

Units of equivariant *K*-theory and bundles of *C**-algebras

Valerio Bianchi 14th May 2024

Cardiff University

Let X be a compact space and let \mathbb{K} denote the compact operators on a separable Hilbert space.

• There is a natural isomorphism

 δ : {Bundles over X with fiber \mathbb{K} } \rightarrow [X, BAut(\mathbb{K})] \cong H³(X, \mathbb{Z})

which is multiplicative, in the sense that

$$\delta(\mathcal{K}_1 \otimes \mathcal{K}_2) = \delta(\mathcal{K}_1) + \delta(\mathcal{K}_2)$$

- The multiplicative structure comes from the isomorphism $\mathbb{K}\otimes\mathbb{K}\cong\mathbb{K}$
- Can this be generalised?

Strongly self-absorbing C*-algebras

Definition

A separable, unital C^* -algebra D is called strongly self-absorbing if \exists an isomorphism $\psi : D \to D \otimes D$ and a continuous path $u : [0,1) \to U(D \otimes D)$ with

$$\lim_{t\to 1} \|\psi(d)-u_t(d\otimes 1_D)u_t^*\|=0.$$

Examples: \mathbb{C} , End $(V)^{\otimes \infty}$, \mathcal{O}_{∞} , \mathcal{O}_{2} , \mathcal{Z}

Topological properties:

- Aut(D) is contractible
- $K_0(D)$ is a ring
- X → K_{*}(C₀(X) ⊗ D) defines a multiplicative cohomology theory. Denote by KU^D the corresponding spectrum (for D = C we get KU^C = KU).

Definition

The space of units $GL_1(KU^D)$ is defined by the following pullback:

$$\begin{array}{ccc} \mathsf{GL}_1(\mathsf{K}U^D) & \longrightarrow & \Omega \mathsf{K}U^D_1 \\ & & & & & \\ \pi_0 & & & & & \\ \mathsf{GL}_1(\mathsf{K}_0(D)) & \longrightarrow & \mathsf{K}_0(D) \end{array}$$

- The spectrum *KU^D* also has a multiplicative structure coming from the tensor product, making it into a (commutative) ring spectrum
- It turns out that GL₁(KU^D) is actually the 0th-space of a spectrum (called the spectrum of units gl₁(KU^D)).

The homotopy type of $\mathsf{Aut}(D\otimes\mathbb{K})$

Theorem (Dadarlat-Pennig)

- $\operatorname{Aut}(D \otimes \mathbb{K})$ is an infinite loop space
- its homotopy groups are

$$\pi_i(\operatorname{Aut}(D\otimes \mathbb{K})) = egin{cases} \operatorname{GL}_1(\mathcal{K}_0(D))_+ & ext{if } i=0\ \mathcal{K}_i(D) & ext{if } i\geq 1 \end{cases}$$

• it defines a cohomology theory E_D with

 $E_D^0(X) = [X, \operatorname{Aut}(D \otimes \mathbb{K})]$ and $E_D^1(X) = [X, B\operatorname{Aut}(D \otimes \mathbb{K})]$

• and the group law coming from the infinite loop space structure coincides with the \otimes of $D\otimes \mathbb{K}\text{-bundles}$

Is E_D a known cohomology theory?

Theorem (Dadarlat-Pennig)

There is a weak homotopy equivalence

 $\operatorname{Aut}(D \otimes \mathbb{K}) \to \operatorname{GL}_1(KU^D)_+$

which lifts to a homotopy equivalence of the corresponding spectra.

• Higher Dixmier-Douady theory:

 $\{\text{Bundles}/X \text{ with fiber } D \otimes \mathbb{K}\} \cong [X, BGL_1(KU^D)_+] \cong gl_1(KU^D)_+^1(X)$

• Operator-algebraic description of higher twists of K-theory

Equivariant bundles

- Let G be a finite group and H be a countable discrete group
- Each continuous action α : G × H → Aut(D ⊗ K) gives rise to a G-equivariant bundle

$$\mathcal{A} = (E(G \times H) \times_{\alpha|_H} (D \otimes \mathbb{K})) / \sim \rightarrow B_G H$$

over the equivariant classifying space $B_G H$

• Such equivariant bundles are classified by the set

$[B_GH, BAut(D \otimes \mathbb{K})]^G$

• Meyer, Gabe and Szabó: if *D* is a Kirchberg algebra in the UCT-class, *G* trivial and *H* amenable and torsion-free then

{Out. act. of H on $D \otimes \mathbb{K}$ }/ $\sim_{cc} \cong [BH, BAut(D \otimes \mathbb{K})] \cong_{BH \text{ finite } CW} E_D^1(BH)$

- Motivated by constructions in equivariant twisted K-theory, Evans and Pennig studied the case of $G = S^1$ and $D = \text{End}(V)^{\otimes \infty}$ for V a S^1 -representation
- They found that Aut_{S1}(D ⊗ K) is still an infinite loop space, and its homotopy groups in positive even degrees are proper subgroups of K_i^G(D)
- For $G = \mathbb{Z}/p\mathbb{Z}$ (restricted action on $D = \operatorname{End}(V)^{\otimes \infty}$) we have

$$\pi_i(\operatorname{Aut}_{\mathbb{Z}/p\mathbb{Z}}(D\otimes\mathbb{K})) = \begin{cases} \operatorname{GL}_1(\mathcal{K}_0^{\mathbb{Z}/p\mathbb{Z}}(D))_+ & \text{if } i=0\\ \mathcal{K}_i^{\mathbb{Z}/p\mathbb{Z}}(D) & \text{if } i\geq 1 \end{cases}$$

• Can we repeat the story equivariantly?

- Assume the ring spectrum KU^D has a G-action (in our case, a ℤ/pℤ-action induced by the one on D ⊗ K)
- We define the space of equivariant units GL₁(KU^D) in such a way that (GL₁(KU^D))^H realises the following pullback for any H ≤ G:

$$\begin{array}{ccc} (\mathsf{GL}_1(\mathcal{K}U^D))^H \longrightarrow (\Omega\mathcal{K}U^D_1)^H \\ & & & & \\ \pi_0 & & & & \\ \pi_0 & & & & \\ \mathsf{GL}_1(\mathcal{K}^H_0(D)) \longrightarrow \mathcal{K}^H_0(D) \end{array}$$

 We show that also in the equivariant case (for a finite group G) GL₁(KU^D) is the 0th-space of a G-spectrum of units gl₁(KU^D).

Theorem (B.-Pennig)

Let $G = \mathbb{Z}/p\mathbb{Z}$ and $D = \text{End}(V)^{\otimes \infty}$. The G-spectrum coming from $\text{Aut}(D \otimes \mathbb{K})$ is homotopy equivalent to $gl_1(KU^D)_+$.

Corollary

Aut $(D \otimes \mathbb{K})$ is an infinite loop space with associated $\mathbb{Z}/p\mathbb{Z}$ -equivariant cohomology theory $E_D^*(X) = gl_1(KU^D)_+(X)$, and

 $E^0_{D,H}(X) = [X, \operatorname{Aut}(D \otimes \mathbb{K})]^H$ and $E^1_{D,H}(X) = [X, B\operatorname{Aut}(D \otimes \mathbb{K})]^H$

for $H \leq \mathbb{Z}/p\mathbb{Z}$. In particular, isomorphism classes of $\mathbb{Z}/p\mathbb{Z}$ -equivariant C^* -algebra bundles with fibres isomorphic to the $\mathbb{Z}/p\mathbb{Z}$ -algebra $D \otimes \mathbb{K}$ over the finite *CW*-complex X form a group with respect to the fibrewise tensor product that is isomorphic to $E_{D,\mathbb{Z}/p\mathbb{Z}}^1(X)$.

The case $G = \mathbb{Z}/p\mathbb{Z}$ (upcoming preprint joint with U.Pennig) is only a starting point. The following are some ideas for future work:

- Can any of this be generalised to other group actions on strongly self-absorbing C*-algebras?
 A first step would be the case D = End(V)^{⊗∞} and G a finite group.
- Is there an interpretation of the results for the case $G = S^1$ in terms of stable homotopy theory?

Thank you for your attention!