
The Logic of ∞-Category Theory

Denis-Charles Cisinski

Universität Regensburg

Greifswald, May 15, 2024

Denis-Charles Cisinski (Universität Regensburg) The Logic of ∞-Category Theory Greifswald, May 15, 2024 1 / 34



Aim of Logic

Logic serves at least two purposes in Mathematics

1 foundations for mathematics

2 subfield of mathematics, with its own methods and applications (e.g. model theory)

Logic has a rather special flavour:

very abstract and conceptual as well as extremely close to practice (Computer Science)
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Foundations of Mathematics

▶ at least include Cantor’s set theory (naive set theory)

▶ possibly include ∞-category theory (Grothendieck, Joyal, Simpson, Rezk, Lurie, Toën, Vezzosi,
Clausen, Scholze...)

▶ ideally allow an effective and complete formalization of all Mathematics

Claim:

∞-categories are not sophisticated constructions but a primitive concept
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Possible applications of formalization of ∞-category theory

▶ teaching – we can teach modern techniques in derived algebraic geometry and algebraic topology
rigorously without explaining how to construct ∞-categories within set theory; we only have to
explain how to reason with them

▶ a formalized proof is more robust: it can be checked by a computer (e.g. who can claim to have
checked the proof of the Bloch-Kato conjecture by Rost and Voevodsky in full?)

▶ a formalized proof can have new semantic interpretation, hence give new results – if we can
formalize non-trivial theorems of modern algebraic geometry (e.g. the proof of the Bloch-Kato
conjecture), there is a good chance that we will get new interesting results

▶ if ∞-category is a primitive concept in the logic underlying the formalization process, all the
constructions and results using ∞-category theory will be much easier to formalize; e.g. most of
modern (derived) algebraic geometry and a significant part of logic itself!

▶ if ∞-category is a primitive concept, then many logics becomes primitives: we have a logic of logic
that has all the expressive power of modern ∞-category theory; this will change the face of logic
and of computer science.
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ZFC

Need: formal language

Set Theory of Zermelo and Fraenkel (1908–1922, von Neumann’s axiom of foundation 1925)

Uses very few symbols: =, ∈
Very efficient: formalizes all Mathematics, avoids paradoxes
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Type Theory

Alternative, mainly introduced by Bertrand Russell:

Type Theory

▶ hygiene to avoid paradoxes (1903, Principles of Mathematics)

▶ building principle (1908, Mathematical Logic as Based on the Theory of Types)

Monumental work together with Alfred North Whitehead: Principia Mathematica (1910, 1912, 1913)
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λ-calculus

Type Theory has never been popular among mathematicians, but for logicians and computer scientists,
this is another story.

Alonzo Church revisited Type Theory in several ways

▶ simplify Russell’s axiomatic (1932–1933, A Set of Postulates for the Foundations of Logic),

▶ introduce λ-calculus, a kind of type theory, yielding the modern notion of calculable function;
Church’s 1941 monograph, The Calculi of λ-conversion, was instrumental in the development of
semantics for programming languages. λ-calculus is a major topic in theoretical Computer Science.
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Dependent Type Theory

John Cartmell introduced Generalized Algebraic Theories (1978–1986), a very general notion of
dependent type theories, and their associated contextual categories

This means the following:

a dependent type theory essentially is the language of a given category (and choices of pullbacks)

This is a very dynamical moment for type theory in logic and computer sciences, with many
fundamental contributions of Curry, Howard, de Bruijn, Tait, Scott, Girard.

During the same period (1972–1990), the swedish philosopher Per Martin-Löf also studied dependent
type theory and made several deep contributions to the theory, in particular, concerning the notion of
identity.
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Declarations

In a dependent type theory there are

contexts Γ, ∆,...

types A, B, C ,... X , Y , Z ,...

terms a, b, c ,... x , y , z ,...
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Judgements

The principle of type theory is that we want to talk about terms, and terms are always given in a given
type. E.g.

a : A means “a is a term of type A”

There are judgements. They can be of three kinds

1 Γ ⊢ A Type means “in context Γ, there is a type A”

2 Γ ⊢ x : A means “in context Γ, there is the term x of type A”

3 Γ ⊢ x ≡A y means “in context Γ, there are terms x and y of type A
and they are definitionally equal”
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Basic constructors

Examples:

▶ terms of A× B are pairs (a, b) with a : A and b : B

▶ there is a type A → B whose terms
f : A → B

are rules assigning a term f (a) : B for each term a : A

▶ there is an identity
IdA : A → A

assigning the term a : A to each a : A

▶ there is a composition law

(A → B)× (B → C ) → (A → C ) , (f , g) 7→ g ◦ f

where g ◦ f assigns to each term a : A the term g(f (a)) : C
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Curry-Howard Correspondence

The Curry-Howard correspondence is the principle that

propositions are nothing else than types

We say that ”A is true” if there exists a term a : A. In other words:

terms are proofs (in Computer Science: programs)

For instance A → B is the statement that B follows from A: indeed, if there is a term

f : A → B

then, for each term a : A, there is a term f (a) : B
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Identity Type, after Martin-Löf

In type theory, there is a way to avoid the notion of identity to be taken for granted: we can build the
theory so that it remains as agnostic as possible when it comes to determine what that means to say
that two terms are the same.
Given a type A, for each terms a and b in A, there is

a = b Type

A term
σ : a = b

is thus a proof that a and b are equal.
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Identity Type, after Martin-Löf

There are rules saying that

▶ there is a canonical proof of reflexivity
refla : a = a

▶ there is a canonical proof of symmetry

sym: (a = b) → (b = a)

▶ there is a canonical proof of transitivity

trans : (a = b)× (b = c) → (a = c)
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Equivalences

An equivalence is a map
f : A → B

such that there are maps
g : B → A and h : B → A

such that
f ◦ g = IdB and h ◦ f = IdA

are true.

There is a type “A is equivalent to B”
A ∼= B

whose terms are tuples (f , g , h, σ, τ) with f : A → B, both g and h terms of type B → A, and
σ : f ◦ g = IdB and τ : h ◦ f = IdA
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Sets

A typical interpretation of types is to see types as sets. In this case, if a is a term of A, we think of
them as elements of the set A, and we add the axiom that the type a = a is equivalent to the point.
Given a big enough regular cardinal α, let us write Set for the set of subsets of α of cardinal < α.We
define a set to be small if it is in bijection with a set that is an element of Set. We can now declare
small sets as terms

X : Set

Drawback: if X and Y are small sets, then we have two ways to identify them.
As types:

X ∼= Y whose terms are bijections from X to Y

As terms of Set:

X = Y whose terms are proofs that X and Y have the same elements

Denis-Charles Cisinski (Universität Regensburg) The Logic of ∞-Category Theory Greifswald, May 15, 2024 15 / 34



Univalence

We can interpret types as “homotopy types of spaces”, more precisely, as Kan complexes – we shall call
them spaces.

We can think of terms as points. For two terms a and b in a space X , the type x = y is the space of
paths from a to b in X . This validates Martin-Löf’s rules on identity types. The associated notion of
equivalence between types is the notion of homotopy equivalence.

During the years 2007–2009, Voevodsky introduced the univalence axiom: the existence of a type of
small types U, allowing to interpret (small) types as terms of U, so that the following holds

(Voevodsky’s Univalence Principle)

For any (small) types X and Y , we have a canonical equivalence

u : (X = Y ) ∼= (X ∼= Y )
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Homotopy Type Theory

In other words, it does not change anything to work with types or with terms of the universe. In order
to get its full strength, this principle must hold true in any context. The fact that univalence principle
holds in any context for the dependent type theory defined by the homotopy theory of Kan complexes is
a theorem of Voevodsky (2012). This has been generalized by Mike Shulman (arXiv:1904.07004): any
∞-topos in the sense of Lurie has a model that validates the axioms of Martin-Löf dependent type
theory as well as Voevodsky’s univalence principle (Homotopy Type Theory).

Homotopy Type Theory is characterized by the following properties:

1 Types are terms of a universe

2 The rule of identification of types is given by the identity type of the universe, and there is no other
way to compare types between each other
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Structure vs Properties

One drawback left in homotopy type theory: the universe is a only a type, i.e. the mere collection of all
types, as opposed to the category of types. The operation of associating A → B to each pair (A,B) is
not build in the universe.

The nature of the universe does not reflect the logic of types by itself.

Remedy: think of types as categories rather than groupoids or homotopy types. This is the purpose of
Synthetic Category Theory.

Main change: classically, when type theories are designed to axiomatize some form of theory of sets or
of homotopy types, all universal truths are stated in every context by default. In synthetic category
theory, universal truths will be stated in groupoidal contexts only (i.e. “objectwise”).
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Types as categories

From now on, we decide to call types (synthetic) categories. There are two features we should have
for this to make sense.

▶ categories have objects

▶ categories have morphisms

New notations:
Fun(A,B) = (A → B)
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Objects in a type

We introduce formally a new operator that associates to each type C its core C≃ together with the rule:

any term c : C≃ determines a term c : C

We call objects of C the terms of C≃. We call groupoids or anima those types C such that the
canonical map ı : C≃ → C is an equivalence. We postulate that C≃ always is a groupoid.

Observe that (with ∆0 the terminal type):

C≃ ∼= Fun(∆0,C )≃

We have a notion of collection of functors:

Map(A,B) = Fun(A,B)≃
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Morphisms in a type

We introduce a constant type ∆1 that represents the idea of morphisms: a morphism in C is an object
of ∆1 → C .

A morphism has a domain and a codomain. We thus postulate that there are two morphisms

0: ∆0 → ∆1 and 1: ∆0 → ∆1

Given a morphism f : ∆1 → C , we denote by x = f (0) and y = f (1), we obtain

f : x → y

in C . We write
C (x , y)

for the type of morphisms of C with domain x and codomain y .
Given x ∈ C there is

idx : ∆
1 → C

defined as the composition of ! : ∆1 → ∆0 with x : ∆0 → C .
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Segal condition

We postulate that ∆1 has enough structure to encode composition of morphisms. We assume given an
object ∆2 such that, for any i , j ∈ {0, 1, 2} any non-decreasing map

f : {0, . . . , i} → {0, . . . , j} induces f : ∆i → ∆j

(together with suitable universal properties turning all this into a property of ∆1).We assume:

Given sequence of terms of the form

f : x → y g : y ′ → z σ : y = y ′ in a type C

there is a unique sequence of terms

t : ∆2 → C τ2 : t ◦ δ2 = f τ0 : t ◦ δ0 = g (together with a compatibility with σ)

with δj : ∆
1 → ∆2 the unique map whose image does not contain j
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Composition law

This means that there is a canonical law that associates to each diagram in C of the form

y

x z

gf

a diagram in C of the form
y

x z

gf

g◦f

Hence a composition law
− ◦ − : C (y , z)× C (x , y) → C (x , z)
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Homotopy Hypothesis

We can now say when a morphism f : x → y in a type C is an isomorphism: this simply means that
there are morphisms

g : y → x and h : y → x

as well as proofs that
g ◦ f = idx and f ◦ h = idy

hold true.

A type is a groupoid if and only if all its morphisms are isomorphisms.
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Univalence revisited

In category theory, the way to compare objects is through the notion of isomorphism. Therefore, we
postulate:

For any objects x and y in a type C , there is a canonical equivalence

(x = y) ∼= C≃(x , y)

(here “canonical” means that it is completely determined by the property that it sends reflx to idx).
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Isofibrations

An isofibration is a map p : X → B with the following property.

▶ there is a dependent type: a rule that assigns to each term b : B a type X (b) (in particular, if
b = c holds, so does X (b) ∼= X (c)).

▶ a term x : X (b) is the same thing as a term x : X such that p(x) = b holds

Example

the projection p : A× B → A assigning a : A to each pair (a, b) : A× B is an isofibration.

Example

We postulate that (ev0, ev1) : Fun(∆
1,C ) → C × C is an isofibration.

Any map is a composition of an equivalence followed by an isofibration
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cocartesian morphisms

Let p : X → B be an isofibration. Given a morphism

v : b0 → b1 in B

a lift of v in X is a morphism
u : x0 → x1 in X

such that p(u) = v holds. We say that u is locally p-cocartesian if for any other lift of v of the form

u′ : x0 → x ′1 in X

there is a unique morphism w : x1 → x ′1 such that p(w) = idb1 and w ◦ v = v ′ both hold.
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cocartesian fibrations

Let p : X → B be an isofibration. We say that p is a cocartesian fibration if the following two
conditions hold:

1 for any v : b0 → b1 in B and any object x0 in X such that p(x0) = b0 holds, there is a locally
p-cocartesian lift of v of the form u : x0 → x1 in X

2 locally p-cocartesian morphisms are stable under composition in X

Example

The first projection p : A× B → A is a cocartesian fibration

Example

ev1 : Fun(∆
1,C ) → C is a cocartesian fibration

The meaning of cocartesian fibrations is that these are the isofibrations p : X → B such that each
morphism v : b0 → b1 in B induces a canonical functor v! : X (b0) → X (b1)
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Universal properties

We postulate that any object-wise construction defined by a universal property is functorial:

For any cocartesian fibration f : X → B, if each fiber Xb has a terminal object sb for each object b of
B, then f has a fully faithful right adjoint s : B → X such that s(b) = sb holds object-wise.
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Straightening/Unstraightening

We postulate that there are universes: a type Cat equipped with a cocartesian fibration

πuniv : Cat• → Cat

with the following meaning.
We think of the objects of Cat as small categories. Each object c gives rise to a type C through the

following pullback.

C Cat•

∆0 Cat

πuniv

c

If ci : Cat
≃ corresponds to type Ci , i = 0, 1, we want an equivalence

Cat(c0, c1) ∼= Fun(C0,C1)
≃
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Straightening/Unstraightening

More generally, we ask for the following property:

▶ Any cocartesian fibration with small fibers is a pullback of πuniv .

▶ For any pullbacks

Xi Cat•

B Cat

pi πuniv

fi

with i = 0, 1, there is a canonical equivalence

Fun(B,Cat)(f0, f1) ∼= coCartB(X0,X1)

where coCartB(X0,X1) is the groupoid whose objects are functors f : X0 → X1 over B that send
p0-cocartesian morphisms to p1-cocartesian morphisms.

Cat is a universe whose properties reflects faithfully all the features of synthetic category theory: it is a
semantic interpretation of synthetic category theory itself
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Semantic interpretation

Synthetic category theory is at least as sound as ZFC:

Theorem (D.-C. C. & K. Nguyen)

The theory of ∞-categories, as developed by Joyal and Lurie, is a semantic interpretation of synthetic
category theory.
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Perspectives

▶ Yoneda Lemma

▶ Existence of limits and colimits in the universe Cat

▶ pointwise Kan extensions in (co)complete categories

▶ presentable categories

▶ K -theory (what it means to count)

▶ topoi

▶ operads, higher algebra

▶ spectral/derived algebraic geometry

▶ motivic sheaves, étale cohomology, six operations

▶ ...
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