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A Little Story 2/11

Principal ∞-bundles are defined (1207.0248, 2308.04196).
The notion of connection is more subtle to define and existing
definitions suffer from FAKE FLATNESS.
Physists have constructed many non-trivial examples of higher
gauge theory, specially, in the context of M-theory, heterotic
supergravity and gauged supergravities (see the survey
2401.05275 for encyclopedia of Mathematical Physics).
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This Talk 3/11

In this talk, I reformulate the notion of connection on principal
bundles and only state the result for other cases.
I will work in the cocycle description. In particular, this leads
to Giraud’s non-abelian cohomology topologically.
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Principal Bundles’ Classifying Space 4/11

Given a Lie group G, the corresponding classifying space BG is the
Lie groupoid G ⇒ ⋆. In particular, any principal G-bunlde over a
smooth manifold X is given by an open cover σ = {Ui} and a
functor, F : Č (σ) → BG, from the corresponding Čech groupoid to
the classifying space. Taking limit on the category of open covers
gives you the Giraud’s non-abelian cohomology.
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Severa Differentiation 5/11

Severa Differentiation
Given a Lie group G, the corresponding dg-manifld g is defined as
the representation of the presheaf
Hom(i(−)× Pair(Θ),BG) : NQMfds → Sets, (arXiv:0612349).

In the defintion above, the map i : NQMfds → NQGrps considers an
NQ-manifold trivially as a NQ-groupoid, Θ is the shifted real line.

Local Connection
Locally a connection is a dg-map T[1]X → T[1]g. A dg-map
T[1]X → g is a flat connection.
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Extended Severa Differentiation 6/11

We lift the definition of differentiation to inner hom.

Extend Severa Differentiation
Given a a Lie group G, the corresponding dg-Lie groupoid A (G) is
defined as the representation of the 2-presheaf
Hom(−× Pair(Θ),BG) : NQGrps → Grps. Obviously
Ob(A (G)) = g.

Indeed, we calculate that A (G) is

g× T [1]G

g
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Principal bundles with Flat Connection 7/11

Theorem
Principal G-bundles with flat connections are classified by A (G).
In other words BG con

f = A (G).

More precisely, Principal G-bundles with flat connections are
classified with an open cover σ and a dg-functor
ω : T [1]Č (σ) → A (G), gauge transformations are also dg-natural
transformations.
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Principal bundles with Connection 8/11

definition
The classifying space BGcon is a dg Lie groupod such that

Ob(BGcon) = T[1]g.
there is a dg functor F : A (G) → BGcon.
the dg-map F0 : Ob(A (G)) = g → Ob(BGcon) = T[1]g is the
canonical one.
the diagram

Mor(A (G)) Mor(BGcon)

g T[1]g

F1

t t

F0

is a pullback diagram.
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Theorem
The dg-Lie groupoid BGcon exists and is unique. In paricular, it is
given by

T [1]g× T [1]G

T [1]g

Mehran Jalali Farahani Higher Gauge Theory



Conclisions 10/11

In the case of Lie 2-groups, One can construct examples using
adjustment datum which is used in the literature to construct
non-abelian gauge theory avoiding fake flatness (arXiv:
2203.00092).
In the case of Lie groupoids, One can construct examples
using Cartan connections on Lie groupoids.
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Thanks for your attention.
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