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Definition
E-theory is a functor e : C*Alg™ — E with E in Prk
satisfying h, K, ex, X1, such that

Fun’ (E,C) 5; Fun//.exf (C*Alg™,(C),
e

for all C in PrL.
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Remark
* mapp(e(C),e(-)) ~ K
e Indy, (C*Algll) ~ C*Alg™ implies

sep

Fun/»/eoR (C*Alg" () ~ Funh’K’eX(C*Alg;leup7 C).
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e There exists

Ind(C*Alggy,,) — ¢ — e — E,

a sequence of BL with accessible right adjoints.
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Why?

e Efimov:
Catpeer—;Sp
I
|
Prg®
* K(E)

o K(KU) — K(Mod(KU)) — K(E)



