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Abstract—Removing the e�ects of the light source from an

image with a color cast is a key step for numerous computer

vision applications. Alongside introducing new color constancy

algorithms, researchers also aim at improving the existing meth-

ods by utilizing di�erent approaches. Using strategies that have

not been investigated in the field of color constancy in detail might

help us both to design cost-e�cient simple yet e�ective algorithms

and to improve the existing methods. Thereupon, we propose a

color constancy method relying on surface orientations which

utilizes block-based operations in scale space by only considering

the salient regions of the image. According to the evaluations,

our multi-scale color constancy method achieves state-of-the-art

performance. Moreover, we demonstrate that the performance of

several existing color constancy algorithms can be improved by

benefiting from scale space.

Index Terms—Computational color constancy, Illumination

estimation, Scale space

I. INTRODUCTION

Colors are important cues to understand our surround-
ings [1]. While the ability to process colors is vital for
the survival of many species, it is an essential feature for
computer vision systems to carry out several tasks, i.e. object
classification and image dehazing. Color processing might be
significant for both biological and artificial systems but there is
a di�erence in the way it is performed. Biological systems es-
timate the reflectance of objects unconsciously by discounting

the illuminant which is known as color constancy, whereas
artificial systems have di�culties in carrying out this task.
The field of enabling computer vision systems to discount the
illuminant and obtain the (shaded) reflectance of the scene is
called computational color constancy [2].

We can formulate an image with spatially varying illumi-
nation captured by a digital camera as follows;

Ii(x, y) =   R(x, y, �)L(x, y, �)Si(�)d� (1)

where, Ii denotes an image element at a spatial location
(x, y), R presents the surface reflectance, L is the wavelength
distribution of the light source, Si is the response function of
the color sensor of the capturing device with i À {red, green,
blue}, and � is the wavelength of the visible spectrum.

The aim of color constancy is to remove the color cast
caused by the light source L and obtain a canonical image.
Since both L and S are unknown, color constancy is an ill-
posed problem. Many studies make assumptions to simplify
this under-constrained problem by assuming that the light
source is uniform at every spatial location in the image and
the responses of the color sensors are narrow-band [2]. With

these assumptions, the image can be formed as the element-
wise product of the surface reflectance R and the global light
source L (Eqn. 2).

I(x, y) = R(x, y) � L. (2)

Numerous color constancy algorithms have been proposed
over the years, which are based on di�erent strategies.
These approaches can be simply grouped into two categories,
statistical-based and data-dependent algorithms. Several of the
statistical-based methods are inspired by the mechanisms of
the human visual system, which is not surprising, since in
computer vision we are trying to mimic our ability to discount
the illuminant. For instance, the widely known algorithms in
the field of color constancy are the white-patch Retinex and
the gray world algorithm which are based on the analyses
of the human visual system. While the white-patch Retinex
algorithm computes the estimates of the light source by using
the maximum response of each image channel individually,
the gray world method utilizes the mean of each channel
separately [3], [4]. There exist many other statistical-based
approaches and several of them also utilize the assumptions
of the white-patch Retinex and the gray world algorithms [5],
[6], [7], [8], [9], [10], [11], [12], [13], [14]. These traditional
methods usually make use of the image statistics while esti-
mating the illuminant of the scene. On the other hand, data-
dependent algorithms utilize large-scale datasets and learn
features to discount the illuminant [15], [16], [17], [18], [19].
These data-dependent algorithms generally outperform most
of the traditional algorithms on current benchmarks. However,
as mentioned in many studies, the performance of learning-
based methods has a tendency to decrease when they are
trying to estimate the illumination of the images captured
by a camera whose specifications are unknown and/or the
statistical distribution of the illumination condition is di�erent
from their training set [11], [13], [20], [21]. The reason
behind this performance decay can be related with the facts
that (i) current benchmarks are mostly formed with similar
capturing devices, (ii) di�erent illumination conditions are
seldomly considered, and (iii) learning-based methods expect
their training and test sets to be somehow similar [13], [21].

As aforementioned, there are many algorithms relying on
di�erent strategies. Utilizing various approaches that have not
been analyzed in the field of color constancy in detail may help
us to develop cost-e�cient simple yet e�ective algorithms.
Thereupon, in our previous studies, we had explicitly shown
the advantage of using patches and the salient pixels in the
field of color constancy [12], [13], [14]. In short, we demon-



strated that instead of performing global operations, utilizing
local computations increases the performance of methods
since performing color constancy in a local space allows
us to give more importance to varying surface orientations
throughout the scene. Furthermore, based on the key biological
finding, i.e. the human visual system might be discounting the
illuminant based on the highest luminance patches [22], [23],
we showed that using only the brightest pixels can improve
the performance of an algorithm [14] which also coincides
with previous findings where it is stated that not all pixels are
informative in color constancy, and utilizing the proper image
elements will increase the performance of the algorithms [11],
[12], [24]. In this paper, we benefit from the findings of our
previous investigations and introduce a multi-scale block-based
color constancy algorithm that utilizes the salient pixels in
the scene. We carry out the computations at multiple scales
since it is well-known that performing computations in scale
space enables us to highlight the low-level features of images,
i.e. colors [25], [26], [27]. Furthermore, we show that the
e�ectiveness of color constancy methods can be improved by
simply carrying out their computations in scale space. To the
best of our knowledge, this is the first study that analyzes
the impact of scale space computations in learning-free color
constancy algorithms in detail.

Our contributions can be summarized as follows:

÷ We present a simple yet e�ective learning-free color
constancy algorithm that relies on surface orientations by
using block-based computations in scale space.

÷ We demonstrate that the performance of several tradi-
tional color constancy algorithms can be improved by
carrying out their computations at multiple scales.

This paper is organized as follows. In Sec. II we detail
the proposed approach. In Sec. III we demonstrate the perfor-
mance of our algorithm by comparing it with the state-of-the-
art. In Sec. IV we conclude our paper with a brief summary.

II. PROPOSED METHOD

We introduce a multi-scale computational color constancy
method that benefits from local orientations and the salient
pixels in the scene. Our algorithm relies on two assump-
tions; (i) there is at least one bright pixel in the scene, and (ii)

the world is gray on average.
Our algorithm takes in both sRGB and linear-raw images.

In case an sRGB image is given as input, gamma correction
is applied to obtain a linear relationship between the image
elements. Also, since the saturated pixels may cause noise
while estimating the illuminant, we do not consider the darkest
and brightest pixels in our computations.

In the field of color constancy, it is known that not every
pixel is informative, i.e. dominant sky regions will bias the
estimations. Thus, during our computations, we determine the
estimates of the light source from the salient regions of the
image which contain only the informative pixels. To determine

the salient pixels, we convert the image into opponent space
as follows [2];
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where, ORG, OBY , and OBW are the red-green, blue-yellow,
and black-white opponent channels, respectively.

Since the human visual system might be discounting the
illuminant based on the highest luminance in the scene, we
take the top 3.8% brightest pixels in the black-white opponent
channel, i.e. brightness, of the image to form a binary saliency
map S , where the informative pixels are highlighted (the
analysis of this parameter is provided in Sec. III).

Since the pixels highlighted by the saliency map do not
have an equal contribution, alongside the saliency map, we
adaptively form a weight map W from the black-white op-
ponent channel OBW of the image at each spatial location
using a Gaussian curve (Eqn. 4). This weight map gives
more importance to the brightest pixels while reducing the
contribution of the darkest pixels.

W(x, y) = 1 * 1
2⇡�2

exp

0
*
(OBW (x, y) * �)2

2�2

1
(4)

where, � and � are the mean and the standard deviation of
OBW , respectively. We normalized W so that the summation
of its elements equals to 1.

After we extract the saliency and weight maps, we form an
informative image I as follows;

I = I(x, y) �W(x, y) � S(x, y). (5)

Then, we downsample the informative image to obtain
representations at di�erent scales, where the number of levelsL is determined adaptively and depends on the image res-
olution. Subsequently, at finer scales the image is divided
into non-overlapping blocks containing a certain number of
pixels m, where m is determined adaptively according to the
corresponding image resolution at the scale as follows;

m =
˘
(h �w)_⌘ (6)

where, h and w are the height and width of the image, and
⌘ is the controlling parameter of m, which is determined
practically as 120 (the investigation of this parameter is given
in Sec. III). Note here that at the coarser scales, the number
of pixels falling into a block will be insu�cient to validate
the assumptions of our algorithm, i.e. the world is gray on
average since the gray world algorithm is only valid when
there is an adequate number of di�erent colors is available in
the scene [2]. Therefore, we experimentally determined that
dividing the image into blocks will be ine�cient at scales
higher than half of the number of possible levels that can be
reached.



Afterwards, at every scale we find the descriptors to com-
pute the illuminant either in each block in the case of finer
scales or in each image in the case of coarser scales. Since
our algorithm relies on the assumptions of the white-patch
Retinex and gray world method, we assume that for each
patch P (or image at coarser scales, which henceforth will
be referred to also as P for simplicity) there exists at least
one bright pixel and a unique gray value, which are the
descriptors to estimate the illuminant. Firstly, for each P

we determine the brightest pixels by taking the maximum
response of each channel individually. Subsequently, we form
a vector Pmax = [Pr,max,Pg,max,Pb,max], which is our first
descriptor. Secondly, we calculate the gray value P� for each
P by taking the mean over all channels within the region of
interest, which is our second descriptor. One can argue that
the gray value can be found by directly taking the mean of
all pixels in the image but we observed that using the same
gray value for all patches decreases the performance of the
algorithm. This performance decay is not surprising if we
consider the fact that the local surface orientations of the
scene di�er throughout the image, i.e. there exists a unique
gray value for each block.

After we obtain both descriptors, we compute the estimate
of the illuminant of each patch by taking our second assump-
tion, i.e. the world is gray on average, into account. We assume
that if the scene is gray on average then the summation of the
intensity values of Pmax should be gray. However, there will
be a shift away from the gray world in case there is a color
cast in the scene. Thereupon, for each P we determine this
deviation by computing a scaling vector CP = [cr, cg , cb]. CP

scales the intensities of the Pmax such that they sum to a gray
value P� as follows;

Pr,max � cr + Pg,max � cg + Pb,max � cb = P�. (7)

This scaling vector CP can be calculated by solving the
following optimization problem;

CP = argmin
CP

ÙÙÙPmax CP * P�

ÙÙÙ2 with ≈c À CP : c g 0. (8)

In order to find a single estimate for each scale we average
the computed CP as follows;

ÇLs =
1
n

n…
k=1

CPk
(9)

where, ÇLs is an illuminant estimate at a particular scale s with
s À L, and n is the number of blocks.

In order to find the color vector of the global light source
ÇLest, we linearly combine the estimates of di�erent scales as
follows;

ÇLest =
1L

L…
s=1

ÇLs. (10)

Lastly, the canonical image can be obtained by scaling the
image with a color cast according to ÇLest by using Eqn. 2.

Recommended ColorChecker INTEL-TAU

Fig. 1: Example indoor and outdoor scenes from benchmarks.
Gamma correction is applied for better visualization.

III. EXPERIMENTAL RESULTS AND DISCUSSION

We investigated the performance of the proposed method
and the e�ectiveness of carrying out the computations of sev-
eral color constancy algorithms into scale space by comparing
them with the following learning-based color constancy algo-
rithms; Quasi-Unsupervised CC [15], C3AE [16], SIIE [17],
FFCC [18], C5 [19], and with the following learning-free color
constancy algorithms; maxRGB [3], GW [4], SoG [5], 1st
order GE [6], WGE [7], DOCC [9], PCA-CC [8], MSGP [10],
GI [11], BB-CC [13], BIO-CC [12]. While all learning-free
algorithms whose codes are available are utilized without
any optimization, the results of the remaining algorithms are
reported based on the publications of these works.

We evaluated the algorithms on two color constancy bench-
marks, namely, Recommended ColorChecker [28] and INTEL-
TAU [29] datasets (Fig. 1). The Recommended ColorChecker
dataset consists of a total of 568 images captured by two
di�erent cameras, Canon 1D and Canon 5D, while the INTEL-
TAU dataset contains a total of 7022 scenes captured with
three di�erent devices, Mobile Sony IMX135, Nikon D810,
and Canon 5DSR. All the images in both datasets have a linear
response and their black level is calibrated. It is important to
note here that some of the images in the INTEL-TAU dataset
contain color charts and since their masks are not provided,
we did not consider these images in our experiments. Also,
for both benchmarks, we combined the images which are
captured with di�erent cameras to create a single set since
it is important to evaluate the algorithms with images whose
spectral distributions are unknown [11], [12].

To obtain statistical results, we computed the angular error
" between the ground truth illuminant Lgt and the estimated
illuminant ÇLest (Eqn. 11). We report the mean, the median,
the mean of the best 25%, and the mean of the worst 25% of
the angular error in Table I.

"(Lgt,
ÇLest) = cos

*1
0

Lgt
ÇLest

ÒLgtÒÙÙÙÇLest

ÙÙÙ

1
. (11)

While investigating the performance of our approach, first
we analyzed how the extracted weights and the saliency map
a�ects the performance of the proposed method. As we can see
from Table I, when we estimate the color vector of the light
source by only considering image elements with the highest
luminance while also weighting the input image according to
the contribution of the brightest pixels, the performance of
the algorithm improves significantly. The errors of both the
best and the worst cases decrease, thus the mean angular error
reduces substantially.



TABLE I: Statistical results. Top three results are highlighted.

RECommended ColorChecker INTEL-TAU

Algorithms Mean Median Best 25% Worst 25% Mean Median Best 25% Worst 25%

L
e
a

r
n

in
g

Quasi-Unsupervised CC 3.46 2.23 - - 3.12 2.19 0.60 7.28
C3AE 2.10 1.90 0.80 4.00 3.40 2.70 0.90 7.00
SIIE 2.77 1.93 0.55 6.53 3.42 2.42 0.73 7.80
FFCC 2.95 2.19 0.57 6.75 3.42 2.38 0.70 7.96
C5 2.50 1.99 0.53 5.46 2.52 1.70 0.52 5.96

T
r
a

d
it

io
n

a
l

maxRGB 10.27 9.12 1.64 20.50 11.01 13.16 1.81 19.45
GW 4.74 3.61 0.97 10.44 4.91 3.88 0.96 10.60
SoG 5.87 4.25 0.75 13.72 5.51 4.16 0.97 12.29
1st GE 6.42 3.84 0.94 15.84 6.10 4.23 0.96 14.27
WGE 6.10 3.33 0.80 15.59 6.00 3.64 0.81 14.90
DOCC 7.24 4.26 0.80 18.05 7.19 4.67 0.81 16.98
PCA-CC 4.11 2.52 0.53 10.19 4.47 3.03 0.69 10.64
MSGP 3.81 2.96 0.77 8.35 3.57 2.57 0.64 8.24
GI 3.20 1.90 0.44 8.02 3.33 2.18 0.56 8.03
BB-CC 3.82 3.17 1.46 7.38 4.30 3.61 1.20 8.53
BIO:CC 4.40 3.30 0.86 9.85 4.15 3.06 0.76 9.42

M
u

lt
i-

s
c
a

le

maxRGB 3.82 2.58 0.84 8.85 3.77 2.87 0.92 8.15
GW 4.13 3.02 0.67 9.45 4.51 3.49 0.81 9.87
SoG 3.66 2.32 0.49 9.17 4.01 2.95 0.71 9.10
1st GE 3.52 2.19 0.49 8.74 3.87 2.80 0.71 8.87
DOCC 3.56 2.29 0.49 8.75 3.55 2.62 0.64 8.06
PCA-CC 3.67 2.29 0.47 9.22 3.98 2.82 0.63 9.35

Proposed without W and S 3.69 2.86 0.84 7.97 3.98 3.06 0.84 8.65
Proposed 3.18 2.21 0.61 7.36 3.23 2.23 0.59 7.48

Our method achieves the best mean and the worst 25% of
the angular error among the learning-free methods on both
datasets while it produces competitive scores compared to the
learning-based models. Also, our algorithm’s median angular
error is significantly less than its mean angular error, which
indicates that our method tends to produce outcomes closer
to the best cases rather than the worst ones. The statistical
outcomes are also coinciding with the visual comparisons
in Fig 2. For both indoor and outdoor scenes, the proposed
method estimates the color vector of the light source accu-
rately. However, when the uniformity of the color distribution
of the scene increases throughout the image, the e�ciency of
the algorithm decreases (Fig 2). This is also a well-known
problem among traditional color constancy algorithms.

Moreover, we provide a brief investigation about the anal-
ysis of the e�ectiveness of using multiple scales by carrying
out the computations of di�erent color constancy algorithms
in scale space. It is important to stress that before applying
the algorithms in scale space, we remove the saturated pixels
from the input image to eliminate possible noise since we
observed that these pixels negatively a�ect the outcomes of
the algorithms. Afterwards, we apply the methods at each
scale to estimate the color vector of the illumination. Then,
we average over all scales to find the estimate of the global
light source. Consequently, the performance of the existing
algorithms increases significantly in terms of all metrics
(Table I). They outperform their original versions, while they
produce competitive results by outperforming several other
color constancy algorithms on both datasets. Furthermore,
it is known that while reducing the mean angular error as
much as possible, it is also important to improve the mean
of the worst 25% of the angular error of the algorithms [12],
[13]. A noteworthy outcome of carrying the computations into
scale space is that it allows the color constancy approaches to
improve their worst cases on both benchmarks (Fig 3). Also, in

Input Ground truth GI Proposed

Input Ground truth DOCC Proposed

Input Ground truth BB-CC Proposed

Input Ground truth PCA-CC Proposed

Input Ground truth C3AE Proposed

Input Ground truth SIIE Proposed

Fig. 2: Visual comparison of the proposed method with
di�erent color constancy algorithms on random indoor and
outdoor scenes. The angular error is provided on the bottom-
right side of the image.

Input Ground truth maxRGB MS-maxRGB

Input Ground truth GE MS-GE

Input Ground truth PCA-CC MS-PCA-CC

Input Ground truth SoG MS-SoG

Fig. 3: Visual comparisons of the algorithms with their multi-
scale (MS) versions. The angular error is provided on the
bottom-right side of the image.

terms of the mean of the best 25% of the angular error, the best
scores among all methods are obtained when the algorithms
are applied in scale space.

Lastly, we provide a brief discussion about how we de-
termine the parameters of our method. While the number of
pixels falling into non-overlapping blocks is highly dependent



TABLE II: Parameter selection. Best combination is chosen.

The top % of brightest pixels

3% 3.2% 3.4% 3.6% 3.8% 4% 4.2% 4.4% 4.6% 4.8%

C
o
n

tr
o
ll

in
g

p
a
r
a
m

e
te

r
⌘

20 3.47 3.45 3.45 3.46 3.45 3.49 3.49 3.50 3.51 3.52
40 3.49 3.48 3.47 3.48 3.48 3.49 3.48 3.48 3.48 3.49
60 3.44 3.43 3.43 3.42 3.42 3.45 3.46 3.46 3.48 3.49
80 3.43 3.42 3.43 3.44 3.44 3.46 3.45 3.46 3.47 3.48
100 3.47 3.45 3.45 3.45 3.44 3.46 3.47 3.48 3.49 3.50
120 3.39 3.37 3.37 3.37 3.36 3.38 3.40 3.42 3.43 3.43
140 3.43 3.42 3.41 3.42 3.42 3.43 3.43 3.44 3.45 3.47
160 3.45 3.44 3.43 3.43 3.43 3.44 3.441 3.44 3.45 3.46
180 3.43 3.41 3.40 3.40 3.40 3.41 3.42 3.43 3.44 3.45
200 3.46 3.45 3.45 3.43 3.43 3.44 3.45 3.47 3.48 3.49

on the image resolution, the top brightest pixels that we
consider to form our saliency map are associated with image
statistics. We determine these parameters based on the mean
angular error on a subset which is created by randomly
choosing images from both datasets. As seen in Table II, when
a patch contains an adequate number of pixels the e�ectiveness
of the proposed method increases. This can be explained by
two facts; (i) when the size of the blocks is su�cient, the
possibility of having uniform colored regions decreases, hence
the assumption of the gray world is validated, and (ii) the
surface orientations are varying throughout the image, thus
when we consider su�ciently large local regions, the chance of
taking local surface orientations into account increases. Also,
the performance of our algorithm is a�ected by the number
of the brightest pixels used to form the saliency map. After
investigating the responses of the algorithm, we selected the
top 3.8% of the brightest pixels.

IV. CONCLUSION

Color constancy has a significant role in many applications.
Due to its importance, computational color constancy is widely
studied, and over decades many successful algorithms are
introduced. Alongside developing new algorithms, researchers
also aim at improving existing methods since combining
di�erent strategies might help us to design cost-e�cient simple
yet e�ective algorithms. Thereupon, by making use of our
previous investigations we propose an algorithm that relies on
block-based operations carried out in multiple scales by only
considering the salient regions of the scenes. According to
the experiments, our method achieves competitive results on
two di�erent benchmarks while outperforming several of the
learning-based methods. Also, we show that the e�ciency of
several color constancy algorithms can be improved by simply
carrying out their computations in scale space. As future
work, we will modify our algorithm for mixed illumination
conditions and provide more investigations on global color
constancy.
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