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Trivia about the project

Started working on coarse geometry in 2015.

A (conservative) count finds 19 papers on the arXiv totalling
1367 pages and 7 different co-authors1.
Quote from the first notes (dating back to November 2015):
There is no interesting homotopy theory on coarse spaces.

1L. Caputi, D.-Ch. Cisinski, D. Kasprowski, M. Land, M. Ludewig, Ch. Winges
and myself.
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Main achievement of the project

In my opinion, the main achievement of the project is to provide
axioms for coarse homology theories that work well:

Many examples, e.g. coarse versions of
ordinary homology,
topological and algebraic K -homology,
A-homology,
Hochschild and cyclic homology.

Non-trivial results:
Comparison of coarse homology theories.
Construction of coarse assembly maps and corresponding
isomorphism results.

Equivariant theory gives results on the Baum–Connes and
Farrell–Jones conjectures.
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Coarse structures

Definition
A coarse structure on the set X is a collection C of subsets of
X × X (called entourages) such that:

The diagonal of X is an entourage.
C is closed under finite unions and subsets.
C is closed under flipping

U 7→ U−1 := {(y , x) : (x , y) ∈ U}

and composition

U ◦ V := {(x , y) : ∃z ∈ X with (x , z) ∈ U and (z, y) ∈ V}.
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Metric coarse structure

Example

Let (X ,d) be a metric space. Its canonically associated coarse
structure is the one generated by the entourages

Ur := {(x , y) : d(x , y) ≤ r}

for all r ∈ [0,∞).

Remark
I think about a coarse space (X , C) in the following way:

If E ∈ C is an entourage, then (x , y) ∈ E means to me that ”the
distance from x to y is at most E.“
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Coarse maps

Definition
Call a subset B of a coarse space (X , C) bounded, if B × B is
an entourage.

Actually, we consider bornologies as a separate structure on our
spaces and demand that the coarse and bornological structures
are compatible with each other.

Definition
A map f : X → Y between coarse spaces is

controlled, if f × f maps entourages to entourages,
proper, if preimages under f of bounded sets are bounded.

We call f a coarse map, if it is controlled and proper.
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Close maps and coarse equivalences

If X and Y are metric spaces, then a controlled map f : X → Y
is not necessarily continuous.

The appropriate notion of ”isomorphisms“ in coarse geometry is
the following one:

Definition
f ,g : X → Y are close to each other, if {(f (x),g(x)) : x ∈ X} is
an entourage of Y .

f : X → Y is a coarse equivalence, if there exists an h : Y → X
such that f ◦h and h◦ f are close to the respective identity maps.
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Main example

Example
Let M be, say, a closed manifold (equipped with any Riemannian
metric) and denote by X its universal cover. Then, up to coarse
equivalence, we have the following:

X can be discretized.
Concretely, it is coarsely equivalent to π1(M).
X can (often) be made contractible.
Concretely, it is coarsely equivalent to Eπ1(M).a

aProvided Bπ1(M) has a finite model.
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Axioms for coarse homology theories

Let M be a cocomplete stable∞-category and E : Coarse→ M
be a functor.

Definition
E is a coarse homology theory provided

E is coarsely invariant,
E is excisive,
E annihilates flasque spaces,
E is u-continuous.
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Flasque spaces

Definition
A coarse space X is flasque, if it admits a self-map f : X → X
such that

f is close to idX ,
f is non-expanding, i.e. for every entourage U of X the union⋃

n∈N(f n × f n)(U) is again an entourage,
f shifts X to infinity, i.e. for every bounded set B ⊂ X exists
an n ∈ N such that B ∩ f n(X ) = ∅.

Example

The ray [0,∞) is flasque.
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u-Continuity

If U is any entourage of a coarse space X , we can consider the
new coarse space XU with a (possibly) smaller coarse structure:
The one generated just by U.

We have colimXU = X and the u-continuity axiom demands that
this holds for a coarse homology theory: colimE(XU)

'−→ E(X ).

My interpretation for this is the following: Every cycle of a coarse
homology theory has a ”propagation“.
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Coarsification via Rips complexes

Let U be an entourage of X . Define the Rips complex PU(X ) as
the simplicial complex whose simplices are exactly those whose
vertices are at distance at most U from each other.

We have inclusions of subcomplexes PU(X )→ PV (X ) if U ⊂ V .

Definition
If E top is a locally finite homology theory, define its coarsification

Ecoarse(X ) := colimU E top(PU(X )).

Nota that if X is (suitably) contractible, then PU(X ) will be prop-
erly homotopy equivalent to X and hence Ecoarse(X ) ∼= E top(X ).
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Cone functors

Let (X ,d) be a metric space. Define the cone O(X ) as [1,∞)×X
with the metric given by t · d on a slice {t} × X .2

If Ecoarse is a coarse homology theory, define the corresponding
topological theory by

E top(X ) := Ecoarse(O(X ),X ).

2This is an ad hoc definition for this talk. The actual def’n is more technical.
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Coarse assembly

Give a coarse homology theory E , we get a new coarse homol-
ogy theory Eas by first turning E into a topological theory and
then back into a coarse one again, i.e.

Eas(X ) = colimU E(O(PU(X )),PU(X )).

This comes with a natural transformation Eas → ΣE , the coarse
assembly map.
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Wrong way maps

Theorem (E. 2017)
Let M be a closed manifold and N ↪→ M a submanifold of codi-
mension q. Assume that the normal bundle of N is oriented, that
Λ := π1(N) injects in G := π1(M), and πi(M) = 0 for 2 ≤ i ≤ q.

Then there exists a ”nice“ map H∗(BG)→ H∗−q(BΛ).

Proof.

H∗(BG)

∼=
��

H∗−q(BΛ)

∼=
��

HXG
∗ (EG) HXG

∗ (M̃)
∼=oo // HX Λ

∗−q(Ñ)
∼= // HX Λ

∗−q(EΛ)
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Thanks for your attention and

Happy birthday Uli!
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