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Abstract

The human visual system unconsciously discounts the illumination of the scene. This
is called color constancy. Color constancy and color illusion perception are two phenom-
ena that might help us reveal unknown mechanisms of human perception. A computa-
tional color constancy model based on biological findings, which can be fooled by color
illusions similar to the human visual system might be the key to figure out how the brain
arrives at a color constant descriptor. Therefore, in this study, a color constancy model
following the hierarchical structure of the color perception mechanism of the human vi-
sion system is proposed. This system can also reproduce the response of the human
visual system to color assimilation illusions. Focal and peripheral vision, the retinotopy
structure, the response of the double-opponent cells, and the saliency map of the visual
cortex are taken into account during modelling. Even though the algorithm is not fully
optimized yet, according to the experimental results the proposed method demonstrates
competitive performance on a well-known color constancy benchmark.

1 Introduction
There are many different phenomena that occur during visual processing. Understanding
why color illusions show up in certain situations might be the key to unravelling how visual
color processing works. Understanding the underlying mechanisms of the visual cortex can
help us to explain other processes in the brain. Among all the visual attributes, color vision
might be the easiest to understand as stated by Semir Zeki [33]. One of the interesting
aspects of color processing is the difference between the colors perceived by the human
visual system and the actual physical reflectance in certain situations. The human brain tries
to estimate reflectance. This is what we perceive as the “color” of an object. The perceived
color remains constant regardless of the illumination that is present in a scene [7]. This
phenomenon is called color constancy. It is performed unconsciously by the human visual
system. Reproducing the same behavior in an artificial system is a challenging task.

The image of the scene I at position (x,y) can be modeled as [7],
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I(x,y) =
Z

w

R(x,y,l )E(x,y,l )S(l )dl (1)

where, R(x,y,l ) is the reflectance of the object, E(x,y,l ) is the irradiance falling onto the
object, S(l ) is the sensor response characteristics of the capturing device for red, green and
blue sensor spectral sensitivities, and l is the wavelength of the visible spectrum w.

The color vector L of the global light source illuminating the scene can be defined as,

L = [lR lG lB]
T =

Z

w

E(x,y,l )S(l )dl . (2)

Computational modelling of color constancy is important to understand how the human
visual system works [8]. Since its first description by Monge in 1789, color constancy has
been extensively studied [25]. In the 19th century, Helmholtz described the phenomenon
as "discounting the illuminant", which is an expression still widely used in the field of color
constancy [31]. Later on in the 20th century, Land made a great contribution to color con-
stancy with his famous experiments on color vision and natural images [21, 22]. Both in
the 20th and 21st centuries with the improvements in computer vision, numerous color con-
stancy algorithms have been proposed.

One of the milestone studies of color constancy is carried out by Land and is known as the
white patch Retinex algorithm [23]. The algorithm identifies the maximum response of each
image channel separately to find the illuminant of the scene. The gray world assumption in-
troduced by Buchsbaum is another well-known color constancy method [3]. Like the Retinex
method, the gray world algorithm also has a correspondence in the human visual system,
since illumination might be discounted based on the space-average color during color per-
ception [6, 24]. The gray world method estimates the color constant descriptor of the scene
by assuming that the average reflectance of the scene is achromatic. The shades of gray algo-
rithm proposed by Finlayson and Trezzi makes the assumption that the mean of pixels raised
to a certain power is gray [9]. The gray-edge hypothesis and weighted gray-edge algorithm
build up on the gray world assumption and underline the fact that the gradient information
of the scene is an important cue for illumination estimation [13, 29]. Principal component
analysis (PCA) based color constancy shows the effectiveness of increasing the gradient
information by shuffling the sub-blocks of the image and the contribution of the brightest
and darkest pixels for illumination estimation [5]. The local surface reflectance statistics
based color constancy method relies on the linear image formation model and makes use
of the biological findings about the feedback modulation mechanism in the eye [10]. The
physiologically inspired color constancy method proposed by Gao et al. benefits from phys-
iological findings on color information processing of the human visual system [11]. The
algorithm is based on the observation that the color of the light source coincides with the
color distribution of the double-opponent cells.

Not only traditional approaches, but also machine learning algorithms are applied to
address the problem of color constancy [14]. These algorithms mostly outperform the tradi-
tional methods on well-known benchmarks, however it is known that these approaches are
highly dependent on the training data and take the camera sensitivity specifications as prior
information. Therefore, in real-world applications where these algorithms have to remove
a color cast, which has a spectral distribution that deviates significantly from the ones seen
during training, and operate with unknown camera specifics they face a significant chal-
lenge [12]. Thus, traditional algorithms generally outperform learning-based approaches
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Figure 1: Color assimilation illusion [1]. Figure 2: Center-surround opponent cells.

when images with unknown statistical distributions and unknown hardware specifications
are of interest.

As detailed above, there are numerous color constancy algorithms which try to obtain a
canonical image from a color biased scene. Most of these methods only aim at estimating the
illuminant without giving any explanation of how the algorithm corresponds to the human
visual system. Moreover, these algorithms do not consider how the human visual system
interprets color illusions, such as color assimilation illusion where the perceived color of
the target shifts towards that of its local neighbours (Fig. 1) [4]. However, alongside color
constancy, color illusions can also reveal the mechanisms of color perception [2]. Therefore,
investigating both phenomena together can help the researchers in the field of computer vi-
sion to design models that are one step closer to mimic the human visual system [15]. In
other words, a computational model inspired by the biological mechanisms of the human
visual system may help us to understand how the brain processes visual information. There-
fore, in this paper, a novel color constancy algorithm based on the biological findings of color
perception, which provides not only a global estimate of the illumination for color constancy,
but also reproduces the behaviour of the human visual system on color assimilation illusions
by making use of pixel-wise estimations is proposed. This is the first color constancy study
that also considers the color illusion perception phenomenon. Furthermore, to the best of
available knowledge, it is the first study that uses the focal and peripheral vision, and the
retinotopy structure during modeling.

This paper is organized as follows. Section 2 gives a brief summary of the color per-
ception process in the visual system. Section 3 introduces the proposed method. Section 4
presents the experimental results. Section 5 provides a brief conclusion and future directions.

2 Color Perception Mechanism
Color has always been an important que. Due to its importance, the color perception mech-
anism, the processing of raw data reaching the eyes, the procedure of arriving at the color
sensation and the derivation of how a color constant descriptor might be computed, has been
studied for centuries. One of the remarkable advances in the field of color vision is made
by Thomas Young who equated the wavelengths with colors and described the photorecep-
tors as the particles in the retina [33]. Unfortunately, the importance of Young’s findings
were not realized until Helmholtz created the trichromatic color theory based on the obser-
vations of his color matching experiments and Young’s work. However, this theory could
not explain the effects of color blindness and afterimages, therefore Hering proposed the op-

ponent color theory, which explains the colors as opponent pairs. Decades later, Hurvich
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and Jameson [17], combined these two theories to form a theory that strongly coincides with
the findings in the human visual system. The retina processes the incoming signals as in the
trichromatic theory, while the receptive fields of the retinal ganglion layer, lateral geniculate
nucleus (LGN), primary visual cortex (V1) and higher visual cortex (e.g. V2 and V4) are
stimulated by the opponent colors [11].

Although there are many gaps to be filled to fully comprehend the biological color per-
ception mechanisms, it is known that the color vision process starts at the earlier stages of the
visual system [7]. The reflected light from the objects hitting the retinal receptors start the
process of color perception. These signals are hierarchically processed by retinal ganglion
cells, LGN, V1 and in the end V4 [33].

Vision starts when the light reflected from the objects enters the eye. There are two func-
tions in eye sight; the focal vision focuses on the salient regions, and the peripheral vision is
associated with the attentions outside the point of fixation [33]. While the image in the focal
vision is clear, the image in the peripheral vision is locally disordered, i.e. blurred [18].

In the retinal layer, the photoreceptors responsible for color vision, i.e. cones, are stim-
ulated by three different wavelengths. According to their spectral sensitivity, these cones
can be grouped into three as, long-wavelength (L-cone), medium-wavelength (M-cone) and
short-wavelength (S-cone) cones [33]. These cones are associated with red, green and blue
colors, respectively. As in the trichromatic color theory, the color information is processed
by L-, M- and S-cones in the retina. The photoreceptors are non-uniformly distributed in the
retina. Neighboring photoreceptors receiving closely spaced points in the visual space fall
onto the retina as an image. This structure is known as retinotopy and one can associate it
with the pixel-wise neighboring relationships in images [26].

The information output by the cones is fed through several retinal cells, such as amacrine
cells, to the retinal ganglion and afterwards to the LGN layers, where the retinotopy structure
is well preserved [26]. The color sensitive cells in these layers are stimulated by single-
opponent colors and the color information is coded as red-green (R-G), blue-yellow (B-Y)
and white-black (W-K) opponency within their receptive fields (Fig. 2) [7]. These receptive
fields have diverse structures [11], with different sizes, i.e. the size of the surround function
is approximately 2 to 5 (in diameter) times larger than the size of the center function [34].
In the single-opponent cells, there might be a +Red �Green structure in one cell, while in
another cell this structure might be reversed [27]. The signs "+" and "�" are representing
the excitation (on) and inhibition (off) of the cells. It is also worth to mention here that, the
cells of ganglion and LGN have similar receptive field properties, which respond to color
contrast and uniformly colored areas.

The output of the LGN layer reaches V1, where the complete map of the visual field
covered by the eyes, i.e. "pixel-wise neighboring relationship", is sustained [26, 33]. In
V1, the color sensitive cells are present widely as a combination of the single-opponent
cells, namely double-opponent cells, with a center-surround structure [11]. Furthermore,
maximum-like thresholding operations are performed in V1 and it also behaves as a gateway
that distributes the incoming signals to the corresponding higher cortical areas, particularly
the color information is segregated to V4 [20, 33]. Moreover, it is indicated that V1 guides
the visual attention by creating a saliency map of the visual field [35].

Semir Zeki discovered that color information is mainly processed in V4, where also color
constant cells have been observed [33]. Another key finding in V4 for understanding the
color constancy mechanism is that the retinotopy structure preserved in the retina, LGN and
V1 starts to degrade in this area and the receptive field size of V4 cells are larger compared
to the previous layers.
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Figure 3: Flowchart of Bio-CC.

Despite all the known facts about the color perception mechanism, it is still a mystery
how the brain arrives at color constant descriptors, and how the color illusions fool the human
visual system [8].

3 The Proposed Method

As discussed in Sec. 1, there are numerous studies, which rely on different approaches to
provide a solution to the ill-posed nature of color constancy. The studies building upon the
findings of the human visual system, i.e white patch Retinex and gray world, still have a great
impact in the field of color constancy and many researchers use these methods as building
blocks of their algorithms. Thereupon, in this study a biologically inspired color constancy
model is proposed (Fig. 3).

The proposed algorithm has a hierarchical order as the human visual system. The main
idea is to find the color constant descriptor of the scene by taking into account the color vision
mechanism of the human visual system; the focal and peripheral vision, retinotopy structure
of the layers, the response of the double-opponent cells, and the saliency maps created in the
visual cortex, which are discussed in Sec. 2. To the best of available knowledge, this is the
first computational color constancy study, which takes the focal and peripheral vision, and
the retinotopy structure of the layers into account.

The proposed algorithm takes in a linearized RGB image in order to obtain a linear
relationship between pixels. It is assumed that each pixel in each image channel corresponds
to a photoreceptor of the retina hence, since each pixel in the image has neighboring pixels,
the retinotopy structure of the adjacent photoreceptors is simulated.

After the cones receive the input signals, to obtain an output similar to the focal and
peripheral vision, the points of interest in the input image are detected by making use of
salient regions. Since this study does not aim to develop a salient region detection method,
the technique proposed by Hou et al. is used to determine the salient areas [16]. The method
relies on the computation of the discrete cosine transform coefficients and detects the points
of interest similar to the human visual system. In the proposed method, the detected salient
regions correspond to the area observed by the focal vision (m), whereas the remaining parts
are associated with the peripheral vision (m̄). The areas of the image overlapping with the
regions observed by the peripheral vision are blurred via convolving them with a Gaussian
kernel, since peripheral areas are seen more blurry than the regions perceived by the focal
vision as stated in Sec. 2. After simulating the focal and peripheral vision, the image is
convolved with the same kernel again since it is known that the image falling onto the retina
is blurred [30]. This process can be represented as follows,
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eI(x,y) = (I(x,y) ·m+(I(x,y)⇤G(x,y;s)) · m̄)⇤G(x,y;s) (3)

where, ⇤ denotes the convolution operation, and G(x,y;s) is the 2D Gaussian kernel sim-
ulating the receptive field function and it is taken as 1

2ps2 exp(� x
2+y

2

2s2 ). To preserve the
retinotopy structure, the size and the scaling factor s of the kernel are taken as 3⇥3 and 1,
respectively.

Afterwards, for the sake of simplicity the output of the cones is directly sent to the reti-
nal ganglion layer without considering the sub-layers. Moreover, since the receptive field
properties of the retinal ganglion and the LGN layer are similar, they are considered as a
single layer. In this stage, the single-opponent colors are created by relying on the center-
surround receptive field structure of the single-opponent cells as in Fig. 2. The incoming
signals from the retinal layer are convolved with two different Gaussian functions with dis-
tinct kernel sizes and scaling factors. Since the receptive fields approximately double in
each layer, while the scaling factor of the center function is taken as twice the s value of
the retinal layer, the s value of the surround function is chosen as 3 times the s value of the
center function based on biological findings [34]. Moreover, the kernel size of the surround
function is taken slightly larger than the kernel size of the center function to simulate the
center-surround structure. Hence, the responses, which will be used to create the single-
opponent cells are formed for the center (c) and surround (s) signals individually as follows,

eIc(x,y) = eI(x,y)⇤G(x,y;sc) eIs(x,y) = eI(x,y)⇤G(x,y;ss). (4)

Subsequently, these two signals are combined to form the single-opponent cells for every
spatial location (x,y) similar to the study of Ebner as follows [7],

SORG =
(eIcR

�eIsG
)p

2
SOY B =

(eIcY
�
p

2eIsB
)p

6
SOL+ =

(eIcR
+eIcG

+eIcB
)p

3
(5)

where, SORG is the red-on/green-off, SOY B is the yellow-on/blue-off and SOL+ is the brightness-
sensitive cells. Similar calculations are carried out for SOGR, SOBY , and SOL�. The yellow
channel is constructed by combining the red and green channels. The single-opponent cell
computations above correspond to the difference of Gaussians, which is known to be associ-
ated with the receptive fields of ganglion cells [32].

Then, the formed single-opponent signals are fed to V1, where the double-opponent cells
are widely present and pooling operations are observed as mentioned in Sec. 2. Thereupon,
in this layer the double-opponent cells (DO) are formed by combining the corresponding
single-opponent cells via taking the absolute maximum response for every pixel individually
as follows,

DORG(x,y) = max(SORG(x,y),SOGR(x,y)) (6)

where, max represents the operation of selecting the absolute maximum value between chan-
nels. For DOY B and DOL the same operation is performed with corresponding cells.

After the double-opponent signals are formed, they are fed to the last layer, where the
color constant descriptor of the scene is estimated. As stated in Sec. 2, in V4 the retinotopy
structure is degraded and the receptive fields in V4 are larger than in any other layer. As
aforementioned, the retinotopy structure can be explained as the preservation of the local
spatial information. The degradation of this structure can be simulated by assigning weights
to pixels outside the local neighborhood. These weights can be controlled with the scaling
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Input Image Target Estimations Target via Bio-CC

Figure 4: The response of Bio-CC on color assimilation illusions. Although, the target has
the same color, due to the context its colors is shifted towards its neighbors’ colors.

factor of the receptive field function and increasing it leads to the consideration of distant
pixels. Hence, to simulate the retinotopy degradation and the characteristics of the receptive
fields in V4, the scaling factor and the size of the receptive field function are increased.
Then, the double-opponent image is convolved with this receptive field function to find the
pixel-wise estimations in double-opponent space as follows,

LDO(x,y) = DO(x,y)⇤G(x,y;s) (7)

where, LDO is the pixel-wise estimations in double-opponent space, the size of the kernel is
approximately 8% of the image and s is 32 times larger than the s in the retinal layer.

Afterwards, LDO(x,y) is converted from double-opponent color space to RGB color space
by using the computations in the study of Ebner and LRGB is formed [7].

The pixel-wise estimations in LRGB represent the behaviour of the human visual system
on color assimilation illusions. Examples of processing color assimilation illusions via Bio-
CC are given in Fig. 4. Although the true reflectance values of the target region are the same,
due to the context they are perceived by the human observer as if they have different colors.
After removing the context, it is clear that the reflectance values of the targets are identical.

In order to provide a global illumination estimate to discount the illuminant in the scenes,
a saliency map obtained from the pixels closest to white are used to determine the most
informative pixels. The biological reason using these pixels is the observation that the human
visual system might be discounting the illuminant by taking the regions having the highest
luminance in a scene into account [6]. This observation has also a correspondence in digital
photography and can be explained by a simple example [7]. Let us assume that a picture of
a room illuminated with blue light, which has white walls and contains colored objects is
captured. The illumination value of the light source can be estimated easier from the white
wall rather than the colored objects, since the white wall illuminated with blue light will be
measured by the camera sensors as blue. Hence, even if the scenes are very complex, the light
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Input Image Binary Map in V1 Bio-CC Ground Truth

Figure 5: The result of Bio-CC. Gamma correction is applied for better visualization.

vector can be approximated by using the pixels closest to white. In order to find these pixels,
a simple yet effective approach is followed in the V1 layer of this study. Firstly, 2% of the
darkest and the brightest pixels are clipped, since over- and under-exposed pixels in scenes
cause noise while estimating the illumination. Then, a temporary illumination estimate Ltemp

is found by taking the mean values of each color channel of the clipped image separately.
Subsequently, a temporary white balanced image Itemp is obtained by scaling its RGB values
according to Ltemp. Afterwards, the pixels closer to white are determined by checking the
angular error between the pixels of Itemp and the white vector, [1,1,1]. The pixels having
an angular error less than 5 are considered as the pixels closest to white. A binary map is
extracted by using the spatial locations of these pixels. Then, the pixels of LRGB coinciding
with this map are averaged in order to obtain the global illuminant estimate of the scene
(Fig. 5). Subsequently, the canonical image is obtained by dividing the intensity values of
the color-casted image into the global illuminant estimates of BIO-CC.

Readers may refer to the supplementary material for more visual results of Bio-CC and
for explanations about the opponent color space conversions, the parameter selection process
of the V4 layer, and the angular error computation.

4 Experiments and Discussions
Bio-CC is compared with the following methods, gray world (GW) [3], white patch Retinex
(max-RGB) [23], shades of gray (SoG) [9], 1st and 2nd order gray-edge (GE) [29], weighted
gray-edge (WGE) [13], double-opponent cells based color constancy (DOCC) [11], PCA
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Figure 6: Comparison of Bio-CC with best performing methods. From left-to-right: input
image, LSRS, PCA-CC, Bio-CC, and ground truth. The angular error of each method is
provided on the bottom-right side of the image. Gamma correction is applied for better
visualization. Note that, more examples are provided in the supplementary material.

Camera-Invariant Canon Nikon Sony
DE Mean Median B-25% W-25% DE Mean Median B-25% W-25% DE Mean Median B-25% W-25% DE Mean Median B-25% W-25% run time

GW 4.22 4.91 3.88 0.95 10.59 3.93 4.52 3.55 0.85 9.83 4.15 5.29 4.19 1.03 11.49 4.62 4.77 3.84 0.98 10.06 0.14
max-RGB 10.15 11.01 13.16 1.81 19.44 11.54 13.41 17.64 2.37 20.99 8.74 10.02 11.31 1.56 17.65 10.69 9.98 11.52 1.83 16.76 0.13
SoG 5.30 5.51 4.16 0.97 12.29 5.82 6.16 4.26 1.05 14.30 4.64 5.17 3.82 0.96 11.46 5.71 5.33 4.41 0.92 11.34 0.23
1st GE 5.80 6.09 4.23 0.96 14.26 6.34 6.93 4.34 0.94 16.87 4.91 5.47 3.65 0.87 12.87 6.49 6.14 4.79 1.13 13.35 0.38
2nd GE 6.09 6.41 4.49 1.04 14.73 6.70 7.33 4.76 1.04 17.29 5.20 5.79 4.02 0.93 13.38 6.69 6.34 5.01 1.20 13.71 0.42
WGE 5.64 6.00 3.64 0.81 14.90 6.18 6.86 3.55 0.79 17.81 4.72 5.29 3.19 0.72 13.16 6.36 6.13 4.41 0.98 14.12 2.63
DOCC 6.65 7.19 4.67 0.81 16.98 7.13 8.20 5.00 0.78 19.73 5.29 6.07 3.62 0.72 15.03 8.05 7.72 6.27 1.00 16.26 0.43
PCA-CC 4.14 4.47 3.03 0.69 10.64 4.45 4.81 3.11 0.71 11.87 3.52 4.09 2.76 0.67 9.82 4.67 4.65 3.42 0.71 10.50 0.16
LSRS 3.82 4.17 3.42 0.98 8.61 3.69 3.94 3.08 1.01 8.16 3.63 4.33 3.59 0.99 8.97 4.18 4.17 3.54 0.94 8.55 0.14

Bio-CC 3.55 4.14 3.05 0.76 9.42 3.17 3.68 2.85 0.75 8.00 3.27 4.22 2.92 0.77 9.88 4.32 4.49 3.45 0.73 10.00 1.61

Table 1: Statistical results of the methods. For each metric the best result is highlighted.
Moreover, the average run time (in seconds) of each method is provided in the last column.

based color constancy (PCA-CC) [5], and color constancy with local surface reflectance
estimation (LSRS) [10], which are all briefly explained in Section 1. The experiments are
conducted on an Intel i7 CPU @ 2.7 GHz Quad-Core 16 GB RAM machine. The codes
of the algorithms employed for comparison are reached from the official webpages of the
authors. No optimization is carried out on the methods and they are used in their default
settings.

Bio-CC is benchmarked on the INTEL-TAU Dataset, which is one of the largest color
constancy datasets containing diverse illumination types [19]. This dataset contains 7022
images, which are taken with 3 different cameras, Canon 5DSR and Nikon D810 DSLR, and
Mobile Sony IMX135. All the images contain one dominant illumination color in the scene.
Since images are captured with 3 different cameras whose camera sensitivities differ, 4 dis-
tinct test sets are created from the INTEL-TAU Dataset. While one test set, namely Camera-

Invariant, contains all the images in the dataset, the other 3 test sets, namely Canon, Nikon,

and Sony, contain images captured with corresponding devices.
During benchmarking, two well-known metrics in the field of color constancy, DE 2000

and angular error, are employed [7]. In color constancy, it is important to maintain the color
information after obtaining the canonical image. DE provides analysis demonstrating the
color difference between the ground truth and color corrected image [28]. Scores closer
to 0 indicate a better outcome, where the scores in range [0,4) can be interpreted as an
unnoticeable difference between the ground truth and output image is present for a human
observer. The DE scores and the mean, the median, the mean of the best 25% and the mean
of the worst 25% of the angular error are reported in Table 1.

As it can be observed in Table 1, Bio-CC presents state-of-the-art performance and out-
puts the best mean angular error among the algorithms for the entire dataset. The median
angular error of Bio-CC is less than the mean angular error for all test sets, which demon-
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10 ULUCAN ET AL: BIO-CC: BIOLOGICALLY INSPIRED COLOR CONSTANCY

strates that Bio-CC tends to produce more outcomes closer to the best cases rather than the
worst cases. Moreover, apart from the mean angular error, in color constancy studies it is
important to reduce the worst 25% of the angular error, since it is desired to obtain results,
where the worst cases do not deviate significantly from the mean angular error. Bio-CC
produces consistent results for each set in terms of worst 25% of the angular error and out-
performs most of the algorithms in Table 1 in this metric. In addition to the angular error,
Bio-CC also provides the best DeltaE scores in three of the test sets. DE scores mostly less
than 4 are produced, which indicates that most of the color difference between the ground
truth and output images is unnoticeable.

Alongside the statistical analysis, visual comparisons are also provided in order to show
the performance of Bio-CC (Fig. 6). In indoor scenes Bio-CC tends to produce low angular
errors and the color biased images are successfully white-balanced. In outdoor scenes again
visually pleasing images are produced by Bio-CC, yet the angular error is higher compared
to indoor scenes in case a sky region is present in the image. Such regions are a well-known
challenge in color constancy studies and as future work of this study it is considered to
modify the saliency map obtained in the V1 layer to reduce the contribution of these pixels
to the global illuminant estimate.

5 Conclusion

Color vision might be the simplest visual attribute that may help us to understand the under-
lying mechanisms of the brain. A computational color constancy model based on biological
findings, which can also reproduce the behaviour of the human visual system on color il-
lusions might help us to unravel the mechanism of color vision. Therefore, in this study a
simple yet effective learning-free color constancy model Bio-CC is developed. This model
relies on the hierarchical structure of the human visual system. Bio-CC aims at finding the
color constant descriptor of the scene by taking into account the focal and peripheral vision,
retinotopy structure of the layers, the response of the double-opponent cells, and saliency
maps formed in the visual cortex. The focal and peripheral vision, and retinotopy structure
are used for the first time in the field of computational color constancy. While pixel-wise
estimates of the image are used for the color illusions, a map created in the V1 layer by
using the pixels closest to white is employed to estimate the global illuminant of the scene.
Bio-CC presents state-of-the-art performance, while surpassing most of the existing color
constancy methods.

To the best of available knowledge, this is the first study introducing a computational
model that is able to both discount the illuminants in scenes and replicate the behaviour
of the human visual system on color assimilation illusions. As future work, the proposed
method will be modified for different color illusions and multi-illuminant scenes.
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