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Abstract—Color constancy benchmarks are mostly created by

using cameras with similar hardware and by capturing the scenes

under similar illuminants. Therefore, ground truth information

is a�ected by the cameras’ sensor response characteristics,

and during the evaluation of color constancy algorithms, some

illuminants are neglected. In this study, we introduce a large-

scale synthetic color constancy dataset called CC-NORD. Since

CC-NORD is formed by using computer graphics, the ground

truth information is independent of the capturing device. Also,

to provide images created under a wide range of illuminants, the

scenes in CC-NORD are rendered with a high number of distinct

illuminants including lights having values away from the color

temperature curve. To the best of our knowledge, this is the

first color constancy dataset containing scenes rendered under

illuminants on the edge and outside the color temperature curve.

Upon publication, CC-NORD will be publicly available on the

first author’s webpage.

Index Terms—Computational color constancy, dataset

I. INTRODUCTION

Perceiving the colors of objects regardless of the illumi-
nation conditions is a strong attribute of the human visual
system and it is called color constancy [1]. Even though
perceived colors are not physical properties of objects but
products of the brain, they are associated with objects and they
provide important features for both human and machine vision
systems [2]. While the human visual system unconsciously dis-
counts the illumination to perceive the actual reflectance of the
scene, computer vision systems have di�culty in estimating
the reflectance values of objects. This di�culty arises from
the nature of image formation since a digital image is a
measured signal, which is obtained by the integration of the
surface reflectance, light source, and camera sensor functions
as follows;

Ij(x, y) =   R(x, y, �)L(x, y, �)Sj(�)d� (1)

where, Ij(x, y) is an image, (x, y) represents the spatial loca-
tion of a pixel, subscript j represents the corresponding color
channel of the image (red, green and blue), R(x, y, �) is the
surface reflectance, L(x, y, �) is the illumination, and Sj(�) is
the sensitivity of the camera’s color sensor.

As seen from Eqn. 1, the colors of the scene are prone to
be shifted in the direction of the light source and a�ected by
the capturing device specifications. Without filtering out the
illumination, it is impossible to obtain the actual reflectance
values of the objects. The field trying to solve this ill-posed

problem by finding new and e�cient ways to discount the illu-
mination from a scene is called computational color constancy.
Due to the importance it holds, it is well studied and many
color constancy algorithms have been introduced in the past
decades. In general, color constancy methods can be grouped
into three main categories; traditional-based, learning-based,
and data-driven methods. While traditional algorithms make
assumptions based on the statistical properties of images [3],
[4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], data-
driven and learning-based approaches estimate the illuminant
by extracting information and learning from samples present
in their large-scale training sets [15], [16], [17].

Apart from numerous algorithms, also several datasets have
been introduced in the field of color constancy. One of the
largest benchmarks is INTEL-TAU formed by Lakoom et.
al [18]. It contains a total of 7022 images captured with
3 di�erent camera models, Canon 5DSLR and Nikon D810
DSLR, and Mobile Sony IMX135. In order to prevent multi-
illumination conditions, images are obtained with one domi-
nant light source illuminating the scene. Moreover, the dataset
is organized to mask all the sensitive information to obey
the General Data Protection Regulation act [19]. Since it
contains a large number of high-resolution images, INTEL-
TAU is suitable for learning-based color constancy studies.
The well-known RECommended ColorChecker dataset [20]
is a modified version of the Gehler-Shi color constancy
dataset [21]. RECommended ColorChecker contains 568 in-
door and outdoor images captured with two camera models,
Canon 1D and Canon 5D, and to avoid multi-illuminant
conditions the images are captured under one dominant light
source. Since the dataset contains distinct types of indoor
and outdoor scenes, it is valuable for color constancy studies.
However, the number of images is not su�cient for learning-
based color constancy methods. The NUS-8 dataset is another
publicly available dataset introduced by Cheng et. al [8]. While
generating the dataset, 9 di�erent camera models are used to
capture a total of 1853 images. The Cube++ dataset [22] is
the extension of the Cube dataset [23] and it contains 1698
indoor and outdoor images. The images are captured with a
Canon EOS 550D camera. The images contain one dominant
illuminant illuminating the scene, which makes the dataset
useful for color constancy studies aiming at estimating the
global illuminant. The statistical distribution of the light source
in Cube++ is similar to the NUS-8 dataset. The SFU HDR
dataset introduced by Funt et. al [24], [25] is another well-



known color constancy benchmark. This dataset contains 105
high dynamic range images which are captured using a Nikon
D700 camera. The global illumination of the scene is found
from the color charts placed at diverse locations in the scene.
A recent color constancy dataset, The Rendered WB dataset,
is created by Afifi et. al [17]. This dataset is one of the largest
benchmarks containing 65416 sRGB images and correspond-
ing ground-truth information. The images are rendered under
di�erent white-balance settings with diverse camera picture
styles. Moreover, 2881 of the images are obtained from four
di�erent mobile phones and one DSLR camera, which makes
this dataset also useful for color constancy studies related to
mobile applications. Since the dataset is large, it is useful for
learning-based and data-driven methods.

One of the common drawbacks of these datasets is the fact
that the scenes are captured under similar lighting conditions.
As explicitly shown in our recent study [12], the limitation
in the variety of illuminants is a critical drawback, especially
for learning-based methods, which expect their training and
test sets to be somehow similar. In real-life applications, these
algorithms may face images with di�erent statistical distribu-
tions and their performance might decrease significantly. Also,
in the study of Buzzelli et al., where the shortcomings of
color constancy datasets are analyzed in detail, it is reported
that there is a lack of images illuminated by artificial lights
in existing benchmarks [26]. Another shortcoming of the
datasets is the usage of similar hardware while capturing the
images [26], [27]. Gao et al. stated that in existing color
constancy benchmarks the ground truth is extracted from a
particular region of an image, which is captured by the camera
sensors, hence naturally the ground truth is dependent on the
camera specifications, i.e. the ground truth is not entirely
accurate due to the e�ect of the capturing device [27]. A
similar discussion on the device dependency of ground truths
is discussed in the recent study of Buzzelli et al., where it is
stated that the camera specifications a�ect the acquired ground
truths [26]. Furthermore, as pointed out in our recent study and
the work of Qian et al., since several color constancy methods
use the camera spectral sensitivity as prior information, and
the hardware specifications a�ect the statistical distribution
of images, an inevitable bias is present in data-dependent
algorithms [10], [12]. These statements underline the need
and importance of a camera-invariant color constancy dataset
containing di�erent illumination conditions.

Based on these observations, in this study, we created a
large-scale color constancy dataset, namely CC-NORD, by
using computer graphics. In CC-NORD, ground truth informa-
tion independent of any hardware specifications is provided,
i.e. actual canonical images are created. Moreover, each scene
is rendered with 18 di�erent illuminants, which are changed
for each scene, and with 7 lights located at the beginning and
end and also away from the color temperature curve (CTC).
The importance of considering these lights in color constancy
studies has been reported in our recent study [12] by showing
that data-dependent color constancy methods face an inevitable
challenge when they need to white-balance images captured

under out of ordinary lights. The aim of providing CC-NORD
is to enable researchers in this field to have access to camera-
invariant ground truth information and images that contain
a high number of distinct illuminants. We demonstrate the
usability of CC-NORD by benchmarking 13 di�erent color
constancy methods.

Our contributions can be summarized as follows:
÷ We created a large-scale camera-invariant color constancy

dataset that includes lights located at the beginning and
end and also away from the CTC. To the best of our
knowledge, this is the first color constancy benchmark
that considers these illuminants.

÷ We created the largest synthetic global color constancy
benchmark considering lights beyond the CTC and pro-
vide 10000 images with actual ground truth information
independent of any hardware specification.

This paper is organized as follows. Section II presents the
formation of the dataset. Section III gives the experimental re-
sults of color constancy methods used to evaluate the usability
of the dataset. Section IV gives a brief summary of the study.

II. THE DATASET

In color constancy, obtaining camera-invariant ground truth
information is troublesome. In most studies, a color checker
is used to find the RGB values of the light source in the
scene which causes an error in the ground truth illumination as
aforementioned. Moreover, in most color constancy datasets,
images captured under similar illumination conditions are
present. Thereupon, we formed CC-NORD by using com-
puter graphics to provide actual ground truth information
independent of camera specifications and to render scenes
under various lights. The images in CC-NORD are created
through an algorithm designed in the open-source 3D graphics
toolkit called OpenSceneGraph (www.openscenegraph.com),
by following a similar strategy we used for our recent intrinsic
images dataset called IID-NORD [28]. Textures are both
synthetically generated and taken from Pixabay (pixabay.com).
It is worth mentioning here that in CC-NORD, there is no
sensitive information that has to be masked out and no need
to perform black-level calibration. Also, no color checker is
present in the scenes. Hence, CC-NORD can be easily used
without making any adjustments to the images.

In total 10000 scenes with a resolution of 1400ù965 pixels
are rendered (Fig. 1). All images have a linear response func-
tion. There are two di�erent setups in CC-NORD; (i) close-up
shootings, and (ii) indoor scenes. These setups are preferred
since it is known that estimating the illuminant of close-up
shootings and indoor scenes is more di�cult [26]. The objects
are randomly placed and the viewing angle is changed to
increase the variety of scenes in the dataset. Furthermore, since
noise is commonly observed in real photographs, zero-mean,
Gaussian white noise with variances of 10*4 and 2 ù 10*4 is
randomly added to some of the images.

The scenes in CC-NORD contain various 3D models.
In each consecutive render, at least one asset is replaced
by another to increase the variety in the rendered images.



Fig. 1: Examples from CC-NORD. (Top row) Di�erent scenes
and (bottom row) a scene rendered under di�erent illuminants.

The textures of the objects are chosen individually. Textures
with uniform and non-uniform color distribution, sharp color
changes, and di�erent motifs and patterns are applied to the
assets. These di�erent texture characteristics are considered
since all of them are commonly observable in our daily lives,
i.e. they are simple representations of textures captured in
real-life with cameras. Furthermore, by using various types
of textures it is aimed to prevent any bias in learning-based
color constancy models arising due to the uniformity of data.

In each scene, a single point light source is positioned
randomly. Point light sources are preferred rather than di-
rectional light to obtain dynamic shadow casts and a better
indoor illumination e�ect. Each scene is rendered with 25
illuminants, where 7 of them are lights from the beginning and
end and also away from the color temperature curve, and 18 of
them are illuminants commonly observed in real photographs
(Fig. 1). These widely used illuminants are determined by
analyzing three of the most frequently used benchmarks in
this field. First of all, the illuminants of the INTEL-TAU [16],
RECommended ColorChecker [20], and Cube+ [23] datasets
are collected and repetitive illuminants are removed. Then,
the remaining illuminants that have unique RGB triplets are
given to a k-means clustering algorithm. k is set to 18 because
the data can be grouped relatively uniform and each cluster’s
statistical distribution has a reasonable variance using this
value of k. Afterwards, every scene is rendered by choosing
one illuminant from each cluster. Hence, a high number of
di�erent illuminants is included in CC-NORD. Subsequently,
each scene is also rendered with 7 lights having a correspond-
ing value from either the beginning or end or away from
the color temperature curve. These lights are used in various
applications, yet in particular, the lights away from the CTC
are not present in existing color constancy datasets [12]. In
our recent study [12] we reported that the absence of these
lights in existing color constancy datasets causes a bias in data-
dependent color constancy methods, i.e. they fail to discount
these illuminants. This shortcoming may cause problems in
computer vision pipelines, where learning-based and data-
driven color constancy methods are used in the pre-processing
step.

The dynamic soft shadows in CC-NORD are created using
the Parallel Split Shadow Maps (PSSM) technique [29]. PSSM
uses the planes, which are parallel to the view plane in order
to split the view frustum into several pieces. Afterwards, it

creates multiple small shadow maps for these pieces. Hence,
PSSM takes into account the observation that distinct shadow
map sampling densities are required for points, which are
located at a di�erent distance to the viewpoint. Since it allows
proper rendering of dynamic shadows and produces a relatively
low aliasing e�ect PSSM is preferred in CC-NORD.

III. EXPERIMENTS AND DISCUSSION

The usability of CC-NORD is demonstrated by using the
following traditional-based color constancy methods; gray
world (GW) [3], shades of gray (SoG) [4], 1st and 2nd order
gray-edge (GE) [5], weighted gray-edge (WGE) [6], double-
opponent cells based color constancy (DOCC) [7], PCA based
color constancy (PCA-CC) [8], color constancy with local
surface reflectance estimation (LSRS) [9], mean-shifted gray
pixels (MSGP) [10], gray pixels (GI) [11], and block-based
color constancy (BB-CC) [12], and learning-based methods;
C5 [15], and C3AE [16] (Table I). The methods are used in
their default settings without any modification. Also, in order
to show the importance of out-of-ordinary lights, learning-
based methods trained on standard benchmarks are tested on
CC-NORD directly. The experiments are performed on an Intel
i7 CPU @ 2.7 GHz Quad-Core 16 GB RAM machine.

In order to test the algorithms on CC-NORD, two statistical
evaluation methods are used. Firstly, the well-known angular
error metric [30], which is defined as the angle between the
actual RGB values of the global light and the estimated light
is used. Secondly, the �E 2000 [31], [32] metric, which
investigates the color di�erence of images is used to evaluate
the algorithms. �E scores less than 1 are imperceptible, while
a score in the range [1, 4) might also be unnoticeable for an
observer [2], [33]. The mean of the best 25% (B.25%), the
mean of the worst 25% (W.25%), the median (med.), and the
mean of the angular error and �E are reported in Table I.

As it can be deduced from B.25% of the angular er-
ror scores, CC-NORD allows color constancy algorithms to
successfully estimate the illuminant. Especially, when the
best white-balanced images are considered traditional color
constancy methods reach very low angular errors. However,
as it can be seen in the outcomes of the W.25% of the angular
error, CC-NORD challenges the algorithms. In particular, the
performance of the learning-based methods is severely a�ected
by the illuminants, which are not present in their training sets.
It is clear that unless images with distinct illuminants are added
to their training sets, data-dependent algorithms will perform
poorly when they face such lights.

The mean �E scores of several traditional color constancy
methods are around 4, hence images white-balanced with
the illuminant estimates of these algorithms are visually very
similar to the ground truth image. On the other hand, the �E
results of the learning-based color algorithms show that there
is a significant perceivable color di�erence between the white-
balanced image and the ground truth. All these observations
also coincide with the visual results of the algorithms (Fig. 2).

In Fig. 2, the visual outcomes of several traditional algo-
rithms are provided together with the results of C3AE, which



TABLE I: Statistical analysis of the algorithms. For each
metric, the best result is highlighted. The last column contains
the average run time in seconds.

Angular Error �E 2000

Algorithms Mean Med. B.25% W.25% Mean Med. B.25% W.25% Run time

GW 6.831 5.517 1.242 15.124 6.376 5.569 1.829 12.356 0.125

SoG 4.843 3.889 0.537 10.857 4.881 4.034 0.748 10.658 0.189

1st order GE 5.159 4.231 1.396 10.425 5.433 4.657 1.827 10.362 0.313

2nd order GE 4.656 3.433 0.893 10.502 4.803 3.689 1.170 10.015 0.345

WGE 4.737 2.275 0.452 13.547 4.608 2.584 0.557 11.918 2.039

MSGP 4.123 1.269 0.295 11.939 3.750 1.455 0.464 10.519 0.516

GI 4.032 1.293 0.183 12.030 3.851 1.487 0.322 11.116 0.340

LSRS 4.567 3.567 0.577 10.495 4.248 3.819 0.952 8.398 0.114

DOCC 5.796 2.070 0.320 15.874 7.200 2.600 0.458 20.031 0.325

PCA-CC 7.401 4.860 0.306 18.057 7.591 5.132 0.510 18.081 0.157

BB-CC 4.548 3.322 0.676 10.606 4.263 3.837 1.012 8.470 0.231

C5 19.848 16.018 7.309 38.887 15.760 13.922 7.053 27.790 0.086

C3AE 12.186 10.240 4.830 22.937 11.959 10.489 4.719 21.902 0.037

is a learning-based method. All algorithms perform well for
the two input images given in the first and third rows, which
are illuminated by illuminants that are commonly observed
in color constancy benchmarks. However, when the scene
is illuminated by a light beyond the standard illuminants,
it can be seen that C3AE faces a challenge in estimating
the illuminant. The reasons behind the performance decay of
learning-based color constancy methods are their dependency
on camera sensor characteristics and bias in their training
data [12], [27]. These methods are inevitably challenged when
they face images with di�erent statistical distributions that are
not present in their training sets. Thus, CC-NORD can be
included into the training sets of learning-based algorithms
to decrease the bias in the data. As a final note, we did not
train the learning-based models on CC-NORD, since our aim
is to show the importance of considering images with di�erent
statistical distributions and to demonstrate the problems related
to the usage of similar data in learning-based methods.

IV. CONCLUSION

Color constancy algorithms are benchmarked on datasets,
which are created using capturing devices having similar
hardware specifics. Furthermore, most datasets contain similar
illuminants, thus color constancy methods are neither trained
nor tested on a wide variety of illuminants which limits the
e�ectiveness in particular of learning-based color constancy
algorithms. Thereupon, in this study, we created a synthetic
color constancy benchmark. CC-NORD satisfies the needs of
existing datasets, i.e. diverse illuminants and camera-invariant
ground truths, while it also challenges color constancy algo-
rithms since it includes indoor close-up shootings and out-of-
ordinary lights. In the experimental results, we have shown
the importance of considering di�erent types of illuminants
and using data created independent of hardware characteristics.
CC-NORD can help to reduce the bias in learning-based and
data-driven algorithms. CC-NORD can be either used alone
or combined with a dataset containing real scenes to train and
test learning-based methods.
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Fig. 2: Visual comparison of the algorithms.
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