

Color Constancy

Identifying the colors in a scene regardless of the illumination conditions [1] "Discounting the Illuminant"

Aim of Color Constancy

Estimate the color vector of the light source **L**

Obtain a canonical image from color casted scene [1]

$$I(x,y) = \int R(x,y,\lambda) E(x,y,\lambda) S(\lambda) d\lambda \quad \mathbf{L} = [l_R \ l_G \ l_B]^T$$

x, *y*: Pixel position *R*: Reflectance *I*: Image *S*: Sensor response characteristics of the capturing device

 λ : Wavelength of the visible spectrum

Observations

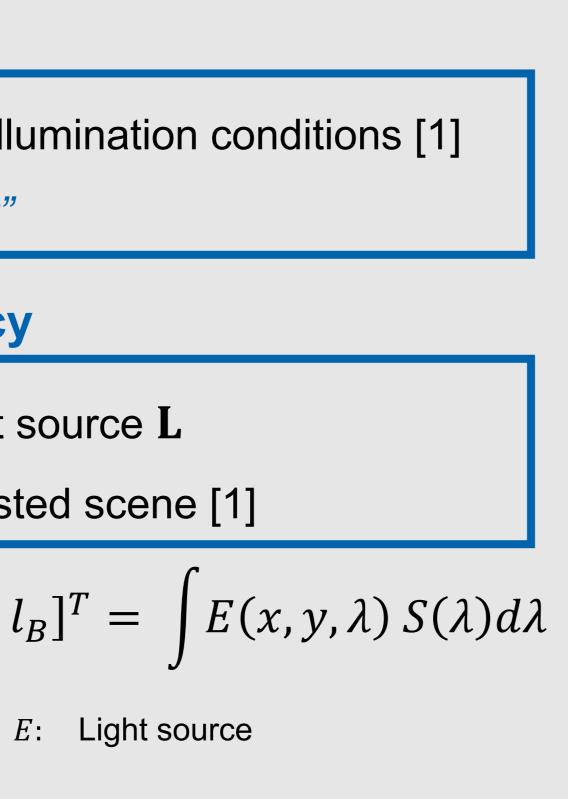
- Color constancy studies based on human visual system are effective ✓ Gray World ✓ max - RGB
- Human visual system might be estimating the illuminant of a scene [1] ✓ Highest luminance patch ✓ Space-average color

Assumptions

- There are several bright pixels somewhere in the scene
- The world is gray, on average

Main Idea

If there is a shift from the gray world, it should be caused by the illumination condition of the scene



1. M. Ebner, Color Constancy, 1st ed., Wiley Publishing, 2007. 2. M. Afifi, B. Price, S. Cohen, and M. S. Brown, "When color constancy goes wrong: Correcting improperly white-balanced images," in IEEE Conf. Comput. Vision Pattern Recognit., 2019, pp. 1535–1544.

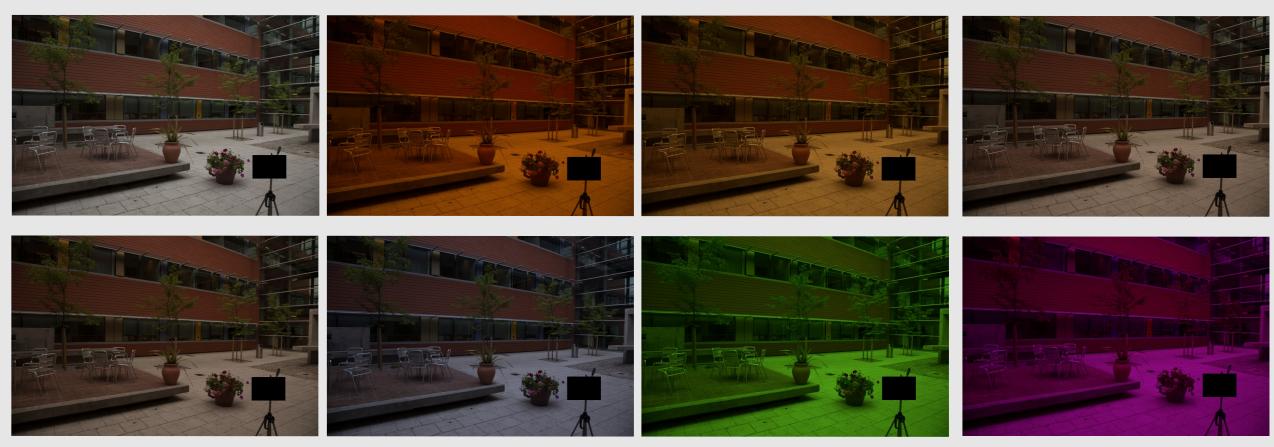
I_{p,gray}:

COLOR CONSTANCY BEYOND STANDARD ILLUMINANTS

Oguzhan Ulucan, Diclehan Ulucan, Marc Ebner

Proposed Method

Aim of the Study


Datasets and learning based methods do not include illuminants with values outside the color temperature curve (CTC)

- First study investigating the response of color constancy methods to illuminants
 - On the edges and outside the CTC
- A novel traditional color constancy method is developed

Image is linearized are clipped to reduce possible noise Image is divided into blo Figure. Image is divided *n*: number of blocks, 5 < n < 9into non-overlapping blocks. • For each I_p there exists at least one bright pixel, $I_{p,max} = [R_{p,max}, G_{p,max}, B_{p,max}]$ • Each I_p should be gray on average • The deviation of $I_{p,max}$ from gray world can be computed by using a scaling vector $\mathbf{C}_p = [c_r \ c_g \ c_b];$ $\mathbf{C}_p = \operatorname{argmin} \| I_{p,max} \mathbf{C}_p - I_{p,gray} \|$ The estimate of the global illuminant can be found by; $\mathbf{L}_{est} = \sum_{p=1}^{N} \frac{\mathbf{C}_p}{n}$

Department of Computer Science, University of Greifswald, Germany oguzhan.ulucan@uni-greifswald.de

outside and edge of the CTC are created

Experimental Results

Steps of the Proposed Method

2% percent of the darkest and the brightest pixels

ocks,
$$\left\{I_p\right\}_{p=1}^n$$

s.t.
$$\forall c \in \mathbf{C}_p \geq 0$$

mean over all channel values of I_p

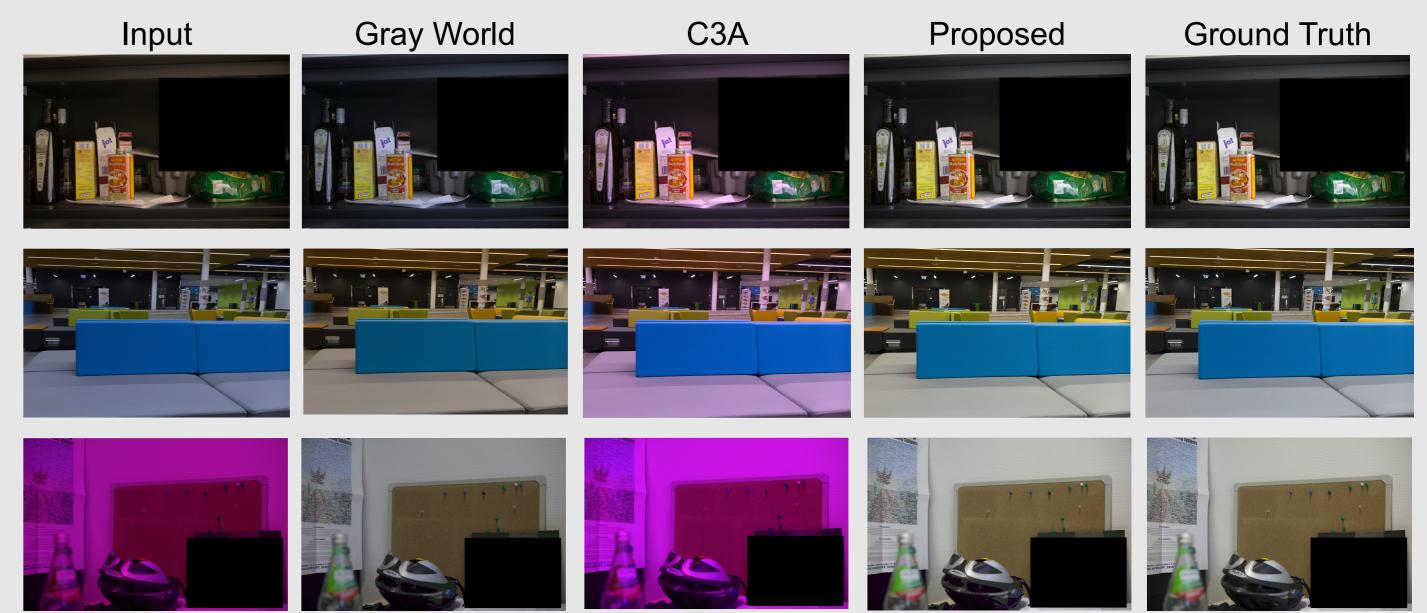


Figure. Visual comparison of the methods.

	Lights on the CTC					Lights outside the CTC					
Algorithms	$\Delta \mathbf{E}$	Mean	Median	$\mathbf{Best-25}\%$	Worst-25%	$\Delta \mathbf{E}$	Mean	Median	$\mathbf{Best-25}\%$	Worst-25%	Avg. run time
Gray World	9.239	3.555	1.809	0.670	9.633	10.051	4.305	3.072	1.494	9.139	0.077
max-RGB	7.646	3.657	1.966	0.718	9.535	8.383	4.324	3.117	1.530	9.081	0.052
Shades-of-Gray	7.966	3.626	1.904	0.701	9.687	8.765	4.305	3.086	1.503	9.136	0.104
1 st order Gray Edge	7.779	3.659	1.951	0.709	9.740	8.570	4.318	3.089	1.509	9.146	0.171
2^{nd} order Gray Edge	7.765	3.664	1.966	0.709	9.749	8.552	4.316	3.103	1.510	9.139	0.180
Weighted Gray Edge	7.771	3.680	1.983	0.714	9.778	8.477	4.314	3.092	1.511	9.135	0.850
MSGP	3.889	3.436	1.679	0.618	9.483	5.042	4.342	3.151	1.518	9.132	0.307
DOCC	9.127	3.754	2.040	0.732	9.900	13.331	4.401	3.091	1.446	9.515	0.196
PCA-CC	3.659	3.504	1.495	0.554	10.127	4.585	4.345	3.091	1.481	9.270	0.097
Proposed	2.636	3.214	1.427	0.563	9.127	3.768	4.221	3.008	1.462	8.993	0.097
Deep-WB	10.845	7.803	5.315	2.388	17.241	18.337	14.485	13.603	8.006	22.500	0.985
AWB-MIS	11.720	8.393	5.168	1.970	20.313	21.771	15.809	14.586	7.714	26.183	0.826
C5	11.793	9.620	7.115	3.225	20.213	22.196	13.632	13.246	8.956	18.980	0.086
C3A	14.472	4.359	2.296	0.926	11.497	25.860	15.588	13.563	4.065	31.013	0.037
WB-sRGB	11.734	4.933	2.644	1.176	12.395	19.606	25.362	19.694	6.360	52.935	0.334

Dataset

• The Rendered WB Dataset [2] is modified and 10528 images under illuminants

✓ Greenish, purplish, 2000K, 3500K, 4800K, 5200K, 10000K

Figure. Example from the dataset.

Table. Statistical analysis of the algorithms. For each metric the best result is highlighted. Average run time of the methods in seconds is reported in the last column.

> **UNIVERSITÄT GREIFSWALD** Wissen lockt. Seit 1456

