The Spectral Model for (Real) K-theory

Anupam Datta

University of Bonn

May 16, 2024

Classically, operator K-theory has involved a lot of technical play with projections and matrix algebras.

Fundamental properties like stability and long exact sequences required a lot of book-keeping.

The real picture is hardly discussed, and also one has to be careful while handling non-unital C*-algebras.

Classically, operator K-theory has involved a lot of technical play with projections and matrix algebras.

Fundamental properties like stability and long exact sequences required a lot of book-keeping.

The real picture is hardly discussed, and also one has to be careful while handling non-unital C*-algebras.

Higson and Guentner came up with a model for operator K-theory which takes care of these difficulties.

Theorem

There is a natural isomorphism

 $\mathcal{F}_A : \pi_0(\mathbb{K}(A)) \to K_0^{\mathrm{Fr}}(A)$

for unital (graded, Real) C^* -algebras.

Furthermore, when A is ungraded, there is a natural isomorphism between $K_0^{\text{Fr}}(A)$ and $K_0(A)$.

A $\mathbb{Z}/2\mathbb{Z}$ -graded Real C^{*}-algebra (A, ε, τ) is a complex C^* -algebra A equipped with a grading ε and a Real structure τ which commute, that is, $\varepsilon \circ \tau = \tau \circ \varepsilon$.

A $\mathbb{Z}/2\mathbb{Z}$ -graded Real C^{*}-algebra (A, ε, τ) is a complex C^* -algebra A equipped with a grading ε and a Real structure τ which commute, that is, $\varepsilon \circ \tau = \tau \circ \varepsilon$.

Example

 $C_0(\mathbb{R})$ becomes a $\mathbb{Z}/2\mathbb{Z}$ -graded Real C^{*}-algebra when equipped with the even-odd grading, and the Real structure given by point-wise conjugation. We denote this $\mathbb{Z}/2\mathbb{Z}$ -graded Real C^* -algebra by S .

Let A be $\mathbb{Z}/2\mathbb{Z}$ -graded (Real) C^* -algebra, and H be a graded (Real) Hilbert space. Define the spectral K-theory space of A underlying H to be the space $\mathbb{K}(A, \mathcal{H}) := \text{Hom}_{C^*}(\mathcal{S}, A \hat{\otimes} \mathcal{K}(\mathcal{H}))$, equipped with the point-norm topology.

Remark

Without the mention of the variable Hilbert space, we take it to be \hat{l}^2 . We also don't mention the Real structure everywhere, it is assumed to be there (the reader can always complexify by ignoring it)

Let D be an odd, self-adjoint operator on \hat{l}^2 with compact resolvents. Then, the functional calculus of $D, \Phi_D : \mathcal{S} \to \mathcal{K}(\hat{l}^2)$ is an element of $K(C)$. Moreover, if P_0 denotes the projection onto the kernel of D, then Φ_D and the graded homomorphism $f \mapsto f(0)P_0$ lie in the same path-component of $\mathbb{K}(\mathbf{C})$.

Let D be an odd, self-adjoint operator on \hat{l}^2 with compact resolvents. Then, the functional calculus of $D, \Phi_D : \mathcal{S} \to \mathcal{K}(\hat{l}^2)$ is an element of $K(C)$. Moreover, if P_0 denotes the projection onto the kernel of D, then Φ_D and the graded homomorphism $f \mapsto f(0)P_0$ lie in the same path-component of $\mathbb{K}(\mathbf{C})$.

Example

Let A be a graded C^* -algebra and let F be an odd, self-adjoint essentially unitary operator on $\hat{\mathcal{H}}_A$. Then, the functional calculus of F,

$$
\Phi_F: C_0(-1,1) \to \mathcal{K}(\hat{\mathcal{H}_A}) \cong A \hat{\otimes} \mathcal{K}(\hat{l^2})
$$

gives an element of $\mathbb{K}^{bd}(A)$.

Given a $\mathbb{Z}/2\mathbb{Z}$ -graded C^* -algebra A, we define its spectral K-theory groups to be the homotopy groups of $K(A)$ at the basepoint $\underline{0}$. That is, we define $K_i^{sp}(A) := \pi_i(\mathbb{K}(A), \underline{0})$.

Fredholm picture of K-theory

Definition

A Fredholm cycle over A is a triple (\mathcal{E}, ι, F) , where (\mathcal{E}, ι) is a countably generated $\mathbb{Z}/2\mathbb{Z}$ -graded Hilbert A- module and F is an odd, self-adjoint Fredholm operator on it.

A Fredholm cycle over A is a triple (\mathcal{E}, ι, F) , where (\mathcal{E}, ι) is a countably generated $\mathbb{Z}/2\mathbb{Z}$ -graded Hilbert A- module and F is an odd, self-adjoint Fredholm operator on it.

Definition

Two Fredholm cycles $(\mathcal{E}_0, \iota_0, F_0)$ and $(\mathcal{E}_1, \iota_1, F_1)$ are said to be concordant (denoted $(\mathcal{E}_0, \iota_0, F_0) \sim (\mathcal{E}_1, \iota_1, F_1)$) if there exists (\mathcal{E}, ι, F) , a Fredholm cycle over $\hat{A} \hat{\otimes} C[0, 1]$ such that $(\mathcal{E} \hat{\otimes}_{ev_i} A, ev_i(\iota) ev_i(F)) \cong (\mathcal{E}_i, \iota_i, F_i)$ for $i = 0, 1$, where $ev_t: A[0,1] \to A$ is the graded homomorphism given by $ev_t(f) = f(t).$

A Fredholm cycle over A is a triple (\mathcal{E}, ι, F) , where (\mathcal{E}, ι) is a countably generated $\mathbb{Z}/2\mathbb{Z}$ -graded Hilbert A- module and F is an odd, self-adjoint Fredholm operator on it.

Definition

Two Fredholm cycles $(\mathcal{E}_0, \iota_0, F_0)$ and $(\mathcal{E}_1, \iota_1, F_1)$ are said to be concordant (denoted $(\mathcal{E}_0, \iota_0, F_0) \sim (\mathcal{E}_1, \iota_1, F_1)$) if there exists (\mathcal{E}, ι, F) , a Fredholm cycle over $\hat{A} \hat{\otimes} C[0, 1]$ such that $(\mathcal{E} \hat{\otimes}_{ev_i} A, ev_i(\iota) ev_i(F)) \cong (\mathcal{E}_i, \iota_i, F_i)$ for $i = 0, 1$, where $ev_t: A[0,1] \to A$ is the graded homomorphism given by $ev_t(f) = f(t).$

Definition

Denote by $K_0^{\text{Fr}}(A)$ the abelian monoid of concordance classes of Fredholm cycles over A.

Let A be a unital and ungraded C^* -algebra, and let \mathcal{E}, \mathcal{F} be finitely generated projective A-modules. Then, $(\mathcal{E} \oplus \mathcal{F}, \tau_{\mathcal{E},\mathcal{F}}, 0)$ is a Fredholm cycle over A.

Let A be a unital and ungraded C^* -algebra, and let \mathcal{E}, \mathcal{F} be finitely generated projective A-modules. Then, $(\mathcal{E} \oplus \mathcal{F}, \tau_{\mathcal{E},\mathcal{F}}, 0)$ is a Fredholm cycle over A.

Example

Let A be a graded C^* -algebra, and (\mathcal{E}, ι) a graded countably generated Hilbert module over A. Let $\varphi: C_0(-1, 1) \to \mathcal{K}(\mathcal{E})$ be a non-degenerate \ast -homomorphism. Then, φ extends to a unital ∗-homomorphism $\tilde{\varphi}: C[-1,1] \to \mathcal{B}(\mathcal{E})$, and $(\mathcal{E}, \iota, \tilde{\varphi}(x))$ is a Fredholm cycle over A

Theorem

There is a natural isomorphism

$$
\mathcal{F}_A: \pi_0(\mathbb{K}^{bd}(A)) \to K_0^{eu}(A)
$$

for unital (graded, Real) C^* -algebras.

Definition of \mathcal{F}_A :

 $\mathbb{K}^{\text{bd}}(A) \ni \varphi \longrightarrow (\varphi(C_0(-1,1))\hat{\mathcal{H}_A}, \tilde{\varphi}(x)) \in K_0^{\text{eu}}(A)$

Theorem

There is a natural isomorphism

$$
\mathcal{F}_A: \pi_0(\mathbb{K}^{\text{bd}}(A)) \to K_0^{\text{eu}}(A)
$$

for unital (graded, Real) C^* -algebras.

Definition of \mathcal{F}_A : $\mathbb{K}^{\text{bd}}(A) \ni \varphi \longrightarrow (\varphi(C_0(-1,1))\hat{\mathcal{H}_A}, \tilde{\varphi}(x)) \in K_0^{\text{eu}}(A)$

Besides injectivity and surjectivity, well-definedness needs to checked too!

Thank You!