ICASSP

Oguzhan Ulucan, Diclehan Ulucan, Marc Ebner

Department of Computer Science, University of Greifswald, Germany oguzhan.ulucan@uni-greifswald.de

VisionLab

Color Constancy

The perceived color remains constant regardless of the color of the light source

- Performed unconsciously by the human visual system - Machine vision systems have difficulty to perform such tasks

Aim of Color Constancy

To estimate the color vector of the light source \mathbf{L} Obtain a canonical image from a color casted scene

$$
\begin{aligned}
I(x, y) & =\int R(x, y, \lambda) E(x, y, \lambda) S(\lambda) d \lambda \\
L(x, y, \lambda) & =\int E(x, y, \lambda) S(\lambda) d \lambda
\end{aligned}
$$

- We cannot be sure about;
- The type of the light source - The type of the capturing device
\qquad Pixel position \qquad Observations
$\begin{array}{lllll} & x, y: & \text { Pixel position } & R: & \text { Reflectance } \quad E: \\ \text { Wavelength source } \\ & S: & \text { Sensor characteristics of the camera }\end{array}$
- Human visual system might be estimating the illuminant of a scene based on;
\checkmark Space-average color \checkmark Highest luminance patch
- Color constancy studies based on our visual system are effective \checkmark Gray World
\checkmark maxRGB

Motivation and Aim of the Study

Not every pixel is informative for color constancy To improve our method with a simple yet effective approach \checkmark We reduce the impact of non-informative pixels

- To analyze whether our strategy is effective for other color constancy studies

Assumption

1. The world is gray, on average
2. There are bright pixels somewhere in the scene

Main Idea
\checkmark If there is a shift from the gray world, it should be caused by the illumination condition of the scene

Proposed Method

1. Linearize the image
2. Clip the saturated pixels
3. Determine the salient pixels, i.e. whitest pixels
4. For each block containing salient pixels, find two informative elements;

$$
\text { - The bright pixel, } I_{p, \max }=\left[R_{p, \max }, G_{p, \max }, B_{p, \max }\right]
$$

- The unique achromatic value, i.e. gray value, μ_{p}

5. Find the deviation of $I_{p, \max }$ from μ_{p} by using a scaling vector $\mathbf{C}_{p}=\left[c_{r} c_{g} c_{b}\right]$;

$$
\mathbf{C}_{\mathbf{p}}=\underset{\mathbf{C}_{\mathbf{p}}}{\arg \min }\left\|I_{p, \max } \mathbf{C}_{\mathbf{p}}-\mu_{p}\right\|_{2} \quad \text { with } \quad \forall c \in \mathbf{C}_{\mathbf{p}}: c \geq 0
$$

6. Find the estimate of the global illuminant;

$$
\mathbf{L}_{e s t}=\sum_{p=1}^{n} \frac{\mathbf{C}_{p}}{n}
$$

$$
n \text { : number of blocks }
$$

Investigation of the Block Size

	Investigation of the Block Size								
	INTEL-TAU Random Set								
	$\mathbf{8 \times 8}$	$\mathbf{1 6} \times \mathbf{1 6}$	$\mathbf{3 2} \times \mathbf{3 2}$	$\mathbf{6 4} \times \mathbf{6 4}$	$\mathbf{1 2 8} \times \mathbf{1 2 8}$	$\mathbf{3 0 0} \times \mathbf{3 0 0}$	$\mathbf{6 0 0} \times \mathbf{6 0 0}$		
Mean Angular Error	3.759	3.747	3.733	3.729	$\mathbf{3 . 7 2 5}$	3.733	3.783		
	RECommended ColorChecker Random Set								
	$\mathbf{8 \times 8}$	$\mathbf{1 6} \times \mathbf{1 6}$	$\mathbf{3 2} \times \mathbf{3 2}$	$\mathbf{6 4} \times \mathbf{6 4}$	$\mathbf{1 2 8} \times \mathbf{1 2 8}$	$\mathbf{3 0 0} \times \mathbf{3 0 0}$	$\mathbf{6 0 0} \times \mathbf{6 0 0}$		
Mean Angular Error	3.630	3.603	3.571	3.542	3.518	$\mathbf{3 . 4 9 2}$	3.607		

- The block sizes are experimentally determined by investigating the relationship between the mean angular error and different kernel sizes

Summary

- We recently proposed a learning-free algorithm relying on the assumptions

$$
\checkmark \text { Gray world } \quad \checkmark \operatorname{maxRBG}
$$

We modified our algorithm by only considering the patches containing the

salient pixels

$$
\checkmark \text { Pixels closest to white }
$$

We showed that applying our strategy to some other methods improves their effectiveness
\checkmark Block-based approach $\quad \checkmark$ Considering only the salient pixels

