Introduction Coarse geometry Bridges

### **Coarse Geometry**

#### Jun.-Prof. Dr. Alexander Engel

Universität Greifswald

#### From Analysis to Homotopy Theory A conference in honor of Ulrich Bunke's 60th birthday

Introduction Coarse geometry Bridges

Trivia Main achievement

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 \_ のへで

#### Trivia about the project

• Started working on coarse geometry in 2015.

### Trivia about the project

- Started working on coarse geometry in 2015.
- A (conservative) count finds 19 papers on the arXiv totalling 1367 pages and 7 different co-authors<sup>1</sup>.

<sup>&</sup>lt;sup>1</sup>L. Caputi, D.-Ch. Cisinski, D. Kasprowski, M. Land, M. Ludewig, Ch. Winges and myself.

### Trivia about the project

- Started working on coarse geometry in 2015.
- A (conservative) count finds 19 papers on the arXiv totalling 1367 pages and 7 different co-authors<sup>1</sup>.
- Quote from the first notes (dating back to November 2015): There is no interesting homotopy theory on coarse spaces.

<sup>&</sup>lt;sup>1</sup>L. Caputi, D.-Ch. Cisinski, D. Kasprowski, M. Land, M. Ludewig, Ch. Winges and myself.

Introduction Coarse geometry Bridges

Trivia Main achievement

### Main achievement of the project

#### Main achievement

# Main achievement of the project

- Many examples, e.g. coarse versions of
  - ordinary homology,
  - topological and algebraic K-homology,
  - A-homology,
  - Hochschild and cyclic homology.

#### Trivia Main achievement

# Main achievement of the project

- Many examples, e.g. coarse versions of
  - ordinary homology,
  - topological and algebraic K-homology,
  - A-homology,
  - Hochschild and cyclic homology.
- Non-trivial results:
  - Comparison of coarse homology theories.
  - Construction of coarse assembly maps and corresponding isomorphism results.

#### Trivia Main achievement

# Main achievement of the project

- Many examples, e.g. coarse versions of
  - ordinary homology,
  - topological and algebraic K-homology,
  - A-homology,
  - Hochschild and cyclic homology.
- Non-trivial results:
  - Comparison of coarse homology theories.
  - Construction of coarse assembly maps and corresponding isomorphism results.
- Equivariant theory gives results on the Baum–Connes and Farrell–Jones conjectures.

### Coarse structures

#### Definition

A coarse structure on the set *X* is a collection  $\mathcal{C}$  of subsets of  $X \times X$  (called entourages) such that:

- The diagonal of X is an entourage.
- C is closed under finite unions and subsets.
- $\mathscr{C}$  is closed under flipping

$$U\mapsto U^{-1}\coloneqq \{(y,x)\colon (x,y)\in U\}$$

and composition

 $U \circ V \coloneqq \{(x, y) \colon \exists z \in X \text{ with } (x, z) \in U \text{ and } (z, y) \in V\}.$ 

### Metric coarse structure

#### Example

Let (X, d) be a metric space. Its canonically associated coarse structure is the one generated by the entourages

$$U_r \coloneqq \{(x, y) \colon d(x, y) \le r\}$$

< 日 > < 同 > < 回 > < 回 > < □ > <

for all  $r \in [0, \infty)$ .

### Metric coarse structure

#### Example

Let (X, d) be a metric space. Its canonically associated coarse structure is the one generated by the entourages

$$U_r \coloneqq \{(x, y) \colon d(x, y) \le r\}$$

for all  $r \in [0, \infty)$ .

#### Remark

I think about a coarse space  $(X, \mathcal{C})$  in the following way:

If  $E \in \mathscr{C}$  is an entourage, then  $(x, y) \in E$  means to me that "the distance from x to y is at most E."

#### Coarse maps

#### Definition

Call a subset *B* of a coarse space  $(X, \mathcal{C})$  bounded, if  $B \times B$  is an entourage.

< 日 > < 同 > < 回 > < 回 > < □ > <

э

### Coarse maps

#### Definition

Call a subset *B* of a coarse space  $(X, \mathcal{C})$  bounded, if  $B \times B$  is an entourage.

Actually, we consider bornologies as a separate structure on our spaces and demand that the coarse and bornological structures are compatible with each other.

### Coarse maps

#### Definition

Call a subset *B* of a coarse space  $(X, \mathcal{C})$  bounded, if  $B \times B$  is an entourage.

Actually, we consider bornologies as a separate structure on our spaces and demand that the coarse and bornological structures are compatible with each other.

#### Definition

A map  $f: X \rightarrow Y$  between coarse spaces is

• controlled, if f × f maps entourages to entourages,

• proper, if preimages under f of bounded sets are bounded. We call f a coarse map, if it is controlled and proper.

#### Close maps and coarse equivalences

If *X* and *Y* are metric spaces, then a controlled map  $f: X \to Y$  is not necessarily continuous.

#### Close maps and coarse equivalences

If X and Y are metric spaces, then a controlled map  $f: X \to Y$  is not necessarily continuous.

The appropriate notion of "isomorphisms" in coarse geometry is the following one:

#### Definition

 $f,g: X \to Y$  are close to each other, if  $\{(f(x),g(x)): x \in X\}$  is an entourage of Y.

 $f: X \to Y$  is a coarse equivalence, if there exists an  $h: Y \to X$  such that  $f \circ h$  and  $h \circ f$  are close to the respective identity maps.

### Main example

#### Example

Let M be, say, a closed manifold (equipped with any Riemannian metric) and denote by X its universal cover. Then, up to coarse equivalence, we have the following:

< 日 > < 同 > < 回 > < 回 > < □ > <

- X can be discretized.
   Concretely, it is coarsely equivalent to π<sub>1</sub>(M).
- X can (often) be made contractible.
   Concretely, it is coarsely equivalent to Eπ<sub>1</sub>(M).<sup>a</sup>

<sup>*a*</sup>Provided  $B\pi_1(M)$  has a finite model.

### Axioms for coarse homology theories

Let M be a cocomplete stable  $\infty\text{-category}$  and  $E\colon \textbf{Coarse}\to M$  be a functor.

(日)

#### Definition

*E* is a coarse homology theory provided

- E is coarsely invariant,
- E is excisive,
- E annihilates flasque spaces,
- E is u-continuous.

### Flasque spaces

#### Definition

A coarse space X is flasque, if it admits a self-map  $f \colon X \to X$  such that

- f is close to id<sub>X</sub>,
- *f* is non-expanding, i.e. for every entourage *U* of *X* the union  $\bigcup_{n \in \mathbb{N}} (f^n \times f^n)(U)$  is again an entourage,
- *f* shifts X to infinity, i.e. for every bounded set B ⊂ X exists an n ∈ N such that B ∩ f<sup>n</sup>(X) = Ø.

#### Example

The ray  $[0,\infty)$  is flasque.



### *u*-Continuity

If *U* is any entourage of a coarse space *X*, we can consider the new coarse space  $X_U$  with a (possibly) smaller coarse structure: The one generated just by *U*.

### *u*-Continuity

If *U* is any entourage of a coarse space *X*, we can consider the new coarse space  $X_U$  with a (possibly) smaller coarse structure: The one generated just by *U*.

We have  $\operatorname{colim} X_U = X$  and the *u*-continuity axiom demands that this holds for a coarse homology theory:  $\operatorname{colim} E(X_U) \xrightarrow{\simeq} E(X)$ .

### *u*-Continuity

If *U* is any entourage of a coarse space *X*, we can consider the new coarse space  $X_U$  with a (possibly) smaller coarse structure: The one generated just by *U*.

We have  $\operatorname{colim} X_U = X$  and the *u*-continuity axiom demands that this holds for a coarse homology theory:  $\operatorname{colim} E(X_U) \xrightarrow{\simeq} E(X)$ .

My interpretation for this is the following: Every cycle of a coarse homology theory has a "propagation".

Introduction Passing between topology and coarse geometry Coarse geometry Coarse assembly Bridges Application

### Coarsification via Rips complexes

Let *U* be an entourage of *X*. Define the Rips complex  $P_U(X)$  as the simplicial complex whose simplices are exactly those whose vertices are at distance at most *U* from each other.

We have inclusions of subcomplexes  $P_U(X) \rightarrow P_V(X)$  if  $U \subset V$ .

Introduction Passing between topology and coarse geometry Coarse geometry Coarse assembly Bridges Application

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

### Coarsification via Rips complexes

Let *U* be an entourage of *X*. Define the Rips complex  $P_U(X)$  as the simplicial complex whose simplices are exactly those whose vertices are at distance at most *U* from each other.

We have inclusions of subcomplexes  $P_U(X) \rightarrow P_V(X)$  if  $U \subset V$ .

#### Definition

If  $E^{\mathrm{top}}$  is a locally finite homology theory, define its coarsification

$$E^{\operatorname{coarse}}(X) \coloneqq \operatorname{colim}_U E^{\operatorname{top}}(P_U(X)).$$

Introduction Passing between topology and coarse geometry Coarse geometry Coarse assembly Bridges Application

### Coarsification via Rips complexes

Let *U* be an entourage of *X*. Define the Rips complex  $P_U(X)$  as the simplicial complex whose simplices are exactly those whose vertices are at distance at most *U* from each other.

We have inclusions of subcomplexes  $P_U(X) \rightarrow P_V(X)$  if  $U \subset V$ .

#### Definition

If  $E^{\mathrm{top}}$  is a locally finite homology theory, define its coarsification

$$E^{\operatorname{coarse}}(X) \coloneqq \operatorname{colim}_U E^{\operatorname{top}}(P_U(X)).$$

Nota that if X is (suitably) contractible, then  $P_U(X)$  will be properly homotopy equivalent to X and hence  $E^{\text{coarse}}(X) \cong E^{\text{top}}(X)$ .



### Cone functors

Let (X, d) be a metric space. Define the cone  $\mathcal{O}(X)$  as  $[1, \infty) \times X$  with the metric given by  $t \cdot d$  on a slice  $\{t\} \times X$ .<sup>2</sup>

<sup>2</sup>This is an ad hoc definition for this talk. The actual def'n is more technical.

### Cone functors

Let (X, d) be a metric space. Define the cone  $\mathcal{O}(X)$  as  $[1, \infty) \times X$  with the metric given by  $t \cdot d$  on a slice  $\{t\} \times X$ .<sup>2</sup>

If  $E^{\rm coarse}$  is a coarse homology theory, define the corresponding topological theory by

$$E^{\mathrm{top}}(X) \coloneqq E^{\mathrm{coarse}}(\mathscr{O}(X), X).$$

<sup>&</sup>lt;sup>2</sup>This is an ad hoc definition for this talk. The actual def'n is more technical.

### Coarse assembly

Give a coarse homology theory E, we get a new coarse homology theory  $E^{as}$  by first turning E into a topological theory and then back into a coarse one again, i.e.

$$E^{\mathrm{as}}(X) = \operatorname{colim}_U E(\mathcal{O}(P_U(X)), P_U(X)).$$

This comes with a natural transformation  $E^{\rm as} \rightarrow \Sigma E$ , the coarse assembly map.

 Introduction
 Passing between topology and coarse geometry

 Coarse geometry
 Coarse assembly

 Bridges
 Application

### Wrong way maps

#### Theorem (E. 2017)

Let *M* be a closed manifold and  $N \hookrightarrow M$  a submanifold of codimension *q*. Assume that the normal bundle of *N* is oriented, that  $\Lambda := \pi_1(N)$  injects in  $G := \pi_1(M)$ , and  $\pi_i(M) = 0$  for  $2 \le i \le q$ .

Then there exists a "nice" map  $H_*(BG) \to H_{*-q}(B\Lambda)$ .

 Introduction
 Passing between topology and coarse geometry

 Coarse geometry
 Coarse assembly

 Bridges
 Application

### Wrong way maps

#### Theorem (E. 2017)

Let *M* be a closed manifold and  $N \hookrightarrow M$  a submanifold of codimension *q*. Assume that the normal bundle of *N* is oriented, that  $\Lambda := \pi_1(N)$  injects in  $G := \pi_1(M)$ , and  $\pi_i(M) = 0$  for  $2 \le i \le q$ .

Then there exists a "nice" map  $H_*(BG) \to H_{*-q}(B\Lambda)$ .

#### Proof.

Introduction Coarse geometry Bridges

#### Thanks for your attention and

# Happy birthday Uli!

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 の < @