.
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(d) Mittelpunktregel:

Die Mittelpunktregel verwendet ein bestimmtes Rechteck. Es folgt
y1 = Yo + hf(zo + 5h, y(zo + 5h)). (2.5)

Diese Vorschrift ist noch nicht durchfithrbar, denn Unbekannte sind
sowohl w; als auch y(z¢ + %h) Daher benétigen wir eine weitere
Gleichung, um den Zwischenwert y(zo + %h) zu bestimmen. Bei-
spielsweise kann das explizite Euler-Verfahren diesen Wert liefern,
wodurch folgt

Y2 = y0+%f($0,yo)
i = Yo+ hf(zo+ 3h, y1)2)

oder dquivalent

Y1 = yo + hf(zo + %, Yo + %f(x(b Yo))- (2.6)

Diese Methode ist explizit, denn man kann sukzessive ;5 und y;
berechnen ohne nichtlineare Gleichungssysteme zu 16sen. Es werden
nur zwei Funktionsauswertungen von f benotigt. Die Vorschrift (2.6)
wird modifiziertes Euler-Verfahren oder Collatz-Verfahren genannt.
Alternativ entsteht eine implizite Methode, wenn der Zwischenwert
linear durch gy und y; interpoliert wird, d.h.

yi =yo+ hf(zo+ L 2y +w1))

ergibt sich als Verfahrensvorschrift. Man nennt dies auch die impli-
zite Mittelpunktregel.

Die Genauigkeit dieser Methoden wird spéter untersucht.
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Explizites Euler-Verfahren

Wir betrachten das explizite Euler-Verfahren jetzt genauer. Diese
Formel kann auch durch zwei andere Ansétze erhalten werden. Zum
einen ersetzen wir die Ableitung in der Dgl. v = f(z,y) durch den
Differenzenquotienten (erster Ordnung), wodurch folgt

y(zo + h) — y(zo)
h

Zum anderen verwenden wir die Tangente zu y(x) im Anfangspunkt
(20, o) zur Approximation der Losung. Die Tangentengleichung lau-
tet

~ f(xo,y(x0)) = w1 =2y + hf(xo,v0)

t(x) = y(xo) + (x — 20)y'(x0) = y(w0) + (= — z0) f (20, y(20)).
Es folgt
y1 = t(xo + h) = yo + hf (o, Yo),

d.h. wir erhalten das explizite Euler-Verfahren. Die sukzessive An-
wendung dieser Methode liefert daher Tangentenstiicke, wodurch
diese Technik auch Polygonzugverfahren genannt wird.

Als Beispiel 16sen wir das AWP

1
=35,

/

Yy

Die exakte Losung ist y(z) = v/z. Abb. 7 zeigt die Ndherungslosun-
gen aus dem expliziten Euler-Verfahren. Wir erkennen, dass die
Néherungen mit steigender Schrittzahl N bzw. kleinerer Schritt-
weite h genauer werden.
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Abbildung 7: Losung von ¢y’ = Q—Iy, y(3) = 1 (Linie) und Néherungsldsung (Punk-
te) aus dem expliziten Euler-Verfahren mit N Schritten.
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2.3 Konsistenz und Konvergenz

Wir betrachten ein allgemeines Einschrittverfahren der Gestalt (2.1)
mit der Inkrementfunktion .

Es existieren unterschiedliche Notationen, um die Genauigkeit der
Néaherung y;,1 mit der exakten Losung y(x;41) zu vergleichen. Zu
einem lokalen Bereich formulieren wir die folgende Definition.

Definition 2.1 (lokaler Diskretisierungsfehler) Sei y(x) die
exakte Losung des AWPs y' = f(x,y), y(xo) = yo und y1 = yo +
h®(xg,yo, h) die Niherung aus einem Finschrittverfahren mit Schritt-
weite h > 0. Dann lautet der lokale Diskretisierungsfehler

_y(wo+h) —u

T(h) = : (2.7)

Der lokale Diskretisierungsfehler hdngt auch von der Wahl des An-
fangswerts (xo,40) ab, welches in der Notation jedoch nicht extra
aufgezeigt wird.

Die Definition (2.7) des lokalen Diskretisierungsfehlers kann auf drei

Arten interpretiert werden:

e die Differenz zwischen der exakten Losung und der Ndherungs-
losung (Diskretisierungsfehler nach einem Schritt ausgehend
von der exakten Losung) skaliert mit der Schrittweite h.

e die Differenz zwischen den Steigungen der entsprechenden Se-

kanten "
xo+ ) — -
T(h):y( 0 h) yO_ n hy()
N ~~ 7 V
exakte Losung Néaherungslosung

Die Sekanten sind in Abb. 8 dargestellt. Fiir 7(h) — 0 werden
beide Sekanten zur Tangente t(z) = y(zo) + (x — x)y' (o) im
Grenzfall.
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. Sekante an exakter Losung

y P
W e e ()
yof; g

;co )éo+h X

Abbildung 8: Sekanten an die exakte Losung und an die Naherungslosung.

e der Defekt
y(ro+h) —y

7(h) = - = — @ (w0, 40, 1), (2.8)

welcher sich durch Einsetzen der exakten Losung in die Formel
der Ndherung ergibt. Mit Definition der stetigen Funktion

y(xo+h)—yo .
Az, yo, h) = { S fiir h>0

f(xo,90) fiir h =0
kann man genauer schreiben

T(ﬂf(),y(), h) — A(.fo,y(), h) — (I)(QT(), Yo, h) fiir h Z 0.

(2.9)

Beispiel 1: Lokaler Diskretisierungsfehler im expliziten Euler-Verf.
Taylor-Entwicklung liefert unter der Annahme y € C?
y(zo + h) = y(zo) + hy'(wo) + 31" (wo + I(h)h)

= yo + hf(zo, yo) + 3h°y" (20 + I(h)h)
mit 0 < J(h) < 1.
Der lokale Diskretisierungsfehler ergibt sich zu
7(h) = 7(y(zo + h) —y1) = 3 (y(zo +h) —yo — hf(zo,10))

= thy" (zo + 9(h)h).

Es folgt 7(h) = O(h).
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Beispiel 2: Lokaler Diskretisierungsfehler im impliziten Euler-Verf.

Zur Vereinfachung setzen wir eine beschréankte rechte Seite voraus,
d.h. |f| £ M. Zum einen liefert das implizite Euler-Verfahren

1 ="Yo+hf(xo+h,y1) =yo+ hf(xo+ h,yo+ hf(xo+ h,y1)).

Mehrdimensionale Taylor-Entwicklung der Funktion f € C? zeigt
uns

of

0
Y1 = Yo + h[f(fﬁo, Yo) + 8_£($0’ Yo)h + a—y(fﬁo, Yo)hf(xo + h, 1)

+ O(hQ)]
= yo + hf (z0,30) + O(h?).
Zum anderen liefert eine Taylor-Entwicklung der exakten Lésung
7(h) = 5 (y(zo + h) — 1)
= 4 (yo + hf (x0,90) + O(F*) = (o + hf (w0, yo) + O(*)))
= O(h).
Wieder folgt 7(h) = O(h).

Aufbauend auf den Eigenschaften des lokalen Diskretisierungsfeh-
lers definieren wir die Konsistenz.

Definition 2.2 (Konsistenz) FEin Einschrittverfahren (oder des-
sen Inkrementfunktion ®) heifit konsistent, wenn der lokale Diskre-
tisierungsfehler bei allen Anfangswerten (zo,yo) € G (G: Definiti-
onsbereich von ) gegen null konvergiert fir kleine Schrittweiten:

I7(h)|| < o(h)  mit  limo(h) =0.
h—0
Das Verfahren heifit konsistent von (mindestens) Ordnung p, wenn
[7(R)|| = O(h").
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Die Konsistenz eines Einschrittverfahrens kann leicht mit der fol-
genden Eigenschaft charakterisiert werden.

Lemma 2.3 Sei die rechte Seite f der Dgl. y' = f(x,y) stetig in x
und erfille die Lipschitz-Bedingung (1.2) beziiglich y. Dann gilt die
Aquivalenz

® ist konsistent <« ]llir% O(x,y,h) = f(z,y).
_>

Beweis:

Sei z die Losung des AWPs 2/(x) = f(z,2(x)), 2(xy) = yo mit
(xo,y0) € G. Wegen der Definition von 7 und dem Mittelwertsatz
der Differentialrechnung gilt komponentenweise
Zj(wo + h) —
Tj(x())y()a h) - J( 0 i ) Yo — (I)j(l'(),y(), h)
= Z;(I() + Hjh) — CI)j(ZL“(), Yo, h)

mit Zwischenwerten 6; € (0,1) fir j = 1,...,n. Mit der Stetigkeit
von 2’ folgt

lim 23 (2 + 0;h) = Zj(0) = fi(x0, 90)
fir y =1,...,n. Somit gilt
lim ||7(z0, yo, h)|| = || f(z0, y0) — im ®(z0, yo, h)||
h—0 h—0

falls die Grenzwerte existieren. Diese Gleichung liefert die Behaup-
tung. [

Die Konsistenzordnung beschreibt die Qualitdt der Naherung nach
einem einzelnen Schritt. Jedoch sind wir an der Qualitdat der Ap-
proximation nach NN Schritten interessiert, wo der Endpunkt z.nq
erreicht wird. Dies motiviert die néachste Definition.
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Definition 2.4 (globaler Diskr.fehler und Konvergenz)
Der globale Diskretisierungsfehler einer Methode auf einem Gitter
To <11 < --- < xy 15t definiert durch die Differenz

en ‘=y(rn) — yn. (2.10)
Fiir N = 0o nehmen wir hypax — 0 mit hpax ;= max 1|:1;‘Z-+1 — x4

i=0,...N
an. Das Verfahren heifft konvergent, wenn fiir festes Teng = xn gilt

lim ey = 0.
N—o0

Das Verfahren ist konvergent von (mindestens) Ordnung p, falls

EN — O(hp

Inax) :

Beziiglich des Zusammenhangs zwischen Konsistenz und Konver-
genz beweisen wir einen Satz. O.E.d.A. verwenden wir dabei die
Maximumnorm als Vektornorm. Desweiteren bendétigen wir noch
eine Hilfsaussage.

Lemma 2.5 Erfillt eine Folge (r;)ien C R" die Abschditzung

|7isall < (L 4+ )|\l +6  fir i =0,1,2,...

mit Konstanten 8 >0 und 0 > 0, dann gilt fir k € Ny
kb 1
)

e

Irall < €*[lroll +

g,

wobei die Vektornorm beliebig ist.

Beweis:

Verwendet wird Induktion iiber k. Der Induktionsanfang mit k£ = 1

lautet
01 1

J

e

Il < (24 0)llroll + 8 < e lroll + B
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wegen 1+ § < e’ und somit auch 1 < (e’ — 1)/§. Zum Induktions-
schluss sei die Aussage fiir ein £ > 1 erfiillt. Es folgt wieder mit
1+6<¢

lreall < A+ )l +8 < (L4 8)e|Iro]| + (1+8)52 5+ 5

K —(146)+0 3

< eéekéHTOH + (14+d)e .

< e(k+1)5HTO|| + e(’“+g)5—1 B

und damit ist die Aussage fiir k + 1 gezeigt. [

Nun ergibt sich das Hauptresultat dieses Unterabschnitts.

Satz 2.6 (Konvergenz von Einschrittverfahren)
Gegeben sei ein AWP ¢ = f(x,y), y(xg) = yo mit der exakten
Lésung y(x) fir x € [xg, Tena]. Die Inkrementfunktion ® sei stetig

auf
G :={(z,y,h) : = € (w0, Tend], |ly — y(@)|| <7, 0 < h < h}
mit Konstanten v, h > 0 und es gelte die Lipschitz-Bedingung

|®(x,y1,h) — D(z, 92, h)|| < K - ||y1 — v (2.11)

fir alle (z,y;,h) € G, i = 1,2 mit einer Konstanten K > 0. Das
FEinschrittverfahren sei konsistent von Ordnung p im Sinne von

(2, y(z), Wl = Az, y(2), h) = B(z, y(z), )| < C- 07 (2.12)

fiir alle x € [Ty, Tena] und 0 < b < h mit einer Konstanten C > 0.

Verwendet wird konstante Schrittweite hy = ===, d.h. Gitler-

punkte sind x; := xo + thy firi = 0,1,..., N. Dann gibt es ein

h e (0,h], so dass die globalen Diskretisierungsfehler beschrinkt

sind durch

eXp(K(ajend - 330)) —1
K

les]| < Rl -C - fir i=1,...,N (2.13)
und fiir alle hy < h.
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Beweis:

Zu y,z € R™ definieren wir fiir v > 0 die Hilfsgrofe g(y,z) € R"

komponentenweise fiir j =1,....,n (§ = (§1,...,9,) ") durch
zj+ falls y; > z; + 7,

gj =14 zj— falls y; <z, —7,
Yj sonst.

Damit konstruieren wir die Hilfsfunktion

O(z,y, h) == (z,4(y, y(x)), h).
Offensichtlich ist ® stetig auf
G = {(z,y,h) : z € [0, Tena), y € R", h < h}
und erfiillt wegen (2.11) die Bedingung
| & h) = D, go )| < K-l =l (219)

fiir alle (z,y;,h) € G, i = 1,2. Wegen (z,y(x),h) = ®(x,y(z), h)
fir alle z € [x(, Zend] sowie 0 < A < h und (2.12) gilt auch

|G (@), n) = b y(a),m)|| < 007 (2.15)
fiir € [z, Tena) und 0 < b < h.

Das zu @ gehorige Einschrittverfahren liefert die N&herungslésungen
u; iber die Formel

Uip1 = @ + hy® (i, U, hy)
mit Anfangswert @y = yo. Mit der Funktion (2.9) folgt direkt
Yir1 = Yi + hv A(@i, i, hiv)

fiir die exakten Losungswerte y; = y(z;). Durch Subtraktion erhal-
ten wir fiir die Fehler €; := u; — y; die Rekursionsformel

Civ1 = &+ hy | (x84, hy) — A, yi, hy)

= & + hy |P(zy, 05, hy) — (i, yi, hN)
+ hy | @i, yi, b)) — Az, i, hN)} -
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Es ergibt sich aus (2.14) und (2.15)
| @i i, ) = Dy )| < K-l =il = K|l
HA(ZCZ',%JZN) — &)(%,yz‘,hN)H < C- R,
Wir erhalten die Abschétzung
JEinll < 1+ hyK)|j&] +C - 1y

fir+=0,1,..., N — 1. Lemma 2.5 liefert nun mit ey = 1y — yp = 0

die Abschéitzung

exp(Kihy) — 1
K

&l < C - Rl fiir alle 7 =0,1,...,N.

Damit folgt auch

exp(K (Teng — x0)) — 1

el < C- R -
leill < C - b o

fiir alle 1 =0,1,..., N

wegen thy < Tend — To- Wir erkennen, dass ein h < h existiert,
so dass ||&;]| < ~ fiir alle i = 0,1,..., N gilt, falls Ay < h. Damit
erhalten wir éi(xz, Ui, hy) = ®(z, 05, hy) fiir Ay < h aus der Defini-
tion der Hilfsfunktion ®. In diesem Fall sind die Niherungen @; aus
dem von ® erzeugten Einschrittverfahren identisch mit den Néahe-
rungen u; aus dem von P festgelegten Einschrittverfahren. Somit
gilt €, = ¢; fir i = 0,1,..., N mit ¢; := u; — y;. Dadurch folgt die
Abschétzung (2.13). O

Bemerkungen:

e Die Lipschitz-Bedingung (2.11) ist bei den iiblichen Verfahren
erfiillt, falls die rechte Seite f der Dgl. lokal Lipschitz-stetig
in y auf G ist.

e Die Konsistenzbedingung (2.12) stellt eine leichte Verschérfung
der Bedingung aus Def. 2.2 dar und ist bei allen géngigen Ver-
fahren gegeben.
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e Die Konvergenzaussage (2.13) in Satz 2.6 betrifft nicht nur den
Endwert bei x = x,q sondern alle Gitterpunkte z1,...,zy.

e Die Konvergenzaussage gilt auch bei nichtkonstanten Schritt-
weiten, d.h. einem Gitter ) < 1 < 29 < -+ < Ty_1 <
TN = Zend und Schrittweiten h; := x;.1 — x;. Im Grenzfall

muss dann hy, — 0 gelten mit der maximalen Schrittweite
hmax = max{ho, hl, ceey hN—l}-

e In die Konvergenzanalyse kénnen auch Fehler eg = ug— yg # 0
in den Anfangswerten sowie Rundungsfehler einbezogen wer-
den.

Satz 2.6 zeigt, dass die Konsistenz hinreichend fiir die Konvergenz
ist. Zudem stimmt die Konsistenzordnung mit der Konvergenzord-
nung iiberein. Die Konsistenz kann durch eine Untersuchung der
Inkrementfunktion ® des Einschrittverfahrens nachgewiesen wer-
den. Umgekehrt gibt es konvergente Methoden, die nicht konsistent
sind. Konsistenz ist somit nicht notwendig fiir Konvergenz. Jedoch
werden inkonsistente Verfahren nicht in der Praxis eingesetzt.

2.4 Runge-Kutta-Verfahren

Der wichtigste Typ von Einschrittverfahren sind die Runge-Kutta-
Verfahren. Die Idee besteht darin, das Integral in (2.3) durch eine
Quadraturformel mit den Knoten ¢y,...,¢; € [0,1] und (duBeren)
Gewichten by,...,bs € R zu ersetzen. O.E.d.A. seic; < <--- <
cs. Es folgt eine endliche Summe

yi=y0+h > bif(zo+ cih,y(wo + cih)).

=1

Das Problem dabei ist, dass die Zwischenwerte y(xy + ¢;h) a priori
unbekannt sind. Wir erhalten Naherungen fiir die Zwischenwerte
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wieder aus der Integralgleichung (2.2), d.h.

y(xo+ cih) = yo + h/ f(xo + sh,y(xo + sh)) ds.
0

Die beteiligten Integrale werden durch Quadraturformeln ersetzt.
Um die Einfiihrung neuer Unbekannten zu vermeiden, diirfen nur
die gleichen Knoten cy, ..., cs wie zuvor verwendet werden. Jedoch
entstehen neue (innere) Gewichte. Es folgen die Ndherungen

zi=1yo+h Z ai; f(zo + ¢jh, z;j) (2.16)
j=1
fiir ¢ = 1,...,s. Die letztlich gesuchte Naherung wird zu

yi =0 +h Y bif (wo+ cih, z).

1=1

Die Gleichungen (2.16) stellen ein nichtlineares Gleichungssystem
(aus algebraischen Gleichungen) fiir die Unbekannten zy, .. ., 2, dar.
Wenn die Zwischenwerte bestimmt wurden, dann koénnen wir die
Néherung y; direkt aus s Auswertungen der Funktion f erhalten.
Man nennt s auch die Stufenzahl des Verfahrens.

Betreffend (2.16) ist eine natiirliche Forderung, dass eine konstante
Funktion f =1 (y(xo + ¢;h) = yo + ¢;h) exakt reproduziert. Wir
erhalten die Bedingungen

ci=Y aj; firjedes i=1,... s (2.17)
j=1

Diese Gleichung bedeutet, dass die Summe der Gewichte gleich der
(relativen) Lange des Teilintervalls sein muss.

27



Eine Runge-Kutta-Methode ist eindeutig durch seine Koeffizienten
festgelegt. Die Koeffizienten konnen in einem sogenannten Butcher-
Tableau angeordnet werden:

C1|aix1 A2 -+ QAis
Co Qo1 Q22 +-+ QA2
o . c|l A
oder kurz
bT
Cs | Qg1 Qg2 -+ ° (Qgg
by by --- b,

mit c € R*, b € R?, A € R**%.

Beispiele: Verfahren aus Abschnitt 2.2

(a): expl. Euler-Verfahren, (b): impl. Euler-Verfahren, (c): Trapez-
regel, (d): Collatz-Verfahren:

o= O
o O

@)
—_
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Beispiel: Gauf3-Runge-Kutta-Verfahren

Wir verwenden die Gauf3-Legendre-Quadratur fiir die Knoten ¢; und
die Gewichte b;. Diese Quadraturformel besitzt die Ordnung 2s, d.h.
es gilt

s 1
Z bip(ci) = / p(x) dz fiir alle p € Pos—
i=1 0

(P,,,: Polynome bis Grad m). Die Gewichte a;; bestimmen wir fiir
jedes 2 =1,...,s derart, dass

Zaijp(cj) = / p(a:) dz fiir alle p € Py_;.
j=1 0

Im einfachen Fall s = 1 folgt direkt ¢; = %, by =1 und a1 = % Es
entsteht das Runge-Kutta-Verfahren

z1 = yo+gf(l’o+%721), (2.18)
yi = Yo+ hf(zo+ 2, 2). .

Dieser Ansatz entspricht der Mittelpunktregel (2.5), wobei die Néhe-
rung 21 ~ y(xo+ %h) durch das implizite Euler-Verfahren bestimmt
wird.

Das Butcher-Tableau schreibt sich im Fall s = 2:

3—V3 1 3-2V3
6 4 12
34v3 [ 342v3 1
6 12 1
‘ 1 1
2 2

Wenn die Matrix A = (a;;) vollbesetzt ist, dann ist das Runge-
Kutta-Verfahren implizit. Ein nichtlineares Gleichungssystem (2.16)
aus s - n algebraischen Gleichungen muss dann gelost werden. Im
Gegensatz dazu mochten wir nun explizite Methoden erhalten. Die
entsprechende Bedingung lautet a;; = 0 fiir ¢ < j. Dadurch wir A zu

29



einer strikten unteren Dreiecksmatrix. Das Butcher-Tableau besitz
dann die Gestalt:

00 O 0
Co | 921 0

0 0

Cs | Qg1 -+~ e a’S,S*l 0

bl b2 e bs—l bs

Insbesondere folgt ¢; = 0 aus der Bedingung (2.17) und dadurch
21 = 1. Nun ergeben sich die Zwischenwerte sukzessive aus

1—1

Zi:yo+hzaijf(:€o+cjh,zj) fir i=1,...,s.
j=1

Der Rechenaufwand einer expliziten Runge-Kutta-Methode besteht
somit nur in s Auswertungen der rechten Seite f. Man kann ein ex-
plizites Verfahren daher als eine sukzessive Extrapolation mit den
gegebenen Zwischenwerten interpretieren. Implizite Verfahren ent-
sprechen dann einer Interpolation mit den Zwischenwerten.

Beispiele: Einige bekannte explizite Runge-Kutta-Verfahren

Heun-Verfahren (links), Kutta-Simpson-Verfahren (mitte) und klas-
sisches Runge-Kutta-Verfahren (rechts):

0
0 0 111
171 111 212
%32 21 2 %O%
210 = 1/—1 2
T3 T 11 110 01
4 4 6 6 6 1 2 2 1
6 6 6 6
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Eine dquivalente Notation fiir Runge-Kutta-Schemata entsteht durch
die Definition von Inkrementen k; mittels

ki = [(zo+ cih, 2;) = f(xo +cih,yo +h Z aijkj) (2.19)

J=1

fir « = 1,...,s. Ein Runge-Kutta-Verfahren besitzt dann die Ge-
stalt

ki — f(:co—i—cih,yo—l—hZaijkj), i=1,....5,

) J=1 (2.20)

Yy = y0+hzbiki-
=1

Die Inkremente k; sind nun a priori unbekannt.

Ordnungsbedingungen

Ein Runge-Kutta-Methode ist durch ihre Koeffizienten ¢;, b;, a;; ein-
deutig bestimmt. Wir leiten Bedingungen an diese Koeffizienten her,
welche die Konsistenz des Einschrittverfahrens mit Ordnung p lie-
fern. Wir betrachten eine autonome skalare Dgl. 3/ = f(y). Es folgt

y' = Iy o= [
y/// — f”y’f 4 f/f/y/ — f//f2 4 (f/)Qf
Taylor-Entwicklung der exakten Losung fiihrt auf
y(xo+ h) = y(xo) + by (z0) + &y (x0) + &y" (w0) + O(h")

= yo + hf (o) + % f'(30) f (w0)
+ 5 1" (o) f () + £ (0)* f (yo)] + O(h*).
Im folgenden benutzen wir die Abkiirzungen f = f(yo), f' = f'(vo),
etc. Die Inkremente k; aus (2.20) hangen von der Wahl der Schritt-
weite h ab. Wir nehmen an, dass diese Inkremente beschrankt sind

in einer Umgebung von h = 0. Dies ist beispielsweise gesichert, wenn
eine beschréankte rechte Seite f auftritt.
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Die Runge-Kutta-Methode erfiille die fundamentale Bedingung aus
(2.17). Eine Taylor-Entwicklung der Funktion f beziiglich der In-
kremente (2.19) liefert fir i =1,...,s

S S 2
ki=f+fh <Za1] J) 2f//h2 (Zaijkj> + O(hg)

— f + f/h <Zai]’ (f + f,h (ZCM[]%) + O(h2)>>
j=1 (=1
+ 3 (Z (f + 0<h>>> +O(h?)
=f+fh ( aij (f + f'h (Zaﬂ (f + O(h))> + O(h2)>>
j=1 (=1

5B (fer o+ O))* + O()

= [+ (Zam (f + f'fhe; + 0(h2))> + 3" 2P + O(R%)

Jj=1

w

= f+hf'fei+ RE(f)2f (Zaijcj> + 17" 2 + O(R?).
j=1

Die Néherung aus dem Runge-Kutta-Verfahren resultiert zu

Y1 = Yo + hzbﬂ%

1=1

—yo+hf <Zbi> + B2 f (Zbiq)
+ 13 (f (Zbawcj> + = h3f”f2 (Zbc) + O(hY).

1,5=1

Ein Vergleich mit der Taylor-Entwicklung der exakten Losung zeigt
die Bedingungen fiir Konsistenz bis Ordnung p = 3. Die Konsistenz-
bedingungen bis Ordnung p = 4 sind ebenfalls dargestellt:
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S S
§ : _ . E ' B 1
p:12 bz: 1 p_4 bzcj - 1
=1 i=1
S S
2: 1 E P
=1 1,5=1
S S
_ 2 1 P A
p=3 g bic; = 3 g bzazjcj = 15
=1 1,j=1
S S
P | _ 1
E biaijc; = G g biaijajce = 5
i,j=1 ij,0=1

Die Konsistenzbedingungen kénnen mit dem Ansatz iiber Taylor-
Entwicklungen bis zu einer beliebigen Ordnung p hergeleitet wer-
den. Im Fall von expliziten Runge-Kutta-Verfahren brauchen in
den Summen nur die Koeffizienten ungleich null aufgefiihrt zu wer-
den. Zu einer gewiinschten Konsistenzordnung p mochten wir ein
Runge-Kutta-Verfahren mit moglichst kleiner Stufenzahl s erhal-
ten. Bei impliziten Methoden kann mit s Stufen die maximale Ord-
nung p = 2s erreicht werden, welche dann bei den Gauf-Runge-
Kutta-Schemata auftritt. Bei den explizten Methoden gibt Tabelle 1
eine Information.

Stufenzahl s 123 45 6 78 9 10 11 --- 17
maximale Ordnungp 1 2 3 4 4 5 6 6 7 7 &8 --- 10
Ordnung p 1 23 4 5 6 7 8
minimale Stufenzahl s 12 3 4 6 7 9 11
Anzahl Ordnungsbedingungen 1 2 4 8 17 37 85 200

Tabelle 1: Ordnung und Stufenzahl bei expliziten Runge-Kutta-Verfahren.
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2.5 Schrittweitensteuerung

In einer numerischen Integration werden die Ndherungen vy, =~ y(xy)
sukzessive durch eine numerische Methode berechnet. Wir méchten,
dass die Schrittweiten hy := xp,1 — x; automatisch bestimmt wer-
den, so dass der entstehende Fehler in der Methode hinreichend
klein bleibt.

Seien y = (y1,...,%,) die Komponenten der Lésung. Wir nehmen
an, dass das numerische Verfahren die Konsistenzordnung p besitzt,
d.h. die Niherung y" ~ y(x¢ + h) erfiillt die Bedingung

yi = yi(zo + h) = O = CiP ™ + O(RP*?) (2.21)

mit Konstanten C; # 0 fiir jede Komponente. Ein dhnliches nume-
risches Verfahren wird zur Berechnung der Niherung " mit einer
Ordnung hoher eingesetzt, d.h.

gl — yi(zo + h) = O(RP*2). (2.22)

Bei Runge-Kutta-Methoden werden typischerweise eingebettete Ver-
fahren eingesetzt. Bei Mehrschrittverfahren existieren verschiedene
Moglichkeiten. Desweiteren kann Richardson-Extrapolation sowohl
bei Einschritt- als auch Mehrschrittverfahren eingesetzt werden.

Wir méchten den Fehler y" —y(xo+h) im Verfahren der niedrigeren
Ordnung schétzen. Die Bedingungen (2.21) und (2.22) liefern

Y —yi(wo+h) =yl =9 — (yi(zo+h) =) = yi' =Gl +O(RP+?). (2.23)

Daher stellt §" — 3" einen Schitzer fiir den lokalen Fehler, welcher
Groflenordnung p + 1 hat, dar. Aus (2.21) und (2.23) folgt

yl — gt = Chrt 4+ O 2. (2.24)

Wir nehmen an, dass wir bereits einen Integrationsschritt mit der
Schrittweite hyseq durchgefithrt haben. Nun mochten wir eine geeig-
nete Schrittweite hope schétzen, um den Integrationsschritt zu wie-
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derholen. Die Eigenschaften (2.21) und (2.24) implizieren ungeféhr

hused ’\hused ~ X p+1
Y —Y; ~ C; hused’

ho t
Y= yi(l“o +h0pt) ~ Cihggtl.

Elimination der Konstanten C; liefert

hopt 1
’yl - yz(ﬂfo + hopt)| _ ( hopt )p+ . (225)

hused * hused
‘ yl - y% hused

Der Fehlerschiatzer zum durchgefiihrten Schritt lautet

T}Z = ‘ylhuscd _ :&Zhuscd (226)
fir : = 1,...,n. Der Fehler zum neuen Schritt soll
hopt
‘yz - yz(ﬂUo + hopt)’ = TOL (227)

erfiillen mit einer absoluten Toleranz TOL > 0 in allen Komponen-
ten. Wir mochten nicht, dass der Fehler kleiner als TOL ist, denn
ein kleinerer Fehler bedeutet eine kleinere Schrittweite und dadurch
einen hoheren Rechenaufwand aufgrund eine grofleren Schrittan-

zahl. Einsetzen von (2.26),(2.27) in Gleichung (2.25) fiihrt auf

he =1 d_p+1/TOL
opt,e — !luse y
;i

wobei jede Kompomente eine eigene Schrittweite erzeugt. Die Lange
des néchsten Schritts wird daher gewahlt als

Ppew = 0 - min Agpt

i=1,..,n

mit einem Sicherheitsfaktor ¢, z.B. § = 0.9. Um oszillierende Schritt-
weiten zu verhindern, wird desweiteren gefordert

o hused S hnew S 0 hused

mit0<0<1<€,z.B.a:%,9:5.
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Falls hpew < husea gilt, dann wurde unsere Genauigkeitsforderung
(2.27) verfehlt, da der Fehler grofer ist. Somit wiederholen wir den
Schritt mit hpey anstelle von hugq. Daraufhin wird jedoch wieder
der Fehler geschétzt. Falls hyew > huseq erfiillt ist, dann akzeptieren
wir den Schritt, da der Fehler kleiner oder gleich der Genauigkeits-
forderung (2.27) ist. Der néchste Schritt wird dann mit hye, als
vorgeschlagene Schrittweite durchgefiihrt.

Oft wird die Toleranz relativ beziiglich der Gréenordnung der (nu-
merischen) Losung vorgegeben. Sei RTOL > 0 eine relative Toleranz
und ATOL > 0 eine absolute Toleranz, dann definieren wir

TOL = ATOL + RTOL - [y}

Der absolute Teil ATOL wird benoétigt fiir den Fall |y§“‘sed
Typische Werte sind z.B. RTOL = 1073 und ATOL = 1075.

~ 0.

Die obige Verwendung des Betrags | - | entspricht der Maximum-
norm als Vektornorm. Jedoch besitzt die Maximumnorm ein Defizit
an Glattheit und verursacht dadurch manchmal Probleme in der
Integration. Daher wir in der Praxis héufig die skalierte Norm

2
1 n Ahused o hused
ERR=, -y Yi S (2.28)
n <= \ ATOL + RTOL - [y

i=1

eingesetzt, die man als gewichtete Euklidische Norm interpretieren
kann. Man beachte, dass der Nenner in (2.28) immer positiv ist. Die
Bedingung (2.27) entspricht nun ERR = 1. Die neue Schrittweite
wird definiert als

1

hnew =0- hused : ﬁ

mit einem Sicherheitsfaktor §.

Die Schétzung des lokalen Fehlers erfolgt fiir das Verfahren mit Ord-
nung p, wihrend das Ergebnis aus dem Verfahren der Ordnung p—+1
nur zur Berechnung des Fehlerschétzers eingesetzt wird. Jedoch ist
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die Ndherung aus der Methode mit Ordnung p 4+ 1 in den meisten
Féllen genauer. Daher wird haufig die Ndherung hoherer Ordnung
als Ausgabe des Integrationsschritts festgesetzt.

Der obige Ansatz kontrolliert den lokalen Fehler in jedem Integrati-
onsschritt. Jedoch hétten wir gerne eine Schrittweitenbestimmung
derart, dass der globale Fehler (2.10) eine Genauigkeitsschranke
erfiillt. Leider existieren keine erfolgreichen Strategien zur Kontrolle
des globalen Fehlers. Daher verwenden numerische Integrationsver-

fahren aus iiblichen Softwarepaketen (z.B. MATLAB) nur Schritt-
weitensteuerungen auf Basis der lokalen Fehler.

Eingebettete Verfahren

Es verbleibt zwei numerische Verfahren zur Schétzung des lokalen
Fehlers festzulegen. Im Fall von Runge-Kutta-Methoden werden ein-
gebettete Verfahren angewendet, da der zusétzliche Rechenaufwand
fiir die zweite Naherung relativ klein ausfallt.

Das Butcher-Tableau eines eingebetteten Verfahrens lautet

C1|air a2 -+ Qg
Co | Qo1 Q22 --+ QA2
Cs | Qg1 Qg2 -+ Qgg
b1 by bs
by by bs

mit zwei Mengen b; und IA)Z von Gewichten. Die entstehenden Néihe-

rungen sind
y" = yo+ h(biki + -+ byky),

" = o+ hbiky 4 - - - + bsks).

Wenn die Inkremente ki, ..., ks zur Berechnung der Niherung y”
verfiighar sind, dann kann die zweite Nidherung §" ohne wesentlichen
Mehraufwand bestimmt werden.
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Im Fall von expliziten Runge-Kutta-Verfahren stellen die Runge-
Kutta-Fehlberg Methoden eine Klasse eingebetteter Verfahren dar.

Beispiel: Runge-Kutta-Fehlberg 2(3)

0

1] 1

4 4

27 | 189 729

40 800 800

1| 24 T 650
891 33 891
AL 160
891 33 891
533 ) 800 _ T
2106 1053 78
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3 Mehrschrittverfahren

In diesem Kapitel untersuchen wir Mehrschrittmethoden, d.h. meh-
rere alte Ndherungen werden eingesetzt um eine neue N&aherung
zu konstruieren. Betrachtet wird wieder ein AWP ¢ = f(z,y),
y(xg) = yo, siehe (1.1). Sind die Approximationen

(xi—k+1, yz‘—k+1), (fL'i—kH—Qa yi—k+2)a cey (361'—1, yi—l): (ZUm yz) (3~1)

fiir ein k& > 1 gegeben, dann wird daraus eine neue Naherung
(Ti41, Yir1) bestimmt. Im Gegensatz zu Einschrittverfahren reicht
hier die Konsistenz alleine fiir die Konvergenz der Methoden nicht
aus.

3.1 Methoden iiber numerischer Quadratur

Wir fiihren eine wichtige Klasse von Mehrschrittverfahren ein, deren
Konstruktionsprinzip auf der Integralgleichung (2.2) beruht. Eine
Polynominterpolation wird aufgestellt und das exakte Integral wird
mit dem Integral des Polynoms approximiert. Wir wéhlen eine ganze

Zahl ¢ > 1 und erhalten fiir die exakte Losung des AWPs (1.1) die
Integralgleichung

Y(@iv1) = y(@i—rs1) + /xm y'(s) ds
ey (3.2)
= Y(Ti—e41) +/ f(s,y(s)) ds.

LTi—f+1

Nun approximieren wir den Integranden f(x,y(z)). Wir stellen das
Polynom py; € Pr_; auf, welches die Stiitzpunkte

(zj, f(zj,v;)) fir j=i—k+1,i—k+2,...,i—1,7
interpoliert. Dementsprechend gilt
pri(z;) = f(x),9)) fir j=i—k+1,i—k+2,...,1—1,1.
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Dieses Interpolationspolynom existiert und ist eindeutig. Mit der
Lagrange-Basis

T — Tji—pt+1

Lz,j(.ilf): . — ﬁiI‘j:l,...,k,
v=1,u4] 1—7+1 1—v+1

und f; := f(z;,y;) lautet das Polynom

pkz Zfz j+1L i,J

Die Erwartung ist pyi(z) = f(z,y(x)) im betrachteten Gebiet. Da-
her ergibt sich als neue Ndherung wegen (3.2)

k Ti+1
Yirl = Yi—t+1 T Z fimj+ / L;;(s) ds.

j=1 Ti—04+1

Da die Lagrange-Polynome gegeben sind, kann das Integral exakt
ausgewertet werden.

In den meisten Féllen gilt ¢ < k, d.h. das Intervall der Interpo-
lation enthélt das Intervall der Integration (zur linken Seite hin).
Abb. 9 verdeutlicht diese Konstruktion. Wir erhalten ein explizites
k-Schritt-Verfahren.

Im Fall von aquidistanten Gitterpunkten x; = x¢ + ¢h sind die
Lagrange-Polynome unabhéngig vom Index ¢

Li+1 Tit+1
S — Ti—v41
Li;(s)ds = / I I ds
,‘7 . . JR— .
/»’Ui 441 Ti—p+1 vt xl—]-l—l xz—z/—kl

o+ (i +u)h — (xog+ (i — v+ 1)h)
/1£on+ G+ Dh— (@ + (vt D)

—1
:/ u+y,du.
147,é V=17
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|
Xik+1 ©0O Xi+1 020 X;  Xjyq X

Abbildung 9: Konstruktion von Mehrschrittverfahren mittels Quadratur.

Es folgt die Methode

k

Yit1 = Yi—t+1 + h Z Bif (Tiji1, Yijir)
j=1

mit den konstanten Koeflizienten

-1
/ H urv-2 du fir j=1,...,k.
1—¢

v=1,v#£j

Ein implizites Mehrschrittverfahren entsteht, wenn die unbekannte
neue Niherung (x;41,¥;+1) in die Interpolation einbezogen wird. Sei
qr,i € i, das Interpolationspolynom zu den Stiitzpunkten

(zj, f(zj,y;)) fir j=i—k+1li—k+2,...,0—14,i+1
Es folgt
qri(zj) = f(r,y;)  fier j=i—k+1,i—k+2,...,i—1,4,i+1.

Die zugehorigen Lagrange-Polynome lauten

k
T — Tj—p4+1 ..
L;i(r) = Il i fir j=0,1,...,k
’ Ti—jy1 — Ti—
v=0,u4] 1—j+1 i—v+1
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und somit .
qr,i(z) = Z fijriLi;(@).
j=0

Wir schreiben ¢ ;(«; y;4+1) um zu betonen, dass dieses Polynom noch
von der neuen Naherung abhéngt, welche a priori unbekannt ist. Es
ergibt sich

Ti+1
Yi+1 = Yi—t+1 +/ Qr,i(S; Yip1) ds.

Ti—g+1
Diese Formel stellt ein nichtlineares Gleichungssystem fiir die Unbe-
kannten y;,1 dar. Daher liefert dieser Ansatz eine implizite Methode
mit k Schritten.

Im Fall von dquidistanten Schrittweiten lautet das Verfahren

k

Yit1 = Yi—t+1 + h Z B f(@izji1, Yimj1) (3.3)
j=0

mit den konstanten Koeflizienten

1 k
—1
B = I1 YYD qu o fir j=0.1... k.
j v—
1=ty —0,04

Aquivalent konnen wir schreiben

k

Yir1 — B [ (Tiv1, Yir1) = Yi—er1 + R Z 5;f(37i—j+lv Yi-j+1),
j=1

wobei die rechte Seite die bekannten Daten und die linke Seite die
unbekannte neue Naherung enthalt.
Adams-Methoden

Eine beliebte Klasse von Mehrschrittverfahren sind die Adams-Me-
thoden, die aus der Wahl ¢ = 1 in (3.2) entstehen. Daher wird die
Integration nur im Teilintervall [z;, x;,1] durchgefiihrt.
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* * * * *
Pi_ B Ps B Po Bi Py B3 B
- —1[ 1 1
=11 =1[ I 1
_o|3 _1 _o| 5 8 _1
k=2 2 2 k=2 12 12 12
—3|28 _1 3 —3]2 L _5 1
- 12 12 12 - 24 24 24 24
k4|5 _50 3 _9 4|21 646 _264 106 _ 10
- 24 24 24 24 - 720 720 720 720 720

Tabelle 2: Koeffizienten in Adams-Bashforth (links) und Adams-Moulton (rechts).

Die expliziten Methoden heiflen Adams-Bashforth-Verfahren. Das
k-Schritt-Verfahren lautet
k
Yit1 =Yyith Z Bif (Tizj1, Yimjt1) (3.4)
j=1
im Fall von dquidistanten Schrittweiten. Die impliziten Methoden
heiflen Adams-Moulton-Verfahren. Das k-Schritt-Verfahren besitzt

die Formel .

Yir1 =yt h Z Bif(Tizjit, Yimjr1)- (3.5)
=0
Tabelle 2 zeigt die Koeffizienten dieser Methode fiir £ = 1,2, 3, 4.
Die Einschritt-Adams-Bashforth-Methode ist gerade das explizite
Euler-Verfahren, wihrend die Einschritt-Adams-Moulton-Methode
die Trapezregel ergibt.

Nystrom-Verfahren und Milne-Verfahren

Wir erhalten eine weitere bedeutende Klasse von Mehrschrittver-
fahren aus der Wahl ¢ = 2 in (3.2). Die zugehdrigen expliziten
Verfahren heiflen dann Nystrom-Methoden. Beispielsweise fiihrt die
Wahl k = 1 (jetzt ausnahmsweise & < ¢) auf die explizite Mittel-
punktregel

Yir1r = Yi-1 + 2hf (i, 9s), (3.6)
welche ein Zweischrittverfahren darstellt. Die entsprechenden impli-
ziten Verfahren heiflen Milne-Methoden. Fiir dquidistante Schritt-
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weiten liefert der Fall £k = 1 wieder die explizite Mittelpunktregel,
da der Term mit f; 1 herausfillt. Die Wahl £ = 2 ergibt die Milne-
Simpson-Regel

Yit1 = Yi—1 + h% (f(@ic1,yio1) +4f (2o vi) + [(@iv1,vi41))
d.h. ein implizites Verfahren. Diese Methode entspricht der Simpson-

Regel in der numerischen Quadratur.

Die Félle ¢ > 3 in (3.2) sind fiir die Praxis irrelevant. Zudem ist die
Anzahl der Schritte (d.h. max{k,¢}) iiblicherweise kleiner 15 und
haufig nicht grofler als 5 in Softwarepaketen.

3.2 Methoden iiber numerische Differentiation

Wir fithren einen anderen Typ von impliziten Mehrschrittverfah-
ren ein, welcher durch numerische Differentiation entsteht. Ist eine
Differentialgleichung y' = f(x,y) gegeben, dann kénnen wir die Ab-
leitung auf der linken Seite durch eine Differenzenformel ersetzen,
was einer numerischen Differentiation entspricht. Der iibliche Diffe-
renzenquotient lautet

Y (w0 + h) = 3 [y(wo + h) — y(xo)] + O(h).

Zusammen mit y'(xg + h) = f(xg + h,y(xo + h)) erhalten wir als
numerische Methode

Y1 = Yo + hf(xo + h7y1)7
d.h. das implizite Euler-Verfahren

Dieser Ansatz kann zu einem k-Schritt-Verfahren verallgemeinert
werden wie folgt: Mit den gegebenen Daten (x; g1y, yi_gie) fiir £ =
1,...,k stellen wir das Interpolationspolynom p € P, mit

P(Tikre) =Yirre fir £=1,... kk+1

auf. Darin ist der unbekannte Wert ;1 eingeschlossen, wodurch die
Methode implizit ist. Die Strategie ist in Abb. 10 dargestellt. Die
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p(x)

Xik+1 © 0 0 Xi  Xis X

Abbildung 10: Konstruktion von Mehrschrittverfahren durch numerische Diffe-
rentiation.

Ableitung p’ kann man als Approximation der Ableitung ¢’ interpre-
tieren. Der unbekannte Wert wird bestimmt durch die Bedingung

P(wi1) = figa, yir), (3.7)

d.h. man verlangt, dass das Interpolationspolynom nur an der Stelle
x;11 die Differentialgleichung erfiillt. Die entstehenden Schemata
nennt man BDF-Methoden (backward differentiation formulas).

Das Interpolationspolynom besitzt die Darstellung

k
p(r) = Z Yir1—jL;i(z)

mit den Lagrange-Polynomen

Wir erhalten

k
P (@) = Zyiﬂ—jL;(l‘z‘H) = [(Ti+1, Yir1).
j=0
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Qp Q1 Qg Q3 Oy
=111 -1
— 3 _ 1
- 2 2 2

11 3 1
- 6 3 2 3
— 25 _ _4 1
=4 12 4 3 3 4

Tabelle 3: Koeflizienten in den BDF-Verfahren.

Im Fall von konstanten Schrittweiten (x, = x¢ + ¢h) konnen die
Lagrange-Polynome transformiert werden zu

k
- —1
Liw= ] “*T mit x = 2, + uh.
v=0,v#j

Die neuen Polynome sind unabhéngig vom Index 2. Das entstehende
k-Schritt-Verfahren lautet

QoYit1 +oay + -+ Qp1Yi—kro + 0kYi—kr1 = Af(Tiv1, yiv1) (3.8)
mit den konstanten Koeffizienten
ozj:f/;-(l) fir 7=0,...,k.

(Denn es gilt dz = hdu.) Tabelle 3 zeigt die Koeffizienten der ersten
vier BDF Methoden.

In diesem Ansatz sind alle Koeffizienten bereits durch die Polyno-
minterpolation und die Bedingung (3.7) festgelegt. Dadurch sind
keine weiteren Freiheitsgrade enthalten.

Es existiert noch eine Modifikation der BDF-Verfahren zu den soge-
nannten NDF-Verfahren (numerical differentiation formulas), siehe

z.B. [6].
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3.3 Konsistenz, Stabilitidt und Konvergenz

Wir definieren zunéchst die Form von Mehrschrittverfahren (MSV),
die in diesem Abschnitt analysiert werden soll.

Definition 3.1 FEin lineares k-Schritt- Verfahren mit konstanter
Schrittweite h zur Dgl. y' = f(x,y) lautet

k k
D apyie=hY  Bof (ive yire) (3.9)
(=0 =0
mit reellwertigen Koeffizienten ay, ..., ap sowie By, ..., By fir die

ap # 0 und apfBy # 0 gilt.

Das Mehrschrittverfahren ist explizit fiir 5, = 0 und implizit fiir
Br # 0. Alle Methoden aus Abschnitt 3.1 und Abschnitt 3.2 sind
lineare Mehrschrittverfahren. Nichtlineare Mehrschrittverfahren da-
gegen werden in der Praxis nur selten eingesetzt.

Definition 3.2 (lokaler Diskretisierungsfehler eines MSVs)
Sei y(z) die exakte Lisung des AWPs ' = f(x,y), y(xo) = yo.
Der lokale Diskretisierungsfehler eines linearen Mehrschrittverfah-
rens (3.9) ist definiert durch den Defekt

k k
7(h) = %(Zaw(scwh)—hzﬁeﬂxowh,y(xowh))). (3.10)

Diese Definition stimmt fiir ein explizites Verfahren im Fall £k = 1
mit dem lokalen Diskretisierungsfehler (2.7) aus Def. 2.1 iiberein.
Fiir implizite Verfahren lasst sich im Fall k£ = 1 eine gleiche Gréflen-
ordnung des Fehlers begriinden.
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Bei einem expliziten linearen Mehrschrittverfahren (3.9) ergibt sich
die N#herung mit ¢ = 0 und zy = x¢ + ¢h aus (5 = 0)

k-1 k-1
Yk + Z aye = h Z Bef (e, ye).
=0 =0

Wir nehmen an, dass die Anfangswerte exakt gegeben sind (d.h.
ye = y(xy) fir £ =0,...,k—1). Es folgt
k—1 k—1

Yy + Z Oégy(xg) =h Z Bﬁf(xéa y([Eg))
(=0 (=0

Die exakte Losung erfiillt wegen (3.10)

k-1 k—1
ary(@i) + > awy(we) = h Y Buf (we,y(we)) + h-7(h).
=0 =0

Der lokale Diskretisierungsfehler besitzt daher die Gestalt

r(h) = S (ylai) — o)

Ein lineares MSV (3.9) kann noch normiert werden zu oy := 1.

Analog zu Def. 2.2 charakterisieren wir die Konsistenz des Verfah-
rens.

Definition 3.3 (Konsistenz eines MSVs)
Das lineare Mehrschrittverfahren (3.9) ist konsistent, wenn der lo-
kale Diskretisierungsfehler aus (3.10) die Figenschaft

Ir (W < o(h) mit  limo(h) =0

fiir jeden Anfangswert (xo,vy0) € G (G: Definitionsbereich von f)

besitzt. Die Methode ist konsistent von Ordnung (mindestens) p,
falls T(h) = O(hP).

Fiir den globalen Diskretisierungsfehler ey := y(xy) —uy an einem
festen Endpunkt z.,q = xn gilt die Def. 2.4 wie bei Einschrittver-
fahren. Ebenso verwenden wir den Konvergenzbegriff aus Def. 2.4.
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Desweiteren setzen wir zur Vereinfachung in der theoretischen Un-
tersuchung voraus, dass die in einem k-Schritt-Verfahren benotigten
Anfangswerte yo, y1, - - ., Yp—1 als exakte Losungswerte von y(x) vor-
liegen.

Es ergibt sich jedoch, dass die Konsistenz allein nicht hinreichend fiir
die Konvergenz eines MSVs ist. Zusétzlich wird noch die Stabilitét
des Verfahrens bendétigt. Dabei zeigt sich, dass es ausreicht die Dgl.
y' = 0 zu betrachten (d.h. f = 0). Ein lineares MSV (3.9) reduziert
sich dann zu der homogenen linearen Differenzengleichung

k
Z WYirt = 0oYi + liv + -+ p1Yirk—1 + Yipk = 0.
(=0

Zu Differenzengleichungen kann ein charakteristisches Polynom de-
finiert werden.

Definition 3.4 Das charakteristische Polynom eines linearen
MSVs (3.9) bzw. der zugehirigen Differenzengleichung lautet

k
p(A) = Z N = ag + o + Xt + o+ ap N ap)F
=0

Das charakteristische Polynom besitzt also reelle Koeffizienten. Da-
mit kann das Stabilitdtskriterium angegeben werden.

Definition 3.5 (Stabilitit eines MSVs)

Fin lineares MSV (3.9) heif$t stabil, wenn die Nullstellen Ay, ..., g
(in C) des zugehirigen charakteristischen Polynoms die folgende
Bedingung ertfiillen:

i) |Aj| <1 falls \; einfache Nullstelle,

i) |\;| <1 falls \j mehrfache Nullstelle.
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Man nennt das Stabilitdtskriterium aus Def. 3.5 auch die Dahlquist-
sche Wurzelbedingung. Das Kriterium aus Def. 3.5 gilt fiir ein p(\)
genau dann, wenn es auch fiir yp(\) mit einer Konstanten v # 0
erfiillt ist. Gilt ap = a3 = -+ = a1 = 0 und «, # 0, dann kann
statt p(\) das Polynom

PA) =a, +app A+ F QN g \ET

diskutiert werden, denn es folgt p(A) = A"p(A) mit der (mindestens)
r-fachen Nullstelle A = 0.

Die Stabilitdt kann noch wie folgt interpretiert werden. Es seien
Yo, Y1y - - Ye—1 und 2g, 21, ..., 2x_1 zwei Wahlen von Anfangswerten
fiir das MSV (3.9) zur Dgl. ¢/ = 0. Gilt die Stabilitdt aus Def. 3.5,
dann gibt es eine Konstante C' > 0 mit

k—1

‘yi - Zz\ < CZ \yj — Zj| fiir alle 1.
j=0

Die Naherungslosungen hidngen somit alle Lipschitz-stetig von den
Eingabedaten ab. Zudem existiert eine feste Lipschitz-Konstante fiir
alle 1.

Damit kann das Hauptergebnis dieses Abschnitts angegeben wer-
den. Dabei wird noch an das AWP ¢’ = f(z,y) vorausgesetzt, dass
f auf [zg, Tena] X R™ stetig in z, p-mal stetig differenzierbar in y und
alle Ableitungen beschrankt sind. Desweiteren seien die im MSV
bendtigten Anfangswerte o, ..., yr_1 als exakte Losungswerte vor-
gegeben.

Satz 3.6 (Konvergenz von MSV)
Fin lineares MSV (3.9) ist genau dann konvergent von Ordnung p,
wenn das Verfahren konsistent von Ordnung p und stabil ist.
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Dahlquist 1956 zeigte, dass fiir ein allgemeines MSV (d.h. linea-
res oder nichtlineares MSV) die Konsistenz und die Stabilitat hin-
reichend fiir die Konvergenz sind. Bei linearen MSV gilt auch die
Umkehrung. Bei nichtlinearen MSV folgt aus der Konvergenz nur
die Stabilitdt. Den Beweis der Aussagen von Satz 3.6 kann man aus
7.2.10.1,7.2.10.2 und 7.2.11.4 in [7] entnehmen. Es sei noch erwéhnt,
dass diese Aussagen nur fiir konstante Schrittweiten gelten. Fiir be-
liebige Schrittweitenwahlen gelten die Resultate nicht immer bzw.
bediirfen intensiver weiterer Untersuchungen.

Ordnungsbedingungen

Wir leiten nun die Konsistenzbedingungen fiir ein lineares k-Schritt-
Verfahren (3.9) zu beliebiger Ordnung p > 1 her. Die exakte Losung
eines AWPs sei hinreichend glatt. Der lokale Diskretisierungsfeh-
ler (3.10) kann geschrieben werden als

k k
7(h) = %(Zagy(er@h) - hZBgy’(erEh)). (3.11)
/=0

=0

Taylor-Entwicklungen fithren auf

y(x +Lh) = zp: b’ + O(hPt)
— +Zy<q><x> - “qh!) F o,
Y (x+Lth) = 3 y' () - (g:!)q O(h")
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Einsetzen dieser Entwicklungen in den lokalen Fehler (3.11) ergibt

k 4 g—1
- h;ﬂe ;y(q)(x) ((jh_) o] +O(h") )
) F o[ 2@ (o
- #Zo‘é + %Z [Z - q|( )(awqhq — qBl R | + O(RP)
=0 (=0 Lg=1 '
y(z) ¢ Ly 9@), s .
=St ) 2 [Daeﬁ—qﬁzﬁq | +om).
=0 q= ' =0

Hier kénnen wir die Ordnungsbedingungen ablesen. Fiir Konsistenz
von Ordnung p = 1 brauchen wir nur 7(h) = O(h). Es folgen die
Konsistenzbedingungen fiir Ordnung 1

k k
Z ap =10 und Z(ozgé — Be) = 0. (3.12)
(=0

=0

Die zusétzlichen Bedingungen fiir Ordnung p > 1 ergeben sich zu

k k
Zagéq = qZBgﬁqfl fir ¢q=2,...,p
(=1 =1

Man beachte, dass die erste Bedingung in (3.12) fiir die Konsi-
stenz mit Ordnung 1 #quivalent zu p(1) = 0 mit dem charakte-
ristischen Polynom p(A) aus Def. 3.4 ist. Daher besitzt das cha-
rakteristische Polynom eines konsistenten linearen MSVs stets eine
Nullstelle A = 1.

Ist ein MSV konsistent mit Ordnung genau p (d.h. es gilt 7(h) =
O(R?), 7(h) # O(h™)), dann besitzt der lokale Diskretisierungs-
fehler die Gestalt

7(h) = Py (x

k
Z (aplP™t — (p+1)B7) | + O(RPHY).
{=
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Daher héingt dieser Fehler von den hoheren Ableitungen der exakten
Losung ab, welches relevant fiir eine Schrittweitensteuerung ist.

Beispiel: Adams-Moulton-Verfahren

Wir bestimmen die Konsistenzordnung der ersten beiden Adams-Moulton-Me-
thoden. Die Koeffizienten sind in Tabelle 2 enthalten.

Das erste Schema ist die Trapezregel
—Yi+Yir1=h [%fz + %fiJrl} :

Die Koeffizienten sind ag = —1, a1 =1, By = 1 = % Es folgt

1
Y ap=-1+1=0

und

1
D (al—=B)=(-1)-0-3+1-1-1=0.
=0
Damit gilt eine Konsistenzordnung p > 1. Die Bedingung fiir p = 2 lautet
1
> (pl® =280y =117 =21 - 1=0.
=1

Es folgt p > 2. Die Bedingung fiir p = 3 ist verletzt wegen
1
D (nl® =38%) =1-1° =35 12 =1 #0.
=1

Die Trapezregel ist somit konsistent von genau Ordnung p = 2.

Das zweite Schema ergibt sich zu
—Yir1 + Uiz = h [—5fi + 15 i1 + S fiva]

Die Koeffizienten sind ag =0, oy = —1, as = 1, By = —1—12, b1 = 1%, By = % Die
Konsistenzbedingungen mit Ordnung p = 1

2
dap=0+(-1)+1=0
=0
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und
2

Sl =B)=0-0— (=) +(-1)-1—-F+1-2— 5 =0

=0
sind erfiillt, d.h. es gilt die Ordnung p > 1. Die Bedingung fiir Ordnung p = 2
bestétigt sich aus

2
D (= 280" = (=1)- 1P =2 51" +1-22 =25 .21 = 0.
/=1

Es folgt die Ordnung p > 2. Die Bedingung fiir Ordnung p = 3 ist nun

2
D (e’ =387 = (-1)-1°=3-£.124+1.2° 3. 5. 22 = 0.
=1

Somit haben wir p > 3. Die Forderung fiir Ordnung p = 4 ist verletzt:
2
D ol =4 = (=1) -1 =4 5134+ 1-20— 4 5.2 = —1 40
=1

Dadurch besitzt diese Methode die genaue Ordnung p = 3. Allgemein kann man
zeigen, dass das k-Schritt Adams-Moulton-Vefahren die genaue Ordnung p = k+1
aufweist.

Beispiel von Dahlquist
Das explizite Zweischrittverfahren definiert durch
Yirz + i1 — 5y = h(4f (@iv1, yir1) + 2 (23, 43))

besitzt die Konsistenzordnung 3, siche Abschnitt II1.3 in [4]. Das charakteristi-
sche Polynom lautet
p(A) = N +4X — 5.

Die Nullstellen sind daher Ay = 1 und Ay = —5. Somit ist das Verfahren instabil.
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Stabilitdtsanalyse

Wir untersuchen nun die Stabilitdt und damit Konvergenz einiger
Typen von linearen MSV.

Einschrittverfahren:

Im Spezialfall £ = 1 lautet das charakteristische Polynom eines
linearen Einschrittverfahrens

p(A) = g+ aq .

Da fiir die Stabilitétsuntersuchung die Koeffizienten (5, keine Rolle
spielen (Fall f = 0) sind hier sowohl explizite als auch implizite
Verfahren einbezogen. Ist das Verfahren konsistent, dann folgt o+
a1 = 0. Immer gilt oy # 0. Somit ist A = 1 die einzige Nullstelle und
das Verfahren ist stets stabil. Dieses Verhalten motiviert auch, dass
die Stabilitdt bei Einschrittverfahren wie Runge-Kutta-Methoden
immer gegeben ist und daher nicht eigens gefordert werden muss.

Verfahren aus numerischer Quadratur:

Die Methoden von Adams-Bashforth (3.4) und Adams-Moulton (3.5)
besitzen beide wegen ag = --- = a2 =0, a1 = —1, ap = 1 das
charakteristische Polynom

p(A) = A" = A= (A=A

in der k-Schritt-Variante. Die Dahlquistsche Wurzelbedingung ist
somit erfiillt und die Verfahren sind stets stabil. Uber die Konver-
genz wird folgende Aussage zitiert.

Satz 3.7 (Konvergenz von Adams-Methoden)

Die k-Schritt-Verfahren von Adams-Bashforth und Adams-Moulton
sind jeweils konsistent von Ordnung k bzw. k + 1 und stabil fiir
alle k.
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Fiir ein allgemeines Verfahren (3.3) aus dem Ansatz iiber Quadratur
mit [ > 1 sind nur die Koeffizienten a = 1, ay._y = —1 ungleich
null. Es folgt das charakteristische Polynom

p(A) = A= A= (N — DAL

Eventuell tritt hier die Nullstelle A = 0 auf. Immer sind als Null-
stellen von p die Einheitswurzeln

A =e2T fir j=1,2,....¢

gegeben. Dadurch erhalten wir [ einfache Nullstellen mit |\;| = 1.
Die Dahlquistsche Wurzelbedingung ist erfiillt und die Verfahren
sind immer stabil.

Verfahren aus numerischer Differentiation:

Die BDF-Verfahren (3.8) besitzen fiir verschiedene Schrittzahl & je-
weils unterschiedliche Koeffizienten «y, . . ., a;. Uber die Konvergenz
wird folgende Aussage zitiert.

Satz 3.8 (Konvergenz von BDF-Methoden)
Das BDF-Verfahren mit k-Schritten besitzt die Konsistenzordnung k.
Die Methoden sind stabil fiir alle k < 6 und instabil fir alle k > 7.

Da das Konstruktionsprinzip der BDF-Verfahren bereits alle Koeffi-
zienten eindeutig festlegt, existieren keine Freiheitsgrade mit denen
die Konvergenz fiir hohes k£ noch erreicht werden kann. Jedoch sind
die Konvergenzordnungen bis p < 6 fiir die Praxis auch ausreichend.
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Optimale Konvergenzordnung

Wir kehren nun zu allgemeinen Betrachtungen zuriick. Es ist nahe-
liegend zu fragen, welche Konvergenzordnung in einem linearen k-
Schritt-Verfahren (3.9) fiir festes k& hochstens erreicht werden kann.
O.E.d.A. sei ;. = 1. Wir erhalten somit 2k + 1 Freiheitsgrade in
Form der Koeffizienten «,...,ar_1 und By, ..., Br. Wir konnen ei-
ne Methode konstruieren, die Konsistent von Ordnung p = 2k, da
p + 1 Konsistenzbedingungen erfiillt werden miissen. Jedoch muss
das Verfahren auch stabil sein um die Konvergenz zu erreichen. Das
Dahlquistsche Wurzelkriterium liefert £ Bedingungen fiir die Null-
stellen des charakteristischen Polynoms. Ein konsistentes Schema
besitzt die Nullstelle A = 1, welche das Wurzelkriterium erfiillt.
Daher verbleiben & — 1 Einschrankungen. Wir erwarten daher als
maximale Konvergenzordnung p ~ 2k—(k—1) = k+1. Der folgende
Satz von Dahlquist (1956/59) zeigt die exakten Aussage.

Satz 3.9 (erste Dahlquist-Schranke)
Fin lineares k-Schritt-Verfahren (3.9), welches die Stabilitdtsbedin-
gung erfillt, besitzt die maximale Konsistenzordnung

k+2 firk gerade,
k+1 firk ungerade,

k  fir g—z < 0 (insbesondere fiir explizite Verfahren).

Im Vergleich hierzu hat ein implizites Runge-Kutta-Verfahren mit
s Stufen als Freiheitsgrade s* + s Koeffizienten. (Die Knoten fol-
gen aus den inneren Gewichten iiber (2.17).) Ein explizites Runge-
Kutta-Verfahren besitzt etwa % Freiheitsgrade. Zusétzliche Bedin-
gungen fiir die Stabilitéit existieren bei Einschrittverfahren nicht.
Die optimale Konvergenzordnung bei fester Stufenzahl s lautet p =
2s fiir implizite Methoden (Gauss-Runge-Kutta) und p < s fiir ex-
plizite Methoden. Man beachte, dass die maximale Ordnung linear
bzw. sublinear mit der Stufenzahl anwéchst, wiahrend die Anzahl
der Koeffizienten quadratisch ansteigt.

57



3.4 Pradiktor-Korrektor-Verfahren

Wir betrachten ein AWP eines Systems gew. Dgln. ' = f(x,vy),
y(rg) = yo. In diesem Abschnitt diskutieren wir die Losung des
nichtlinearen Gleichungssystems aus algebraischen Gleichungen, das
bei impliziten MSV auftritt. Ein lineares k-Schritt-Verfahren mit
konstanter Schrittweite kann geschrieben werden als

K K
Yir1 — hBof(xit1,yiv1) = h Z Bef (Tiv1—e, Yir1-0) — Z QYY1
=1

=1
(3.13)
Die Formel (3.13) stellt ein System aus n algebraischen Gleichungen
fiir die Unbekannten y;,1 € R" dar. Die rechte Seite

k 5
wi=h Y Bef(@is1-6Yi1-0) = Y uivre
—1 =1

ist bereits gegeben durch die alten Naherungswerte.
Das nichtlineare Gleichungssystem

Yir1 — PP f (Tiv1, yig1) —w; = 0

kann numerisch mittels des Newton-Verfahrens gelost werden. Wir
definieren die Matrizen A®) € R™*"

AY) =T — hBy(Df) (i1, yz‘(j—)l)

mit der Einheitsmatrix I € R"*" und der Jacobi-Matrix Df € R™*".
Die Iteration aus dem Newton-Verfahren lautet

ADAY = 4 b f(wign, y) — wi

v+1
i = uh - Ay
fir v = 0,1,2,... mit einem Startwert yi@l € R". Somit erhalten

wir eine Folge aus linearen Gleichungssystemen. In dieser Situation
sind geeignete Startwerte gegeben durch yz@l = ;. Die Konvergenz-

geschwindigkeit der Iteration ist quadratisch.
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Wir verwenden das vereinfachte Newton-Verfahren um Rechenauf-
wand einzusparen. Die Iteration &ndert sich zu

AOAYY =y hg i, y)) — w;

(3.14)
v+1 v v
yi(+1 ) = y§+)1 - Ayz(—&-)l
fir v =0,1,2,.... Die Konvergenzgeschwindigkeit der Iteration ist

linear. Der Rechenaufwand diese vereinfachten Newton-Iteration be-
steht aus folgenden Anteilen:

Start-Phase:

1. Berechne die Jacobi-Matrix Df bei z = z;,1, y = yi(g)l. Falls
numerische Differentiation verwendent wird, so sind n zusétz-

liche Auswertungen von f erforderlich.

2. Zerlege AY) = L. R in eine linke untere Dreiecksmatrix L und
eine rechte obere Dreiecksmatrix R. Der Rechenaufwand ist

proportional zu n?.

In jedem Schritt:

()

1. Werte f bei v = x;41, y = y;,7 aus.

2. Lose das lineare Gleichungssystem in (3.14) mit der vorhande-
nen L R-Zerlegung. Der Rechenaufwand fiir jede Vorwéarts- und

Riickwirtssubstitution ist proportional zu n?.

Falls eine Schrittweitensteuerung verwendet wird und die Newton-
Iteration nicht konvergiert, dann wird die Schrittweite h; = x;,,1 —;
reduziert. Beispielsweise wird die Iteration neu gestartet mit dem
verdnderten Gitterpunkt z;11 = z; + %, weil der verfiighare Start-
wert ygg)l = y; dazu eine bessere Approximation darstellt wegen der
Stetigkeit der exakten Losung.

Wir betrachten eine alternative Technik, welche noch deutlich an
Rechenaufwand einspart. Das nichtlineare Gleichungssystem (3.13)
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kann als Fixpunktproblem

Yi+1 = (I)<yi+1)

mit der Funktion

D (yit1) = hBof (i1, yis1) + wi

geschrieben werden. Nach dem Banachschen Fixpunktsatz konver-
giert die Fixpunktiteration

g — o) fir v=0,1,2,... (3.15)

falls die Abbildung ® kontraktiv ist. In einer beliebigen Vektornorm
folgt

1D(y) — (2)|| = [|hBof (zis1,y) +wi — (hBof(xit1, 2) + w))]|
= h- |50! : Hf(xz'ﬂ,y) - f($¢+1,Z)H
< he[Bol - L-ly — 2]

unter der Voraussetzung der Lipschitz-Bedingung (1.2) an die rechte
Seite mit Konstante L > 0. Folglich ist die Abbildung & kontraktiv

falls
1

|Bol L~
Daher erhalten wir eine konvergente Fixpunktiteration fiir hinrei-
chend kleine Schrittweite. Die Konvergenzgeschwindigkeit ist line-
ar mit der Konstanten h|fBy|L. Der Rechenaufwand pro Iterations-
schritt (3.15) besteht nur aus einer einzelnen Auswertung der rech-
ten Seite f. Insbesondere miissen hier keine linearen Gleichungssy-
steme gelost werden.

h-|Bo]- L <1 & h <

(3.16)

Jedoch schrénkt die Kontraktivitatsbedingung (3.16) die Schrittwei-
te h stark ein im Falle von hohen Konstanten L. Grofie Lipschitz-
Konstanten L treten bei steifen Differentialgleichung auf, die als
mathematisches Modell in vielen Anwendungen vorliegen. In diesen
Féllen wird die Fixpunktiteration (3.15) nutzlos, da eine extrem ho-
he Anzahl von Integrationsschritten erforderlich ist. Im Gegensatz
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dazu liefert das Newton-Verfahren immer noch geeignete Néherun-
gen auch fiir groffe Schrittweiten h.

Nun betrachten wir implizite MSV (3.13) fiir moderate Konstan-
ten L. Die Bestimmung der Unbekannten y;.1 kann durch ein so-
genanntes Prddiktor-Korrektor-Verfahren erfolgen. Die Technik be-
steht aus zwei Teilen:

e Prddiktor-Methode: Ein Verfahren, das einen guten Startwert
liefert.

e Korrektor-Methode: Ein Iterationsverfahren, das gegen den a
priori unbekannten Wert konvergiert, wobei eine feste Anzahl
an Iterationsschritten durchgefiihrt wird.

Als Beispiel betrachten wir die Adams-Moulton-Verfahren. Das k-
Schritt (implizite) Adams-Moulton-Verfahren (3.5) besitzt die Ord-
nung k + 1, wihrend das k-Schritt (explizite) Adams-Bashforth-
Verfahren (3.4) die Ordnung & hat. Die Fixpunktiteration (3.15)
in der k-Schritt Adams-Moulton-Methode wird nun als Korrektor-
Schritt gewéahlt. Die k-Schritt Adams-Bashforth-Methode wird im
Préadiktor-Schritt verwendet.

Wir bezeichnen die Anwendung des Pradiktors mit P, einen Korrek-
tor-Schritt mit C und eine bendtigte Funktionsauswertung der rech-
ten Seite f mit E (da der Rechenaufwand durch die Anzahl dieser
Funktionsauswertungen charakterisiert ist). Sei f; := f(wz;,v;). Es
folgt die P(EC)™E-Methode zu einer konstanten ganzen Zahl m. Ta-
belle 4 spezifiziert den Algorithmus. Ublicherweise wird nur m = 1
oder m = 2 verwendet, da mehr Korrektor-Schritte die Genauigkeit
im Ergebnis nicht wesentlich erhéhen.

In der Praxis wird die P(EC)™E-Methode mit lokaler Fehlerkontrol-
le (d.h. Schrittweitensteuerung) verwendet. Dabei miissen in jedem
Integrationsschritt die Koeffizienten erneut berechnet werden mit-
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Algorithmus: P(EC)™E Verfahren

P: oy =y + hBLSi + Bofir + -+ Brfioksn)
(Adams-Bashforth)

firv=0,1,...,m—1

E: fi(i)l = f(zis1, yz'(i)l)
C: ) =ik (B + BLfik Bifioa + o+ Bifioken)
(Fixpunktiteration fiir Adams-Moulton)

B fir = fl@i,yi)
(Auswertung fiir ndchsten Integrationsschritt)

Tabelle 4: Algorithmus des Pradiktor-Korrektor-Verfahrens fiir einen Integrati-
onsschritt.

tels dividierter Differenzen (Newton-Interpolation). Die Differenz
m 0
yz(ﬂ) - y§+)1 = O(h**)

ergibt einen Fehlerschétzer fiir die Schrittweitensteuerung, da y(o)

i+1
eine Approximation der Ordnung k& und ym eine Approximation der
Ordnung k + 1 darstellt, vergleiche Abschnitt 2.5. Zudem kann eine

variable Ordnung durch eine Ordnungssteuerung verwendet werden.
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3.5 Ordnungssteuerung

Die Schrittweitensteuerung schétzt die grofitmogliche Schrittweite,
so dass der lokale Fehler unterhalb einer gegebenen Schranke ver-
bleibt, siehe Abschnitt 2.5. Das Ziel ist die Anzahl der benéttig-
ten Schritte in der Integration niedrig zu halten. Die Anzahl der
Schritte kann weiter reduziert werden durch Hinzunahme einer Ord-
nungssteuerung. Hierzu setzen wir voraus, dass mehrere Verfahren
mit den Konvergenzordnungen p = 1,2,...,pnax verfiighar sind
(Pmax = 5 — 15 in der Praxis). Die Idee ist nun dasjenige Verfahren
auszuwéhlen, bei dem die Schrittweitenkontrolle die gréfite Schritt-
weitenschitzung im néchsten Schritt ergibt.

Es sei die Schrittweite A bereits gewdhlt und die Ordnung p vorge-
schlagen. Wir berechnen dann drei Nidherungen mittels der Ver-
fahren fiir Ordnung p — 1,p,p + 1. Zu jeder Methode wird eine
Schitzung der optimalen Schrittweite hy_1, Iy, by bestimmt. Falls
eine dieser Schrittweiten groflergleich A ist, so wird der Schritt mit
der entsprechenden Niherung akzeptiert.

Desweiteren bendtigen wir eine Zahl w,, welche den Rechenaufwand
im Verfahren der Ordnung p quantifiziert. (Beispielsweise kann dies
die Anzahl der Funktionsauswertungen der rechten Seite der Dgl.
sein.) Nun folgt aus jedem Verfahren eine Schiatzung

W1 wy oy = Ut
) - ) p+1 —
hp—l hp hp—!—l

Op—1 =

des Rechenaufwands pro Einheitsschrittweite (h = 1). Wir verwen-
den im néchsten Integrationsschritt die Ordnung p mit dem klein-
sten Wert o, als Vorschlag fiir eine optimale Ordnung. Die Schritt-
weite hy wird im néchsten Schritt wieder in allen drei Methoden fiir
p—1,p,p+ 1 verwendet.

Algorithmen zu linearen MSV verwenden iiblicherweise Ordnungs-
steuerung, beispielsweise die Adams-Methoden oder die BDF-Me-
thoden. Der Grund ist, dass der Rechenaufwand w, nahezu un-
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abhéngig vom Wert p in diesen Verfahren ist. Man beachte, dass
nur m + 1 zusétzliche Funktionsaufswertungen in jedem Schritt der
P(EC)™E-Method bei beliebiger Ordnung erforderlich sind, da die
anderen Funktionsauswertungen bereits aus den vorangegangenen
Schritten vorliegen. Im Gegensatz dazu ist der Aufwand bei explizi-
ten Runge-Kutta-Verfahren ungeféhr w, ~ Cp mit einer Konstan-
ten C, weil p ~ s mit der Stufenzahl s gilt und die Anzahl der
Funktionsauswertungen identisch mit s ist.

Eine weitere Klasse von Verfahren, bei der sich eine Ordnungssteue-
rung in natiirlicher Weise anbietet, sind die Extrapolationsmetho-
den. Diese Techniken kénnen auf der Grundlage von sowohl Ein-
schrittverfahren als auch Mehrschrittverfahren konstruiert werden.

Es sei betont, dass die Implementierung einer Ordnungssteuerung
noch viele hochentwickelte Einzelheiten in Abhéngigkeit von den
jeweiligen Verfahren enthélt, auf die in diesem Abschnitt nicht ndher
eingegangen wurde.
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4 Methoden fiir steife Differentialgleichungen

Steife Systeme von gewohnlichen Differentialgleichungen treten in
vielen Anwendungen auf wie beispielsweise in der chemischen Re-
aktionskinetik, in der Mechanik und bei der Simulation elektrischer
Schaltungen. Theoretisch konnen diese Systeme mit jedem konver-
genten Verfahren aus den vorhergehenden beiden Kapiteln nume-
risch gelost werden. Jedoch sind explizite Methoden vollkommen in-
effizient bei steifen Differentialgleichungen. Dies motiviert die Not-
wendigkeit von impliziten Methoden.

4.1 Beispiele

Um das Phénomen der Steitheit zu verdeutlichen betrachten wir
zwei Beispiele: ein lineares System und den Van-der-Pol Oszillator.

Lineares System gew. Dgln.

Wir untersuchen ein bestimmtes lineares System aus gew. Dgln.,

namlich
() = (225 oy (n).

Die Matrix besitzt die Eigenwerte Ay = —1 und Ay = —100 mit den
Eigenvektoren v; = (1,3)" und vy = (1,2)". Die allgemeine Lésung
des Systems (4.1) lautet

(1 100s (1
y(x) = Cle (3) + Cge 100 (2>

mit beliebigen Konstanten C7,Cy € R. Alle Losungen besitzen die
Eigenschaft
lim y(z) = 0.

T—00

Jedoch fillt einer der beiden Terme (der zu Ay) sehr schnell ab,
wéhrend der andere Term (der zu A1) sich relativ langsam veréndert.
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Abbildung 11: Steifes lineares System: exakte Losung (links) — y; (—) und ys
(- - -) — und Nédherungen aus der expliziten Methode mit Schrittweitenkontrolle
(rechts).

Wir betrachten das Anfangswertproblem y;(0) = —31, 42(0) = 3.
Abb. 11 (links) zeigt die zugehorige Losung. Wir verwenden wie-
der ein explizites Runge-Kutta-Verfahren der Ordnung 2(3) und
die implizite Trapezregel jeweils mit Schrittweitensteuerung (rtol =
1073, atol = 1079). Im Intervall z € [0,10] benétigt das explizite
Verfahren 413 Schritte und das implizite Verfahren fithrt 94 Schrit-
te durch. Abb. 11 (rechts) zeigt, dass die explizite Methode auch
kleine Schrittweiten gegen Ende des Intervalls wihlt, wahrend die
Losung dort nahezu konstant ist. Wenn die Schrittweiten in der ex-
pliziten Methode vergréfiert werden, dann entstehen vollkommen
falsche Naherungen. Wir mochten dieses unterschiedliche Verhalten

der Integrationsverfahren verstehen.

In diesem Beispiel kann das steife Verhalten wie folgt charakteri-
siert werden: Die Losungen von Anfangswertproblemen néhern sich
schnell einer Losung, welche sich nur langsam verdndert. Jedoch
gibt es sich schnell verdndernde Losungen in einer Umgebung der
sich langsam verédndernden Losung.
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W=>5 w =100

Abbildung 12: Losungen des Van-der-Pol Oszillators.

Van-der-Pol Oszillator

Der Van-der-Pol Oszillator wird beschrieben durch eine gew. Dgl.
zweiter Ordnung

2'(t) + p(z(t)? = )2 (t) + 2(t) =0

mit dem Parameter o > 0. Die Losung ist jeweils periodisch, wobei
die Periode von p abhéingt. Damit die Periode (nahezu) unabhéngig
von i wird, verwenden wir die Transformation x = ﬁ Es folgt mit

y(x) = z(px)
2y (@) + (y(@)* = Dy (z) +y(z) = 0.

Die Anfangswerte seien y(0) = 2 und %/'(0) = 0. Wir lésen das
dquivalente System erster Ordnung

n(x) = yax),

(@) = —p*((1u(2)? — Dya(z) + 1 (2)).
Abb. 12 zeigt Losungen fiir unterschiedliche Parameter pu.
Wir losen das System mit zwei Methoden: ein explizites Runge-
Kutta-Verfahren der Ordnung 2(3) und die implizite Trapezregel

(Ordnung 2). In beiden Varianten wird eine lokale Fehlerkontrol-
le durchgefiihrt mit den Genauigkeitsforderungen rtol = 1072 und
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explizites Verfahren implizites Verfahren

=5 145 201
1=10 434 294
1 =50 9017 483
=100 36.067 542
1= 200 144.453 616
1 = 1000 3.616.397 624

Tabelle 5: Anzahl der Schritte in der Simulation des Van-der-Pol Oszillators.

atol = 107, Die Integration erfolgt im Intervall z € [0, 5]. Tabelle 5
enthélt die Anzahl der benotigten Schritte fiir verschiedene Parame-
ter u. Der Rechenaufwand ist proprotional zur Anzahl der Schritte
in jeder Methode. Wir bemerken, dass das explizite Verfahren mehr
Schritte bendtigt je grofler der Parameter p ist. Falls die Schrittwei-
te im expliziten Verfahren erhoht wird, dann werden die Ergebnisse
deutlich falsch. Im Gegensatz dazu steigt die Anzahl der Schritte
im impliziten Verfahren nur geringfiigig an. Damit ist die implizite
Variante iiberlegen. Das Verhalten des Systems aus gew. Dgln. fiir
hohe Parameter p nennt man steif.

4.2 Testgleichungen

Wir analysieren das obige lineare Beispiel nun im allgemeinen Fall.
Gegeben sei ein lineares System von gew. Dgln.

Y () = Ay(z), y:R—R", AeR"™" (4.2)
Wir nehmen an, dass die Koeffizientenmatrix diagonalisierbar ist:
A=T7'DTI, TecC™, D=dag\,...,\).

Die Eigenwerte Ay,...,\, € C konnen auch fiir reellwertige Ma-
trix A komplexe Zahlen sein. Die Transformation z(z) = Ty(x)
entkoppelt das System in unabhéngige skalare lineare gew. Dgln.

Zi(x) = Ajzj() fir j=1,...,n. (4.3)
Entsprechend transformieren sich die Anfangswerte z(xo) = Ty(x).
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Dahlquist’sche Testgleichung

Motiviert durch die entkoppelten Dgln. (4.3) diskutieren wir die
skalare lineare Dgl.

y'(z)=My(x), y:R—-C, NeC. (4.4)

Die Dgl. (4.4) nennt man Dahlquist’sche Testgleichung (1963). Zu
einem Anfangswert y(0) = yo lautet die exakte Losung

Nz i-Im()\)x.

y(z) = yoe* = yoe W . e

Es folgt

[y(2)] = lyol - "V,

Falls Re(\) < 0 gilt, dann fillt die Losung streng monoton.

Wir wenden das explizite und implizite Euler-Verfahren auf dieses
Testproblem an. Abb. 13 verdeutlicht die numerischen Losungen fiir
A = —10 und yy = 1. Wir erkennen, dass das implizite Verfahren
das qualitative Verhalten der exakten Losung fiir alle Schrittwei-
ten reproduziert. Andererseits liefert das explizite Verfahren nur
fiir kleine Schrittweiten das qualitativ korrekte Verhalten.

Es ist einfach dieses Verhalten der Euler-Methoden zu erklaren:

(i) explizites Euler-Verfahren
Anwendung auf die Dahlquist-Testgleichung (4.4) ergibt

Y1 = Yo + hAyo = (1 + hA)yo.
Es folgt sukzessive (y; ist Naherung zu y(jh))
y; = (L+hX\) yo.
Somit gilt |y;| < |y;—1| genau dann, wenn
1+ hA| < 1.

Fiir A € R und A < 0 (und natiirlich A > 0), erhalten wir eine
Schrittweitenrestriktion

hgm.
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explizites Euler-Verfahren :

1 ]
Y ol h=0.1 Dose

-1 0 1 2 3 4 5
X
T T
1 U i
Y ot h-0.18 N \dO\G O o oo
-1 © |
1 1 1 1 1
-1 0 1 2 3 4 5
X
T T T T T
T 8 R'8 8 R R 8 R R R R %]
Y ok h=02 \ \ \ \ \ \ \ \ \
° ' A N A N A N A A A N A N A A AV WV
-1F ‘é) o} c‘; o} ®‘® [} ‘ ® o © [0} 4
- 0 1 2 4 5
X
T T T T T
M| Q\ : ! 1 ! |
Y oor het 5 : : : |
1k \ [ | i
1 1 Ll \‘ L1 \‘
-1 0 1 2 3 4 5

T
1 Q%@m ]
Y ol h=0.1
_1 L 1 1 1 1 1 i
1 0 1 2 3 4 5
X
T T
1+ Q&\& ]
Y ol h=0.18
_1 L 1 1 1 1 1 i
- 0 1 2 3 4 5
X
T T
1h Q\Q@Le ]
Y o} h=02 = °
_1 L 1 1 1 1 1 ]
-1 0 1 2 3 4 5
T

Abbildung 13: Losungen der Dahlquist’schen Testgleichung mit A = —10: exakte
Losung (—) und Nédherungen (o).
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Nur Schrittweiten, die diese Bedingung erfiillen, ergeben Ap-
proximation, die nicht ansteigen. Fiir hohe |A| muss die Schritt-
weite h klein sein.

(ii) Implizites Euler-Verfahren
Nun fiihrt die Dahlquist-Testgleichung (4.4) auf die Formel

!
1o

Y1 = Yo + hAyr = Y1

Wir erhalten die Naherungen

1 J

Die Eigenschaft |y;| < |y;_1| ist erfiillt genau dann, wenn

‘ 1

<1 1< 1-
1—h>\‘_ “ < [L=hA

gilt. Fiir A € R und A < 0 ist diese Eigenschaft bei beliebiger
Schrittweite h > 0 gegeben. Daher tritt keine Schrittweitenre-
striktion auf.

Wir untersuchen die Dahlquist’sche Testgleichung im Fall von Pa-
rametern A mit hohem negativen Realteil. Man beachte, dass die
zugehorige Lipschitz-Konstante der rechten Seite dann auch grof3
wird, da mit f(x,y) = Ay folgt

[f(z,y) = f(@,2)] = Ay = Az[ = |A] - |y — 2].

Bei einer Fixpunktiteration in einer Pradiktor-Korrektor-Methode,
sieche Abschnitt 3.4, wire eine deutliche Schrittweitenrestriktion er-
forderlich um die Konvergenz der Iteration sicherzustellen.
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Abbildung 14: Lésungen von verschiedenen Anfangswertproblemen zur Prothero-
Robinson Testgleichung mit Parameter A = —100 und den Funktionen ¢(x) =
2x — 1 (links) sowie ¢(z) = sin(27x) (rechts).

Prothero-Robinson Testgleichung

Ein anderes skalares Problem, welches das steife Verhalten verdeut-
licht, ist die Prothero-Robinson Testgleichung (1973)

Y(z) = AMy(z) — @) +¢ (@), yle) =5  (45)

mit der Losung y : R — R und einem reellen Parameter A < 0.
Die glatte Funktion ¢ : R — R sei vorgegeben. Die Lésungen von
Anfangswertproblemen zu (4.5) lauten

y() = (yo — p(20))e ™) + ().

Die spezielle Losung y = ¢ stellt die asymptotische Phase dar, d.h.
die anderen Losungen ndhern sich dieser Funktion schnell an im
Fall von hohen negativen Werten \. Abb. 14 zeigt zwei Beispiele.
Desweiteren ergibt der Spezialfall ¢ = 0 die Dahlquist’sche Test-
gleichung (4.4).
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Definition von steifen linearen Systemen

Wir definieren nun das Phénomen der Steifheit fiir lineare Differen-
tialgleichungssysteme. Man beachte, dass es keine exakte Definition
von Steifheit (fiir lineare oder nichtlineare Systeme) gibt. Ein Grund
dafiir ist, dass Steifheit nicht nur eine qualitatives Eigenschaft son-
dern auch ein quantitatives Verhalten bedeutet. Wir geben zwei
Definitionen an:

e Wir nehmen an, dass im linearen System ¢y = Az die Ei-
genwerte \; alle negativen Realteil besitzen. Das System ist
steif, wenn sowohl Eigenwerte mit kleinem negativen Realteil

als auch Eigenwerte mit hohem negativen Realteil existieren,

d.h. das Verhaltnis
max |Re();)]

j=1,...n

min |Re();)]

j=1,...n

(4.6)

ist sehr grof3. (Falls alle Eigenwerte einen hohen negativen Real-
teil in der gleichen Groflenordnung besitzen, d.h. das Verhélt-
nis (4.6) ist klein, dann kann das steife Verhalten aus dem
System heraustransformiert werden.)

e Die folgende Charakterisierung von Curtis und Hirschfelder
(1952) geht auf ihre Beobachtungen bei der Simulation von
chemischer Reaktionskinetik zuriick (und gilt auch fiir nichtli-
neare Systeme): , Stiff equations are equations, where certain
implicit methods perform better — usually tremendously better
— than explicit ones.* In Kurzform:

Implizit ist besser als explizit.
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4.3 A-Stabilitiat fiir Einschrittverfahren

Die Eigenschaften der Euler-Verfahren bei Anwendung auf die Dahl-
quist’sche Testgleichung (4.4) motiviert die Definition eines Stabi-
litdtskonzepts. Stabilitdt bedeutet hier eine notwendige (nicht hin-
reichende) Bedingung um geeignete Néherungen zu erhalten. In die-
sem Abschnitt betrachten wir nur Einschrittverfahren.

Definition 4.1 (A-Stabilitéit fiir Einschrittverfahren)

Fin Einschrittverfahren heifst A-stabil, wenn die zugehdrige Folge
von Néherungen (y;)jex zur Dahlquist-Gleichung (4.4) mit Re(\) <
0 fir alle Schrittweiten h > 0 nicht ansteigt, d.h. |yj+1| < |y;| gilt
fiir alle 7.

Wenn ein Einschrittverfahren A-stabil ist, dann ist es geeignet zur
numerischen Losung von steifen linearen Differentialgleichungssy-
stemen. Umgekehrt sollte eine Methode, die nicht A-stabil ist, auch
nicht bei (linearen oder nichtlinearen) steifen Problemen verwendet
werden.

Wir mochten eine Technik erhalten, mit der nachgewiesen werden
kann, ob ein Verfahren A-stabil ist oder nicht. Als Abkiirzung sei
z := hA € C. Auf einem &quidistanten Gitter x; = xo + jh erfiillt
die exakte Losung der Dahlquist-Gleichung (4.4)

y(zjn) = y(z;) = e*y(;).

Dadurch gilt |y(z;4+1)| < |y(x;)| genau dann, wenn Re(\) < 0, wel-
ches dquivalent ist zu Re(z) < 0.

Definition 4.2 (Stabilitdtsfunktion zu Einschrittverfahren)
Falls ein Einschrittverfahren bei Anwendung auf die Dahlquist-Glei-
chung in der Form y;41 = R(z)y; mit z = hA geschrieben werden
kann, dann heifst R : C — C die Stabilitdtsfunktion des Verfahrens.
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Die Euler-Verfahren angewendet auf die Dahlquist’sche Testglei-
chung lauten

yjr1 = R(2)y;
mit
1
expl. Euler : R(z) =1+ z, impl. Euler :  R(z) = 1 .
— 2z
Wir mochten, dass |R(z)| < 1 fiir alle z mit Re(z) < 0 erfiillt
ist. Jedes Einschrittverfahren besitzt eine Darstellung y; = R(z)yq.

Die Abbildung R : € — C nennt man die Stabilitdtsfunktion des
Verfahrens.

Definition 4.3 (Stabilitédtsgebiet von Einschrittverfahren)
Das Stabilititsgebiet S C C eines Finschrittverfahrens y; = R(2)yo
st die Menge

S:={2ze€C:|R(2)| <1}

Desweiteren sei C~ := {z € C : Re(z) < 0}. Dadurch lésst sich die
A-Stabilitat charakterisieren durch

A-stabil < |R(2)| <1 firalle z€ C° < C CS&S.
Fiir die Euler-Verfahren erhalten wir die Stabilitétsgebiete

expl. Euler: S ={2¢e€C: |14z <1},

impl. Euler:  S={zeC: || <1} ={z€C:1<[1-z]}.
Diese Stabilitdatsgebiete sind das Innere eines Kreises um z = —1 mit
Radius 1 bzw. das Auflere eines Kreises um z = 1 mit Radius 1, siehe

Abb. 15. Dadurch gilt C~ C S fiir das implizite Euler-Verfahren,
jedoch nicht fiir das explizite Euler-Verfahren.
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Beispiel: Trapezregel

Die Trapezregel angewendet auf die Dahlquist’sche Testgleichung
(4.4) liefert

y1 =10+ 2 Ayo + M)

Es folgt
1+ 3RA
Y1 = 1_ % 3\ Yo-
Die Stabilitdtsfunktion ergibt sich zu
1+1iz
R(z) = 2_
(=) 1-1z

2

Eine genauere Untersuchung ergibt, dass hier S = C~ erfiillt ist.
Somit ist die Trapezregel A-stabil.

Beispiel: Explizite Mittelpunktregel (Collatz-Verfahren)

Die explizite Mittelpunktregel (2.6) fiihrt auf
y1 = yo + B (Yo + 2yo) = (1 + A+ $h%A%) yo
bei der Dahlquist-Gleichung (4.4). Es folgt die Stabilitdtsfunktion
R(z) =14z + 1%

Die explizite Mittelpunktregel ist nicht A-stabil, da das Stabilitéts-
gebiet beschrankt ist.

Abb. 15 demonstriert die Stabilitdtsgebiete dieser vier grundlegen-
den Einschrittverfahren, vergleiche Abschnitt 2.2.
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explizites Euler-Verfahren implizites Euler-Verfahren

Im Im

—+i

1

1 Re
-+ i

explizite Mittelpunktregel (implizite) Trapezregel

Im Im

1 Re 1 Re

Abbildung 15: Stabilitédtsgebiete fiir einige wichtige Einschrittverfahren.
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Allgemeines Runge-Kutta-Verfahren

Ein allgemeines Runge-Kutta-Verfahren mit s Stufen zum Anfangs-
wertproblem y' = f(x,y), y(zo) = yo lautet

ki:f(x0+cih;y0+hzaijkj> fiir iIl,...,S,

j=1

yi=yo+h) biki.

1=1

Die Methode ist eindeutig festgelegt durch ihre Koeffizienten
c=(¢) € R, b= (b;) € R’ A = (a;5) € R7.

Im Fall der Dahlquist’schen Testgleichung 1/ = Ay kann eine Formel
fiir die Stabilitatsfunktion des Verfahrens hergeleitet werden. Diese
Formel gilt fiir sowohl explizite als auch implizite Verfahren.

Satz 4.4 (Stabilitdtsfunktion bei Runge-Kutta-Verfahren)
Die Stabilitdtsfunktion eines Runge-Kutta-Verfahrens ist gegeben
durch

R(z)=1+2b"(I —zA)"1 (4.7)

mit 1 := (1,...,1)" € R*® und der Einheitsmatriz I € R*** oder

dquivalent
I —2zA+ z1b"
R(z):det( zA+z1b")
det(l — zA)

(4.8)

Satz 4.4 zeigt, dass die Stabilitatsfunktion eines Runge-Kutta-Ver-
fahrens eine rationale Funktion in der unabh&ngigen Verdnderli-
chen z darstellt. Die Stabilitdtsfunktion ist nicht definiert an Stellen
mit det(/ — zA) = 0. Daher kann eine endliche Anzahl von Polen
auftreten.

Fiir A-stabile Runge-Kutta Verfahren zeigt sich folgende Einschrank-
ung.
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Satz 4.5 Ein konvergentes explizites Runge-Kutta- Verfahren ist nie-
mals A-stabil.

Beweis:

Ein explizites Runge-Kutta-Verfahren besitzt eine strikte untere
Dreiecksmatrix A. Es folgt det(I — zA) = 1 fiir alle z € C. Die
Stabilitatsfunktion eines expliziten Runge-Kutta-Verfahrens ist laut
Formel (4.8) somit ein Polynom

R(2) = ap+ a1z + an2® + -+ 12571 + 25,

Damit gilt
IR(2)] I 4o

sofern das Polynom nicht konstant ist.

Wire das Polynom konstant, d.h. R(z) = C, dann hitte man bei
der Dahlquist’schen Testgleichung die Néherungen y;,1 = Cy; und
insbesondere |y;| = |C|’|yo|. Die Folge der Niherungen wire damit
entweder monoton fallend oder streng monoton steigend je nach
Konstante C'. Mit der Konvergenz des Verfahrens muss jedoch die
Folge streng monoton steigen fiir Re(\) > 0 und streng monoton fal-
len fiir Re(\) < 0. Dies ergibt einen Widerspruch und das Polynom
muss konstant sein.

Ein explizites Runge-Kutta-Verfahren kann daher nicht A-stabil
sein. [J

Nur implizite Runge-Kutta-Verfahren kénnen somit A-stabil sein.
Jedoch ist nicht jedes implizite Runge-Kutta-Verfahren A-stabil.

L-Stabilitat

Das Konzept der L-Stabilitat stellt eine Verscharfung der A-Stabilitét
dar. Wieder beruht diese Bedingung auf der Dahlquist’schen Test-
gleichung (4.4). Die exakte Losung erfiillt die Gleichung

y(h) = e*y(0) mit z = hA.
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Im Grenzfall von Parametern A mit riesigem negativen Realteil folgt

lim y(h)=y(0) lim e =0.

Re(z)——o0 Re(z)——o0

Wir mochten, dass die Ndherungen

y1 = R(2)yo

aus einem Einschrittverfahren diese Eigenschaft erben.

Definition 4.6 (L-Stabilitét fiir Einschrittverfahren)
Ein Einschrittverfahren heifst L-stabil, wenn es A-stabil ist und zu-
sdtzlich gilt

lim R(z) = 0.

Z—00

L-stabile Verfahren eignen sich zur numerischen Losung von extrem
steifen Differentialgleichungen. Man beachte, dass R(z) eine ratio-
nale Funktion bei Runge-Kutta-Verfahren ist. Daher gilt

lim R(z)= lim R(z)= lim R(z)

Re(z)——o0 |z|—0c0 2—00

vorausgesetzt die Grenzwerte existieren. Eine rationale Funktion
R(z) besitzt die Gestalt

R(2) ap+ a1z 4+ -+ ap12" 1+ a, 2"
Z =
bo+biz+ -+ byp_12m 1+ b 2™m

mit a,, b, # 0. Somit folgt

0 fir n <m,

Qn

bﬂ,
— o0 fur n>m.

lim |R(2)|{ =

Z2—00

fir n =m,

Das implizite Euler-Verfahren ist auch L-stabil, weil

1
lim R(z) = lim

2—00 200 1 — 2

= 0.
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Jedoch folgt bei der Trapezregel fiir w € R
B 1+ fiw|? B 1+ dw? B

= dwr 1+de?

|[R(iw) "

Da R(z) eine rationale Funktion ist, ergibt sich

lim R(z) =1

Z—00

und daher ist die Trapezregel nicht L-stabil. Somit ist die Trapez-
regel ungeeignet fiir extrem steife lineare Probleme.

Losung der nichtlinearen Gleichungssysteme

Es wird noch die effiziente Losung der nichtlinearen Gleichungssy-
steme, die bei impliziten Runge-Kutta-Verfahren entstehen, ange-
sprochen. In einem einzelnen Integrationsschritt zu einem nichtli-
nearen Differentialgleichungssystem ¢y’ = f(z,y) mit y : R — R”
entsteht das Verfahren

ki:f<xi,yo+h2aijkj) fir 7+ = 1,...,5

=1
Y1 =yo + hzbiki
i—1

mit x; = xg + ¢;h. Darin enthalten ist das nichtlineare Gleichungs-
system G(K) =0 mit K € R* und G : R — R*"

/kl - f(:lfl,yo + hialjkj)\

k1 =1

Kks _ f(xs, o + hjilasjkj)/

Dieses nichtlineare Gleichungssystem wird mit dem vereinfachten

Newton-Verfahren iterativ gelost. Da k; = O(h) gilt, sind als Start-
(0)

werte k; 7 = 0 fiir ¢ = 1,...,s geeignet. Die Iterationsvorschrift
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lautet
DG(KNAK® = —G(KW)
Kvt) = KW 4L AKW  fir v=0,1,2,... .

Die darin auftretende Iterationsmatrix besitzt wegen K© = 0 die
Gestalt

auDf (z1,90) -+ aDf (21,9)
DG(K"Y) =1, —h : :

alef (x&yO) asst (xwyO)

Da x; = 9 = ¢h = xo + O(h) gilt, kann man die Matrix wei-
ter vereinfachen, indem Df (x;, 1) durch Df (zg,y0) fir alle i =
1,..., s ersetzt wird. Dadurch ist zur Berechnung der Iterationsma-
trix DG(K®) nur eine Jacobi-Matrix der Funktion f auszuwerten.

Der Rechenaufwand fiir eine L R-Zerlegung der Matrix DG betrégt
etwa 2(sn)* Operationen, d.h. eine Proportionalitét zu s*n®. Ist die
Matrix A~! jedoch reell diagonalisierbar, dann kann die Iterations-
matrix DG mit einem Rechenaufwand von nur ca. sn Operationen
auf eine Block-Diagonalform mit s Blocken der Dimension n trans-
formiert werden. Somit sind nur s separate L R-Zerlegungen erfor-

derlich und der Rechenaufwand ca. %ng pro Teilsystem.

Zudem kann ein besonders giinstiger Rechenaufwand in den fol-
genden beiden Spezialfillen von Runge-Kutta-Verfahren erhalten
werden.

Definition 4.7 (Diagonal-implizite Verfahren)
Fin Runge-Kutta- Verfahren (2.20) mit der Matriz A € R*** der
inneren Gewichte heifst

e diagonal-implizites R.-K.-V. (DIRK), wenn A eine untere Drei-
ecksmatriz ist (d.h. a;; = 0 firi < j) und a; # 0 fir ein i gilt,

e cinfach diagonal-implizites R.-K.-V. (SDIRK von engl. singly
DIRK), falls zudem noch a11 = asg = -+ = ags gilt.
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In einem DIRK Verfahren vereinfachen sich die nichtlinearen Glei-
chungssysteme zu

ki = f(fo + cih, yo + hzaijkj)

j=1

fir ¢« = 1,...,s. Diese Gleichungen kénnen in Nullstellenform ge-
schrieben werden mit Funktionen G; : R" — R"

i1
Gi(ki) = ki — f(xo + ¢cih, yo + hagik; + hzaijkj)
j=1
fiir + = 1,...,s. Somit liegen hier s nichtlineare Gleichungssyste-
me jeweils fiir die Unbekannten kq, ..., ks vor. Fiir festes ¢ sind die
Néherungen fiir k1, ..., k;_1 bereits berechnet und nur k; ist unbe-

kannt. Die Jacobi-Matrizen der einzelnen Funktionen G; lauten

i—1
DGi(k;) = I, — ha;; Df (on + ¢cih, yo + hagk; + hzaiij)
j=1
fiir ¢ = 1,..., s mit der Einheitsmatrix I € R™*". Im vereinfachten

Newton-Verfahren werden die Startwerte kl@ = 0 verwendet, wo-

durch die Koeffizientenmatrizen DG;(0) entstehen. Mit den zusétz-
lichen Vereinfachungen xy + cjh ~ zp und k; ~ 0 folgen in den
linearen Gleichungssystemen die Koeffizientenmatrizen

M; =1, — ha;; Df (x0, yo)

fiir + = 1,...,s. Dadurch die nur eine Jacobi-Matrix Df pro Inte-
grationsschritt auszuwerten. Bei einer DIRK Methode miissen da-
her nur s separate LR-Zerlegungen der Dimension n durchgefiihrt
werden.

Bei einer SDIRK Methode sind wegen ay; = -+ = ags die verein-
fachten Koeffizientenmatrizen M, identisch. Nun ist sogar nur eine
einzige L R-Zerlegung der Dimension n erforderlich.
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4.4 A-Stabilitat fiir Mehrschrittverfahren

Nun erfolgt die Untersuchung von linearen MSVen (3.9) bei Anwen-
dung auf steife Differentialgleichungen. Ein lineares Mehrschrittver-
fahren ist (numerisch) stabil genau dann, wenn sein charakteristi-
sches Polynom die Wurzelbedingung aus Def. 3.5 erfiillt.

Die Anwendung eines linearen k-Schritt-Verfahrens (3.9) auf die
Dahlquist-Testgleichung (4.4) fithrt auf die homogene lineare Diffe-
renzengleichung

k k k
dawie=hY B = Y (e —hAB) Y =0.
=0 (=0 (=0
Mit z := h\ lautet das zugehorige charakteristische Polynom
k
q.: C— C, q,z(g) — Z(Oéf - Zﬁf)ég' (49)
(=0

Man kann zeigen, dass alle Losungen dieser Differenzengleichung
beschrinkt sind genau dann, wenn das charakteristische Polynom
die Wurzelbedingung erfiillt. Die Nullstellen &1, ..., & von ¢, hédngen
von z ab.

Sei Re(A) < 0 in der Dahlquist’schen Testgleichung (4.4). Die exak-
ten Losungen sind vom Betrag her dann monoton fallend. Insbeson-
dere sind sie dadurch beschrénkt. Die numerische Losung aus einem
linearen Mehrschrittverfahren kann zunéchst leicht ansteigen. Da-
her wird nur gefordert, dass die numerische Loésung fiir alle Schritt-
weiten beschréankt ist. Die Wurzelbedingung fithrt auf die folgende
Definition.

Definition 4.8 (Stabilitidtsgebiet eines Mehrschrittverf.)
Das Stabilititsgebiet S C C zu einem linearen Mehrschrittverfahren
lautet

S = {z € C: fir alle Nullstellen & von q, gilt
€| <1 und €| < 1 fiir mehrfache Nullstellen}.
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Jetzt kann die A-Stabilitdt von Mehrschrittverfahren wie bei Ein-
schrittverfahren festgelegt werden.

Definition 4.9 (A-Stabilitit von Mehrschrittverfahren)
Fin lineares Mehrschrittverfahren heifst A-stabil, wenn sein Stabi-
litdtsgebiet die Bedingung C~ C S erfiillt.

Man kann zeigen, dass die A-Stabilitdt von Einschrittverfahren aus
Def. 4.1 dquivalent ist zur A-Stabilitdt von linearen Einschrittver-
fahren aus Def. 4.9. Ein lineares Einschrittverfahren (k = 1) besitzt
die Gestalt

a1y1 + oo = h[Bif (21, y1) + Bof (2o, vo)] -
Bei Anwendung auf die Testgleichung (4.4) folgt
—ag + 25

ar — 2P
R(z)

a1y1 + opyo = h [51)\91 + 50>\y0] = U1 = Yo-

Das zugehorige charakteristisches Polynom lautet

q:(§) = (a1 — 2B1)§ + (o — 2/).
Dieses Polynom besitzt nur die einfache Nullstelle
—ag + 20
z) = ——.
&1(2) o — 25,
Andererseits stimmt die Stabilitdtsfunktion R(z) dieses Einschritt-
verfahrens mit der Nullstelle &;(2) des Polynoms iiberein. Folglich
sind die Bedingungen |R(z)] < 1 und [&(2)] < 1 fur alle 2z mit
Re(z) < 0 dquivalent.

Das Konzept der A-Stabilitéit fiir lineare k-Schritt-Verfahren ist im
Fall £ > 1 etwas schwécher als bei Einschrittverfahren. Der Spezi-
alfall z = 0 entspricht der numerischen Stabiltidt des Mehrschritt-
verfahrens, siehe Def. 3.5.

Wieder ergibt sich, dass explizite Verfahren nicht geeignet fiir steife
Differentialgleichungen sind.
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Satz 4.10 Fin konvergentes explizites lineares Mehrschrittverfah-
ren hat ein beschrdinktes Stabilititsgebiet und ist somit nie A-stabil.

Beweis:

Ein explizites lineares Mehrschrittverfahren (3.9) besitzt die Eigen-
schaft 8, = 0. O.E.d.A. sei o, = 1. Das charakteristische Polynom
bei Anwendung auf die Dahlquist’sche Testgleichung (4.4) lautet

q:(§) = ¢r + (a1 — Zﬁk—l)ﬁk_l + o4 (o — 261)E + (ag — 25).

Das Polynom kann in der Gestalt

¢:(&) = &+ ()4 1 (2)€ +0(2)
= (-&@))E—-E&(2) - (£ = &(2)

geschrieben werden mit den Nullstellen &,...,& € C abhéngig
von z. Der Satz von Vieta, siehe S. 171 in [8], liefert die Formel

Wk—i(z) - (_1)i Z fjl(z)sz (Z) T sz(z)

1< <Go<-<4i<k

Angenommen das Stabilitdtsgebiet S wire unbeschrankt. Dann gibt
es eine Folge (z;)ien C S mit |z;| — oo. Da das Verfahren kon-
vergent ist, muss mindestens ein Koeffizient g, # 0 auftreten. Es
folgt |ay — z;B¢| — 00. Somit wird ein Koeffizient ~,(z) von ¢, un-
beschriankt entlang der Folge. Wéaren alle Nullstellen beschriankt
entlang der Folge, dann wéren durch die Formel von Vieta alle Ko-
effizienten beschrankt. Also muss mindestens eine Nullstelle &;(2)
unbeschrénkt entlang der Folge sein. Dadurch gilt [£;(z;)| > 1 fiir
unendlich viele 7. Aus Def. 4.8 des Stabilitédtsgebiets S folgt dann
z; ¢ S fiir unendlich viele i. Dies steht im Widerspruch zu z; € S fir
alle 7. Also ist S beschrankt. Die Bedingung C~ C S aus Def. 4.9
kann nicht gelten. [
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Fiir implizite lineare Mehrschrittverfahren gilt 3 ¢ 0 und das cha-
rakteristische Polynom lautet

0. (&) = (ar—2B)E +(ap_1—2Bp 1) 1 - (a1 —2B1)E+(ap—2 ).

die Nullstellen dieses Polynoms sind die gleichen wie von

- ok Q1= 20k g o — zf oy — 2P
L&) =& ag — 20 S +Oék—25k€+04k—25k

unter der Voraussetzung aj — 20, # 0. Nun sind die Koeffizien-
ten rationale Funktionen in der Variablen z. Die Koeffizienten sind
beschrankt fiir |2| — co. A-stabile Mehrschrittverfahren sind eine
Teilmenge der impliziten Verfahren. Jedoch gilt fiir die A-Stabilitét
von Mehrschrittverfahren noch eine wesentliche Einschrankung.

Satz 4.11 (zweite Dahlquist-Schranke)
Fin lineares Mehrschrittverfahren, das konvergent von einer Ord-
nung p > 2 ist, kann nicht A-stabil sein.

Fiir ein k-Schritt-Verfahren mochte man eine Konvergenzordnung
p > k erhalten (z.B. Adams-Verfahren, BDF-Methoden). Daher gibt
es keine A-stabilen Verfahren mit &£ > 2 Schritten und Konvergen-
zordnung p > k.

A()-Stabilitét

Die BDF-Verfahren mit £ = 1 und k£ = 2 Schritten sind A-stabil,
wahrend die BDF-Verfahren fiir £ > 3 nicht A-stabil sind. Trotzdem
zeigen die BDF-Methoden fiir k = 3,4, 5 ein gutes Verhalten bei der
Losung von steifen Problemen. Die Gestalt ihrer Stabilitétsgebiete
legt eine Modifikation des Konzepts der A-Stabilitédt nahe. Fiir 0 <
a < 3 sei €, C C mit

Coi={z=|2|-e¥eC:|r—¢|<a}.
Abb. 16 verdeutlicht dieses Gebiet.
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Im

Abbildung 16: Gebiet C, zur A(«)-Stabilitét.

Definition 4.12 (A («a)-Stabilitit)

Fin (Einschritt- oder Mehrschritt-) Verfahren heif$t A(a)-stabil mit
einem Winkel o € |0, 3], wenn sein Stabilititsgebiet S die Bedin-
gung C, C S erfiillt.

Ein Verfahren wird natiirlicherweise durch das maximale o gekenn-
zeichnet, fiir das die A(«a)-Stabilitat noch gilt. Der Spezialfall a = 5
entspricht der gewohnlichen A-Stabilitdt wegen Crp = C™. Ist «
nahe 7, dann ist die Methode fiir steife Differentialgleichungen noch

geeignet.

Die k-Schritt BDF-Verfahren besitzen die maximalen Winkel:

k| 1 2 3 4 5 6
a | 90°  90° 86.03° 73.35° 51.84° 17.84°

Die BDF-Methoden fiir £ > 7 sind nicht A(a)-stabil fiir beliebiges
« > 0. Diese Methoden sind auch nicht mehr numerisch stabil und
daher uninteressant.
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L-Stabilitat

Eine Ubertragung des Konzepts der L-Stabilitdt von Einschrittver-
fahren auf Mehrschrittverfahren kann wie folgt geschehen.

Definition 4.13 (L-Stabilitéit fiir Mehrschrittverfahren)
FEin Mehrschrittverfahren heifit L-stabil, wenn es A-stabil ist und
zusatzlich fir die Nullstellen & (z),...,&k(2) des Polynoms q.(§)

aus (4.9) gilt
lim ( max, \@(2)\) = 0. (4.10)

z—0o0 \ j=1,...,

Die Def. 4.13 ist im Einklang mit Def. 4.6 bei linearen Einschritt-
verfahren. Fiir lineare Einschrittverfahren liegt nur eine Nullstelle
¢1(z) vor und diese erfiillt & (2) = R(z). Somit gilt die Aquivalenz

li_>m &(2)]=0 < lim |R(2)] =0.

Z—r00
Nur wenige lineare Mehrschrittverfahren sind L-stabil. Ein Beispiel
eines L-stabilen Verfahren ist die BDF2-Methode.

Wegen Satz 4.11 kann es kein L-stabiles Mehrschrittverfahren mit
einer Ordnung p > 2 geben, obwohl die Bedingung (4.10) mogli-
cherweise erfiillt ist.
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4.5 Vergleich der Verfahrensklassen

In diesem Abschnitt werden die allgemeinen Eigenschaften von Ein-
schrittverfahren und Mehrschrittverfahren diskutiert und verglichen.
Jeder Typ hat seine eigenen Vor- und Nachteile.

Zuerst erfolgt eine Charakterisierung des Rechenaufwands bei ei-
nem einzelnen Integrationsschritt in der nachfolgenden Tabelle. Da-
bei wird davon ausgegangen, dass nichtlineare Gleichungssysteme
mit dem vereinfachten Newton-Verfahren iterativ gelost werden. Zu-
dem wird im Runge-Kutta-Verfahren vorausgesetzt, dass die linea-
ren Gleichungssysteme auf Block-Diagonalform transformiert wer-
den konnen.

Runge-Kutta-Verfahren lineares Mehrschrittverfahren
s Stufen k Schritte

expl. | s Aufwertungen von f eine Auswertung von f

impl. | eine Jacobi-Matrix von f eine Jacobi-Matrix von f

LR-Zerl.: > s- §n3 Operationen | LR-Zerl.: ca. 2p3 Operationen

3
(ca. 2n® Op. bei SDIRK)

pro Newton-Schritt: pro Newton-Schritt:
s Auswertungen von f eine Auswertung von f
s lineare Gl.sys. der Dim. n ein lineares Gl.sys. der Dim. n

Zusammenfassend ergibt sich in einem einzelnen Integrationsschritt
mit einem Runge-Kutta-Verfahren ein hoherer Rechenaufwand als
bei einem linearen Mehrschrittverfahren. Jedoch ist fiir eine Beur-
teilung der Effizienz der Verfahren noch die Genauigkeit einzube-
ziehen, d.h. die Anzahl der benétigten Integrationsschritte fiir eine
vorgegebene Genauigkeit.

Die nachfolgende Tabelle zeigt einige Vorteile und Nachteile der
Einschrittverfahren gegeniiber den Mehrschrittverfahren.
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Runge-Kutta-Verfahren lineare Mehrschrittverfahren

© relativ hoher Rechenaufwand @ relativ geringer Rechenaufwand
pro Schritt (abhéngig von s) pro Schritt (unabhéngig von k)

@ viele Koeffizienten (s? + s) © nur 2k + 1 Koeffizienten
(zusétzliche Bedingungen erfiillbar) (niedrige Anzahl an Freiheitsgraden)

@ immer (numerisch) stabil ©  Wurzelbedingung fiir Stabilitat
(keine Reduzierung der erforderlich
Freiheitsgrade) (Reduzierung der Freiheitsgrade,

erste Dahlquist-Schranke)

@ Verfahren hoher Ordnung fiir & nur Verfahren niedriger Ordnung sind
steife Probleme A-stabil (zweite Dahlquist-Schranke),
(A-Stabilitat) nur A(«a)-stabile Verfahren

héherer Ordnung
@ robuste Schrittweitensteuerung © Stabilitdtsbedingung erfordert kleine

Anderungen in der Schrittweite
(z.B. bei BDF-Verfahren)

© keine effiziente Ordnungssteuerung @  effiziente Ordnungssteuerung

Man kann nicht folgern, dass Einschrittverfahren oder Mehrschritt-
verfahren im allgemeinen besser sind. Es héngt stets vom System
der Differentialgleichungen ab, ob ein Verfahren besser geeignet als
eine andere Methode ist.

Verfahren in MATLAB

In der Software MATLAB (MATrix LABoratory), Version 9.8.0
(R2020a) sind sieben Funktionen zur numerischen Lésung von An-
fangswertproblemen zu gewohnlichen Differentialgleichungen 3’ =
f(z,y), y(xg) = yo verfiighar. Die nachfolgende Tabelle listet diese
Algorithmen auf. Die meisten dieser Methoden wurden in den vor-
angegangenen Kapiteln besprochen. Der Problemtyp, fiir das ein
Verfahren geeignet ist, wird angegeben. Alle Verfahren verwenden
eine Schrittweitensteuerung zur Kontrolle des lokalen Diskretisie-
rungsfehlers. Die Tabelle zeigt, welche Technik zur Schétzung des
lokalen Fehlers verwendet wird. Desweiteren benutzen zwei der Me-
thoden eine Ordnungssteuerung. Fiir weitere Einzelheiten zu diesen

Verfahren siehe [6].
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