E-theory is compactly assembled

Ulrich Bunke Benjamin Dünzinger

A functor $F: C^*\mathbf{Alg}^{\mathrm{nu}} \to \mathcal{C}$ with \mathcal{C} cocomplete and stable is

• homotopy invariant, if $\forall A : F(A) \xrightarrow{\simeq} F(C(I, A))$,

- homotopy invariant, if $\forall A : F(A) \xrightarrow{\simeq} F(C(I, A))$,
- \mathcal{K} -stable, if $\forall A : F(A) \xrightarrow{\simeq} F(A \otimes \operatorname{colim}_n \operatorname{Mat}_n(\mathbb{C})),$

- homotopy invariant, if $\forall A : F(A) \xrightarrow{\simeq} F(C(I, A))$,
- \mathcal{K} -stable, if $\forall A : F(A) \xrightarrow{\simeq} F(A \otimes \operatorname{colim}_n \operatorname{Mat}_n(\mathbb{C})),$
- exact, if $F(0) \simeq 0$ and for all ses $A \to B \to C$ the image $FA \to FB \to FC$ is exact,

- homotopy invariant, if $\forall A : F(A) \xrightarrow{\simeq} F(C(I, A))$,
- \mathcal{K} -stable, if $\forall A : F(A) \xrightarrow{\simeq} F(A \otimes \operatorname{colim}_n \operatorname{Mat}_n(\mathbb{C})),$
- exact, if $F(0) \simeq 0$ and for all ses $A \to B \to C$ the image $FA \to FB \to FC$ is exact,
- \aleph_1 -accessible, if F preserves \aleph_1 -filtered colimits.

- homotopy invariant, if $\forall A : F(A) \xrightarrow{\simeq} F(C(I, A))$,
- \mathcal{K} -stable, if $\forall A : F(A) \xrightarrow{\simeq} F(A \otimes \operatorname{colim}_n \operatorname{Mat}_n(\mathbb{C})),$
- exact, if $F(0) \simeq 0$ and for all ses $A \to B \to C$ the image $FA \to FB \to FC$ is exact,
- \aleph_1 -accessible, if F preserves \aleph_1 -filtered colimits.

A functor $F: C^*\mathbf{Alg}^{\mathrm{nu}} \to \mathcal{C}$ with \mathcal{C} cocomplete and stable is

- homotopy invariant, if $\forall A : F(A) \xrightarrow{\simeq} F(C(I,A))$,
- \mathcal{K} -stable, if $\forall A : F(A) \xrightarrow{\simeq} F(A \otimes \operatorname{colim}_n \operatorname{Mat}_n(\mathbb{C})),$
- exact, if $F(0) \simeq 0$ and for all ses $A \to B \to C$ the image $FA \to FB \to FC$ is exact,
- \aleph_1 -accessible, if F preserves \aleph_1 -filtered colimits.

Definition

E-theory is a functor $e: C^*\mathbf{Alg^{nu}} \to E$ with E in $\mathrm{Pr}^L_{\mathrm{st}}$ satisfying $h, \mathcal{K}, \mathrm{ex}, \aleph_1$, such that

$$\operatorname{Fun}^{L}(E,\mathcal{C}) \underset{e^{*}}{\overset{\simeq}{\longrightarrow}} \operatorname{Fun}^{h,\mathcal{K},\operatorname{ex},\aleph_{1}}(C^{*}\mathbf{Alg}^{\operatorname{nu}},\mathcal{C}),$$

for all \mathcal{C} in $\mathrm{Pr}^L_{\mathrm{st}}$.

Remark

• $\operatorname{map}_{E}(e(\mathbb{C}), e(-)) \simeq K$

Remark

- $\operatorname{map}_{E}(e(\mathbb{C}), e(-)) \simeq K$
- $\operatorname{Ind}_{\aleph_1}(C^*\mathbf{Alg}^{\mathrm{nu}}_{\mathrm{sep}}) \simeq C^*\mathbf{Alg}^{\mathrm{nu}}$ implies

$$\operatorname{Fun}^{h,\mathcal{K},\operatorname{ex},\aleph_1}(C^*\mathbf{Alg}^{\operatorname{nu}},\mathcal{C})\simeq\operatorname{Fun}^{h,\mathcal{K},\operatorname{ex}}(C^*\mathbf{Alg}^{\operatorname{nu}}_{\operatorname{sep}},\mathcal{C}).$$

Definition

 \mathcal{C} in Cat^{\aleph_0} is compactly assembled, if it is a retract of $\mathrm{Ind}(\mathcal{C}_0)$ for a small category \mathcal{C}_0 .

Definition

 $\mathcal C$ in $\operatorname{Cat}^{\aleph_0}$ is compactly assembled, if it is a retract of $\operatorname{Ind}(\mathcal C_0)$ for a small category $\mathcal C_0$.

Remark

 $\mathcal C$ in \Pr^L : $\mathcal C$ is compactly assembled $\Leftrightarrow \mathcal C$ is a retract of a compactly generated category in \Pr^L

Definition

 $\mathcal C$ in $\operatorname{Cat}^{\aleph_0}$ is compactly assembled, if it is a retract of $\operatorname{Ind}(\mathcal C_0)$ for a small category $\mathcal C_0$.

Remark

 $\mathcal C$ in \Pr^L : $\mathcal C$ is compactly assembled $\Leftrightarrow \mathcal C$ is a retract of a compactly generated category in \Pr^L

Theorem (Bunke-D.)

E is compactly assembled.

Definition

 \mathcal{C} in Cat^{\aleph_0} is compactly assembled, if it is a retract of $\mathrm{Ind}(\mathcal{C}_0)$ for a small category \mathcal{C}_0 .

Remark

 $\mathcal C$ in \Pr^L : $\mathcal C$ is compactly assembled $\Leftrightarrow \mathcal C$ is a retract of a compactly generated category in \Pr^L

Theorem (Bunke-D.)

E is compactly assembled.

Proof.

• $\mathcal{C} \to \mathcal{D}$ BL with \aleph_0 -accessible right adjoints: If \mathcal{C} is cas \Rightarrow \mathcal{D} is cas

Definition

 \mathcal{C} in Cat^{\aleph_0} is compactly assembled, if it is a retract of $\mathrm{Ind}(\mathcal{C}_0)$ for a small category \mathcal{C}_0 .

Remark

 $\mathcal C$ in \Pr^L : $\mathcal C$ is compactly assembled $\Leftrightarrow \mathcal C$ is a retract of a compactly generated category in \Pr^L

Theorem (Bunke-D.)

E is compactly assembled.

Proof.

- $\mathcal{C} \to \mathcal{D}$ BL with \aleph_0 -accessible right adjoints: If \mathcal{C} is cas \Rightarrow \mathcal{D} is cas
- There exists

$$\operatorname{Ind}(C^*\mathbf{Alg}^{\operatorname{nu}}_{\operatorname{sep,h}}) \to \bullet \to \bullet \to E,$$

a sequence of BL with accessible right adjoints.

• Efimov:

• Efimov:

• *K*(*E*)

• Efimov:

- *K*(*E*)
- $K(KU) \to K(Mod(KU)) \to K(E)$