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ABSTRACT

We recently proposed a color constancy method based on the
observations that the human visual system might be "discounting the
illuminant" by using space-average color and the highest luminance
patches. Based on these observations, our algorithm relies on two
assumptions: (i) there are several bright pixels in the scene, and (ii)
the world is gray, on average. The main idea of the algorithm is
to estimate the illuminant by finding the deviation of the brightest
pixels from the gray value. During experiments, we observed that
some pixels decrease the performance of the method. In this work,
the algorithm is modified to eliminate the impact of these pixels.
According to the comprehensive experiments, the proposed method
surpasses several existing approaches on two color constancy bench-
marks. Also, we show that the performance of some existing color
constancy algorithms can be increased by using a block-based ap-
proach and salient pixels.

Index Terms—
Color Constancy, Illumination Estimation, White Balance

1. INTRODUCTION

The human visual system unconsciously perceives the true colors of
objects in a scene regardless of the illumination conditions [1]. For
instance, the human visual system perceives a white wall under a blue
light source as white. However, when this scene is captured with a
camera, due to the interaction between the sensitivity of the cam-
era sensors and the light source of the scene, the wall in the image
will be captured as blue. Correcting this color cast by removing the
effects of the global illumination in the scene requires further compu-
tations. The field investigating the ways of discounting the illuminant
is called computational color constancy, and it has significant impor-
tance in both digital photography and higher-level computer vision
tasks such as object classification and image dehazing, which are uti-
lized in several applications, i.e. robotics and security systems [2].

The image captured by a digital camera (with spatially varying
illumination) can be formulated as

𝐼𝑖(𝑥, 𝑦) = ∫𝑤
𝑅(𝑥, 𝑦, 𝜆)𝐿(𝑥, 𝑦, 𝜆)𝑆𝑖(𝜆)𝑑𝜆 (1)

where, 𝐼𝑖(𝑥, 𝑦) is the measured signal at spatial location (𝑥, 𝑦),
𝑅(𝑥, 𝑦, 𝜆) is the reflectance of the surface, 𝐿(𝑥, 𝑦, 𝜆) is the wave-
length distribution of the light source, 𝑆𝑖(𝜆) is the response function
of the camera’s color sensor with 𝑖 ∈ {red, green, blue}, and 𝜆 is the
wavelength of the visible spectrum 𝑤.

The aim of color constancy is to obtain a canonical image from
the input image 𝐼 by discounting the effects of the color vector of the
light source 𝐿. However, estimating the color of the light source is an

under-constrained problem, since both 𝐿 and 𝑆 are unknown. There-
fore, many studies relax this problem by assuming the color sensors’
responses are narrow-band and a global light source is illuminating
the scene [2]. In this case, the image is obtained from the element-
wise product of the reflectance of the surface 𝑅 and the global light
source 𝐿 as follows

𝐼(𝑥, 𝑦) = 𝑅(𝑥, 𝑦) ⋅ 𝐿. (2)

The field of color constancy has been extensively studied for
more than four decades, and many color constancy algorithms have
been introduced in the literature. Well-known methods, the white-
patch Retinex [3] and the gray world [4], are based on the biological
findings of the human visual system since the human visual system
might be discounting the illuminant of the scene based on the high-
est luminance patch, and local space-average color [5]. While the
white-patch Retinex algorithm finds the estimates of the light source
by taking the maximum responses of the image channels separately,
the gray world algorithm estimates the illuminant by averaging pixels
of each channel independently. Due to their simplicity and effective-
ness, most of the color constancy algorithms are built upon these two
studies. For instance, the shades of gray algorithm [6] assumes that
the mean of pixels raised to a certain power is gray. The gray-edge
algorithm [7] and weighted gray-edge method [8] point out that the
gradient features of the image are useful cues for estimating the il-
luminant. The mean-shifted gray pixel algorithm [9] transforms the
task of illumination estimation into gray pixel detection. The illu-
mination of the scene is estimated via mean-shift clustering based
on the statistical properties of the color-biased image’s gray pixels.
The color constancy algorithm based on principal component analy-
sis (PCA) [10] estimates the color vector of the light source by only
considering the informative pixels, which have the largest gradient
in the data matrix rather than using all the pixels in the scene. The
local surface reflectance statistics [11] is based on the linear image
formation model and relies on biological findings about the feed-back
modulation mechanism in the eye. The biologically inspired method
of Gao et al. [12] estimates the illuminant of the scene by using the
responses of the double opponent cells in LMS space, where L, M
and S correspond to the response of the cone types of the human eye.

Not only traditional approaches but also learning-based algo-
rithms exist in the field of color constancy [13, 14, 15, 16, 17, 18].
These methods mostly surpass the traditional approaches on well-
known benchmarks. Since these datasets are mostly captured with
cameras, whose sensor response functions are similar, the algo-
rithms, which are trained on these datasets face an inevitable chal-
lenge when they need to correct images with unique statistical distri-
butions and/or images captured with devices with unknown hardware
specifications [19, 20]. However, this is not a problem for traditional
color constancy algorithms. Thereupon, we recently proposed a sim-
ple yet effective, learning-free color constancy method based on the



observations that the human visual system might be discounting the
illuminant by using space-average color and the highest luminance
patches in the scene [19]. The patch-based algorithm relies on two
assumptions: (i) there are several bright pixels in the scene, (ii) on av-
erage, the world is gray. If the scene is gray on average, the deviation
of the highest luminance pixels from a gray value should be caused
by external effects, and this deviation should be in the direction of
the global light source. During experiments, it is observed that not
every pixel in a patch is informative to estimate the color vector of
the global illuminant, for instance, the contribution of the patches
containing dominant sky regions should be decreased. In this work,
the algorithm is modified by only considering the pixels, which are
closest to white to reduce the impact of the non-informative patches.

This paper is organized as follows. The proposed color constancy
method and its modification are detailed in Sec. 2. Comprehensive
experimental results are presented and discussed in Sec. 3, and a brief
summary and possible future directions are given in Sec. 4.

2. PROPOSED METHOD

Since it was coined by Monge in 1789, color constancy has been in-
tensively studied [21]. For more than four decades numerous color
constancy methods are developed to find a solution to the ill-posed
nature of color constancy. It is not surprising that the well-known
solutions for discounting the illumination are based on the biological
findings of the human visual system since one of the objectives in
this domain is to understand how the brain arrives at the color con-
stant descriptor of the scene [22]. Thereupon, we recently proposed
a computational color constancy method based on the observations
that the human visual system might be arriving at the color constant
descriptor of the scene by using space-average color and highest lu-
minance patch of the scene [5]. We assumed that the color constant
descriptor of the scene can be simply obtained by considering that;
(i) there is at least one bright pixel in the scene and (ii) on average,
the world is achromatic. The main idea of the algorithm is that the
deviation of the brightest pixels from the achromatic value should be
caused by the global light source. Hence, finding this deviation will
result in estimating the color vector of the light source, and subse-
quently arriving at the color constant descriptor of the scene. In this
section, the steps of the proposed method and the modifications are
detailed.

The proposed method can take both linear-raw and sRGB im-
ages as input. In case the algorithm is applied to an sRGB image,
linearization should be applied in order to obtain a linear relation-
ship between the image elements. Also, since it is known that the
darkest and brightest pixels are negatively affecting the performance
of the color constancy studies, corresponding pixels are clipped to
reduce possible noise, i.e. the darkest and brightest pixels in the im-
age are not considered in the calculations. Afterwards, the image is
divided into non-overlapping patches {𝐼𝑝}𝑛𝑝=1, where 𝑛 is the number
of non-overlapping blocks, which is the only fixed parameter of the
proposed method. The determination of 𝑛 is discussed in Sec. 3.

Since the algorithm is built upon the assumptions of the white-
patch Retinex and gray world method, it is assumed that for each
patch 𝐼𝑝, there exists at least one bright pixel and a unique achro-
matic value, which are the most informative elements to find the illu-
mination of 𝐼𝑝. The brightest pixel values (per channel) of 𝐼𝑝 can be
simply determined by taking the maximum response of each chan-
nel. These maximum intensity values form the informative intensity
vector 𝐼𝑝,𝑚𝑎𝑥, where 𝐼𝑝,𝑚𝑎𝑥 = [𝑅𝑝,𝑚𝑎𝑥, 𝐺𝑝,𝑚𝑎𝑥, 𝐵𝑝,𝑚𝑎𝑥]. The achromatic
value 𝜇𝑝 can be calculated by simply taking the mean of all pixels
in the image, but it is observed that using a single fixed achromatic

value for all 𝐼𝑝 negatively affects the performance of the algorithm.
This is not surprising, since the local surface orientations of the scene
vary throughout the image, in other words, a unique achromatic value
exists for each distinct 𝐼𝑝, and it can be computed by taking the mean
𝜇𝑝 of pixels over all channels within the patch of interest. After deter-
mining both of these informative elements, the illumination estimate
of each 𝐼𝑝 can be found by considering the second assumption of the
proposed method, the world is gray on average. It is important to
note here that, if the scene is achromatic on average, the summation
of the intensity values of 𝐼𝑝,𝑚𝑎𝑥 is assumed to be gray. But, if there
is a color cast in the scene, it should cause a deviation from the gray
world. For each distinct 𝐼𝑝, this shift away can be found by comput-
ing a scaling vector 𝐂𝑝 = [𝑐𝑟, 𝑐𝑔 , 𝑐𝑏], which scales the intensities of
the 𝐼𝑝,𝑚𝑎𝑥 such that they sum to a gray value 𝜇𝑝 as follows;

𝑅𝑝,𝑚𝑎𝑥 ⋅ 𝑐𝑟 + 𝐺𝑝,𝑚𝑎𝑥 ⋅ 𝑐𝑔 + 𝐵𝑝,𝑚𝑎𝑥 ⋅ 𝑐𝑏 = 𝜇𝑝. (3)

Consequently, the scaling vector 𝐂𝑝 can be computed by solving the
constrained optimization problem as follows;

𝐂𝐩 = argmin
𝐂𝐩

‖

‖

‖

𝐼𝑝,𝑚𝑎𝑥 𝐂𝐩 − 𝜇𝑝
‖

‖

‖2
𝑤𝑖𝑡ℎ ∀𝑐 ∈ 𝐂𝐩 ∶ 𝑐 ≥ 0. (4)

Since it is assumed that there is a single light source illuminating the
scene, the color vector of the illumination is calculated by averaging
every 𝐂𝑝 as follows;

𝐋𝐞𝐬𝐭 =
1
𝑛

𝑛
∑

𝑝=1
𝐂𝐩. (5)

Finally, the color constant descriptor of the scene is found by re-
scaling the original image according to 𝐋𝐞𝐬𝐭 by using Eqn. 2.

Note that not all elements of the patches are helpful in estimating
the color vector of the light source. For instance, a patch containing
a dominant sky region will bias the estimations for that 𝐼𝑝, hence it
will decrease the performance of the algorithm (Fig. 2). Therefore, in
this study, the proposed method is modified in order to overcome this
problem with a simple yet effective approach. Instead of using all the
pixels within the patch, only the salient pixels are considered to find
the deviation from the gray world. These salient regions are obtained
from the pixels, which are closest to white. The motivation for using
only these image elements rather than all the pixels of an image can
be explained by a simple example from digital photography [2]. Let
us assume that an image of a room illuminated by blue light, which
has white walls and contains colored objects is captured by a digital
camera, whose white balance setting is disabled. Since the captured
image is an integrated signal obtained from the response of the cam-
era’s color sensor functions and the scene illumination, every spatial
location of the image has an undesirable color cast. In particular, the
white walls will shift towards the color blue. The light source can be
easily estimated from the white wall rather than the colored objects
since the camera sensors will measure the white wall illuminated by
blue light as blue. Hence, even if the scenes have very complicated
color distributions, the color of the light vector can be approximated
by using the pixels closest to white. These pixels can be easily found
by assuming the world is gray on average. A temporary color vector
of the light source𝐿𝑡𝑒𝑚𝑝 can be estimated by taking the mean values of
each color channel. Subsequently, a temporary white balanced image
𝐼𝑡𝑒𝑚𝑝 can be obtained by scaling the original image according to 𝐿𝑡𝑒𝑚𝑝
as in Eqn. 2. Then, the pixels closest to white can be determined by
checking the angular error (explained in Sec. 3) between the pixels of
𝐼𝑡𝑒𝑚𝑝 and the white vector, [1, 1, 1]. Generally, the pixels having an
angular error less than 5 are considered to be salient pixels, which are
closest to white and only these pixels are considered in the proposed
algorithm to estimate the global light source illuminating the scene.



Fig. 1. Examples images. First two images are from the INTEL-TAU
and last two are from the RECommended ColorChecker dataset.

3. EXPERIMENTAL SETUP AND RESULTS

The proposed method is compared with the following statistical
methods, white-patch Retinex [3], gray world [4], shades of gray [6],
1𝑠𝑡 and 2𝑛𝑑 order gray-edge [7], weighted gray-edge [8], double-
opponent cells based color constancy [12], PCA based color con-
stancy [10], color constancy with local surface reflectance estima-
tion [11], and mean-shifted gray pixels [9] which are all briefly
explained in Section 1. Also, a comparison with the proposed
method’s initial version is provided. The codes for the algorithms
are obtained from the official webpages of the authors and they are
used in their default settings without any modification. The experi-
ments are conducted on an Intel i7 CPU @ 2.7 GHz Quad-Core 16
GB RAM machine.

The algorithms are evaluated on the widely used color con-
stancy benchmarks, INTEL-TAU [23] and Recommended Col-
orChecker [24] datasets. The INTEL-TAU dataset is one of the
largest color constancy benchmarks containing a total of 7022 in-
door and outdoor scenes captured with three different cameras,
Canon 5DSR, Nikon D810, and Mobile Sony IMX135. The Recom-
mended ColorChecker dataset is an updated version of the Gehler-Shi
dataset [25]. It contains a total of 568 for indoor and outdoor im-
ages captured with two cameras, Canon 1D and Canon 5D. Both
datasets contain images captured under one dominant light source
to avoid mixed illumination conditions (Fig. 1). Also, the images
in both these datasets have a linear response and their black level
is calibrated. Another common feature of both datasets is that they
are captured with cameras, whose camera sensitivities differ. Since
it is important to compare color constancy algorithms with images,
whose spectral distribution is unknown, in the experiments the im-
ages belonging to the same dataset are combined to create a single
set, i.e. a camera-unknown set.

To statistically benchmark the performance of each method, the
angular error, which is widely used in the field of color constancy is
adopted. The angular error (𝜀) between the ground truth illuminant
(𝐋𝑔𝑡) and the estimated illuminant (𝐋𝑒𝑠𝑡) can be computed as follows;

𝜀(𝐋𝑔𝑡,𝐋𝑒𝑠𝑡) = 𝑐𝑜𝑠−1
( 𝐋𝑔𝑡𝐋𝑒𝑠𝑡

‖
𝐋𝑔𝑡‖‖𝐋𝑒𝑠𝑡‖

)

. (6)

The mean, the median, the mean of the best 25%, and the mean
of the worst 25% of the angular error are reported in Table 1.

In the experiments, the proposed method is investigated thor-
oughly. The effects on the performance of using non-overlapping
blocks and salient pixels not only for the proposed method but also for
the algorithms on which the proposed method is built upon are inves-
tigated in detail. As seen in Table 1, it is clear that the performances
of the white-patch Retinex and the gray world algorithms signifi-
cantly increase when they are modified by using the non-overlapping
blocks and salient pixels. Furthermore, to show the importance of
dividing images into non-overlapping patches and choosing only the
salient pixels to compute the color vector of the light source the pro-
posed algorithm is compared with its different versions in the last four
rows of Table 1. When the proposed algorithm is employed with-
out dividing the image into blocks and without the consideration of

Fig. 2. The visual comparison of the proposed method with its ini-
tial version. (Left-to-right) Input image, initial version, proposed
method, the ground truth, and the salient pixels. The angular error is
provided on the bottom-right side of the image.

Fig. 3. Comparison of algorithms. (Left-to-right) Input image, the
result of local surface reflectance estimation, mean shifted gray pixel,
proposed method, and the ground truth image. The angular error of
each method is provided on the bottom-right side of the image.

the salient pixels, its performance tends to decrease significantly. As
seen from the results, estimating the illuminant by dividing the im-
age into blocks and considering only the salient pixels in the scene
greatly improves the effectiveness of the algorithm. The reason be-
hind this performance increase can be explained with the facts that (i)
the statistical distributions of the scenes are not uniform throughout
the image, but they change in local regions and (ii) not all pixels
contain useful information. In other words, investigating the non-
overlapping blocks independently allows us to give more importance
to local regions, and pixels, which are non-informative, negatively af-
fect the outcomes, hence they should be eliminated during processing
(Fig. 2).

The proposed method outperforms the state-of-the-art in the ex-
periments. The lowest mean angular error is achieved by the pro-
posed method for both benchmarks. Moreover, the median of the
angular error of the proposed method is lower than the mean of the
angular error for both datasets, which indicates that the proposed al-
gorithm produces outcomes closer to the best cases rather than the
worst ones. Furthermore, as seen in Table 1, the mean of the best
25% of the angular error mostly does not significantly differ among
algorithms compared to the mean of the worst 25% of the angular er-
ror. The performance gap among techniques increases considerably
when the worst cases are taken into account, where the proposed al-
gorithm clearly outperforms existing techniques on both benchmarks.
This outcome is noteworthy since it is known that in color constancy
studies, aside from the mean angular error, it is also important to
decrease the mean of the worst 25% of the angular error [19].

In Fig. 3 the visual comparisons of the proposed method with the
best-performing algorithms are provided for both indoor and outdoor
scenes. The proposed method is able to produce images close to the



Table 1. Statistical results of the methods. For each metric the best result is highlighted.
INTEL-TAU Camera-Unknown RECommended ColorChecker Camera-Unknown

Mean Median B-𝟐𝟓% W-𝟐𝟓% Mean Median B-𝟐𝟓% W-𝟐𝟓%
White-Patch Retinex 11.01 13.16 1.81 19.44 10.27 9.12 1.64 20.50
Gray World 4.91 3.88 0.96 10.60 4.74 3.61 0.97 10.44
Shades of Gray Edge 5.51 4.16 0.97 12.29 5.87 4.25 0.75 13.72
1𝑠𝑡 order Gray Edge 6.10 4.23 0.96 14.27 6.42 3.84 0.94 15.83
2𝑛𝑑 order Gray Edge 6.41 4.50 1.04 14.73 6.94 4.41 1.07 16.53
Weighted Gray Edge 6.00 3.64 0.81 14.90 6.10 3.33 0.79 15.59
Double-Opponent Cells based Color Constancy 7.19 4.67 0.81 16.98 7.24 4.26 0.80 18.05
PCA based Color Constancy 4.47 3.03 0.69 10.64 4.11 𝟐.𝟓𝟐 0.53 10.19
Local Surface Reflectance Estimation 4.17 3.42 0.98 8.61 4.03 3.07 1.40 8.17
Mean Shifted Gray Pixels 3.57 𝟐.𝟓𝟔 0.64 8.24 3.81 2.96 0.77 8.35

White-Patch Retinex: Block-based with Salient Pixels 3.41 2.65 0.79 7.36 4.05 2.93 0.94 8.99
Gray World: Block-based with Salient Pixels 3.69 2.58 𝟎.𝟔𝟑 8.60 4.39 2.80 𝟎.𝟓𝟐 10.85
Proposed: Without Blocks and Salient Pixels 8.74 7.89 1.74 17.08 9.23 7.49 2.79 18.11
Proposed: Without Blocks and with Salient Pixels 5.92 4.11 1.04 13.72 6.44 4.73 1.55 14.06
Initial Version 4.29 3.61 1.20 8.53 3.82 3.17 1.46 7.38
Proposed 𝟑.𝟑𝟕 2.63 0.79 𝟕.𝟐𝟓 𝟑.𝟒𝟖 2.71 1.06 𝟕.𝟑𝟓

Table 2. Investigation of the kernel size of the non-overlapping blocks. The kernel size having the lowest mean angular error is selected.
INTEL-TAU Random Set RECommended ColorChecker Random Set

𝟖 × 𝟖 𝟏𝟔 × 𝟏𝟔 𝟑𝟐 × 𝟑𝟐 𝟔𝟒 × 𝟔𝟒 𝟏𝟐𝟖 × 𝟏𝟐𝟖 𝟑𝟎𝟎 × 𝟑𝟎𝟎 𝟔𝟎𝟎 × 𝟔𝟎𝟎 𝟖 × 𝟖 𝟏𝟔 × 𝟏𝟔 𝟑𝟐 × 𝟑𝟐 𝟔𝟒 × 𝟔𝟒 𝟏𝟐𝟖 × 𝟏𝟐𝟖 𝟑𝟎𝟎 × 𝟑𝟎𝟎 𝟔𝟎𝟎 × 𝟔𝟎𝟎

Mean Angular Error 3.759 3.747 3.733 3.729 𝟑.𝟕𝟐𝟓 3.733 3.783 3.630 3.603 3.571 3.542 3.518 𝟑.𝟒𝟗𝟐 3.607

ground truths, which coincides with its statistical results. However,
if the statistical distribution throughout the image is uniform and the
image does not contain any salient pixels, the performance of the
algorithm tends to decrease. It is important to note that, this is a
common problem for statistical-based color constancy algorithms.

As a final note, the size of the non-overlapping patches is the only
fixed parameter of the proposed method as mentioned in Sec. 2. The
investigation of this parameter is presented in Table 2 for both bench-
marks. This parameter is determined experimentally by investigating
the relationship between the mean angular error and different ker-
nel sizes. In order to perform the experiments, a sub-set called ran-
dom set is generated by randomly choosing images from the datasets.
As seen in Table 2, the performance of the proposed algorithm in-
creases when the input scene is divided into a sufficient number of
non-overlapping patches. When the images are divided into 600×600
sized kernels only a small number of blocks is obtained, hence the
performance is lower than desired. One reason for this performance
decay might be that the surface orientations are not uniform through-
out the image, but they differ in the local regions, and when a limited
number of blocks are considered, the amount of information taken
into account is reduced significantly. Therefore, when the number of
blocks is increased, i.e. the kernel size is decreased, the proposed al-
gorithm can take more distinct features into account, which positively
affects its outcomes. However, it should be noted that if the kernel
size is too small the performance of the algorithm tends to decrease.
This is due to the fact that one of the assumptions the proposed algo-
rithm is built upon is the gray world assumption, which is only valid
when the image contains an adequate number of distinct colors, i.e.
when the patches are too small the possibility of having uniform col-
ored blocks increases. Consequently, selecting the number of blocks
is an important step of the proposed algorithm, and this parameter
mainly depends on the image resolution. For both color constancy
benchmarks, different kernel sizes are selected, since the resolution

of the images in the datasets varies. In the INTEL-TAU dataset, the
resolution of the images is smaller than the resolution of the images
in the RECommended ColorChecker dataset. Thus, the kernel sizes
are selected as 128 × 128 and 300 × 300 for the INTEL-TAU and
RECommended ColorChecker datasets, respectively.

4. CONCLUSION

Recently we have proposed a color constancy algorithm relying on
the observations that the human visual system might be discount-
ing the effects of the light source based on the highest luminance
patch and space-average color. The strongest sides of the proposed
algorithm are that it is a learning-free method and it has only one
fixed parameter, which is the size of the non-overlapping patches.
The algorithm first divides the image into non-overlapping blocks
and then for each patch, the method finds the estimation of the light
source by finding the deviation of the brightest pixels from the gray
value. The estimate of the global light source is obtained by averag-
ing the estimates of each patch. Since not all pixels in the patches
carry informative features in estimating the color vector of the light
source, for instance, the method has difficulty correcting scenes hav-
ing a dominant sky region. In this work, this problem is overcome by
considering only the patches containing the salient pixels, i.e. pixels
closest to white. With this modification, the proposed method sta-
tistically outperforms the state-of-the-art algorithms on well-known
color constancy benchmarks. Additionally, in this study, we showed
that the performance of some color constancy algorithms can be eas-
ily improved by using a block-based approach and salient pixels. As
future work, the algorithm will be modified for mixed illumination
conditions.
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