Graded T-duality with H-flux for $2d$ $\sigma\text{-models}$

1. Topological T-duality with H-flux

3. Graded T-duality for 2d *σ***-models**

Fei Han

National University of Singapore

From Analysis to Homotopy Theory A conference in honor of Uli's 60th birthday May 13-17, 2024@Greifswald

1. Topological T-duality with H-flux 2. Double **3. Graded T-duality for 2d** *σ***-models**

joint with Varghese Mathai :

F. Han and V. Mathai, *T-duality with H-flux for 2d σ-models*, arXiv :2207.03134.

Developed from and motivated by the following papers as well as the papers listed in the Reference :

1. [A] M. F. Atiyah, *Circular symmetry and stationary-phase approximation*, Astérisque, 131 (1985), 43-59.

2. [B] J-M. Bismut, *Index theorem and equivariant cohomology on the loop space*, Comm. Math. Phys. 98 (1985), no. 2, 213-237.

3. [BEM] P. Bouwknegt, J. Evslin and V. Mathai, *T-duality : Topology Change from H-flux*, Comm. Math. Phys. 249 (2004), 383-415.

1. Topological T-duality with H-flux
2. Double loop spaces and *T*-holonomy line bundles **2. Double loop spaces and** *τ***-holonomy line bundles 3. Graded T-duality for 2d** *σ***-models**

Topological T-duality with H-flux

Consider such a pair :

$$
(Z, A, H) \qquad (\widehat{Z}, \widehat{A}, \widehat{H})
$$

$$
\pi \searrow \qquad \qquad X
$$

 Z and \widehat{Z} are principal circle bundles over a manifold $X;$ *A* and \hat{A} are connections on them respectively ; H is a background flux, i.e. a closed 3-form on Z with $\mathbb Z$ periods, and similarly for *H*b

subject to the following relations :

$$
\pi_!(H) = F^{\widehat{A}}, \quad \widehat{\pi}_!(\widehat{H}) = F^A,
$$

ively. . a letter to a let F^A and F^A are curvatures of *A* and \widehat{A} respectively. **Graded T-du**

Topological T-duality with H-flux

$$
(Z, A, H) \qquad (\widehat{Z}, \widehat{A}, \widehat{H})
$$

$$
\pi \searrow \qquad X
$$

$$
\pi_!(H) = F^{\widehat{A}}, \quad \widehat{\pi}_!(\widehat{H}) = F^A
$$

the model of topological T-duality with H-flux

More generally, there is the model of pair of principal torus bundles

Topological T-duality with H-flux

Related to the *Strominger-Yau-Zaslow Conjecture* concerning realization of Calabi–Yau manifolds and their mirrors as torus bundles over same base, proposed in their paper *Mirror Symmetry is T-duality*.

Foundational work on topological T-duality by Bunke, Schick, Nikolaus, Waldorf...

 $\overline{\mathrm{Topological}}$ T-duality with H-flux

For the T-dual pair with H-flux,

$$
(Z, A, H) \qquad (\widehat{Z}, \widehat{A}, \widehat{H})
$$

$$
\pi \searrow \chi^{\widehat{\pi}}
$$

$$
\pi_!(H) = F^{\widehat{A}}, \quad \widehat{\pi}_!(\widehat{H}) = F^A
$$

several dual results, to just name a few, have been proved, verify or coincide with predictions of physicists :

Topological T-duality with H-flux

(1) Twisted cohomology

Let M be a smooth manifold, ω a closed 3 form on M . Consider the twisted de Rham complex

$$
(\Omega^*(M), d+\omega)
$$

and the cohomology of this complex $H^*(M, \omega)$. They are \mathbb{Z}_2 -graded.

In the case of $M = Z$ and $\omega = H$,

 $G \in \Omega^{\bullet}(\mathbb{Z})^{\mathbb{T}}$, the total RR fieldstrength,

 $G \in \Omega^{even}(Z)^{\mathbb{T}}$ for Type IIA; $G \in \Omega^{odd}(Z)^{\mathbb{T}}$ for Type IIB.

Topological T-duality with H-flux

To relate the Z and $\widehat Z$ sides, a fundamental construction is the correspondence space

Topological T-duality with H-flux

In [BEM], it shows that the Hori map

(1)
$$
T_H G = \int_{\mathbb{T}} e^{A \wedge \widehat{A}} G,
$$

a Fermionic Fourier transformation through the correspondence space, gives

 $T_H: \Omega^{\bar{k}}(Z)^{\mathbb{T}} \to \Omega^{\overline{k+1}}(\widehat{Z})^{\widehat{\mathbb{T}}},$

for $k = 0, 1$, (where \bar{k} denotes the parity of k) is isomorphism, inducing isomorphism on twisted cohomology groups,

$$
T_H: H^*(Z, H) \xrightarrow{\cong} H^{*+1}(\widehat{Z}, \widehat{H}).
$$

Topological T-duality with H-flux

(2) Twisted K-theory

Let M be a smooth manifold, ω a closed 3 form on M with integral period. Then one has the twisted *K*-theory $K(M, \omega)$.

There were vast development of twisted *K*-theory by the work of Donovan-Karoubi, Atiyah-Segal, Freed-Hopkins-Teleman.

The twisted Chern classes for twisted K-theory have been studied by Atiyah-Segal (using Atiyah-Hirzebruch spectral sequence), Bouwknegt-Carey-Mathai-Murray-Stevenson (Chern-Weil theory).

Quantization of the twisted Chern class lead to the Mathai-Melrose-Singer *Fractional Index Theory* in the torsion case.

In particular, there is a twisted Chern character map :

 $\mathrm{Ch}_\omega: K^*(M,\omega) \to H^*(M,\omega).$ **Fei Han Graded T-duality with H-flux for** 2*d σ***-models**

1. Topological T-duality with H-flux 3. Graded T-duality for 2d *σ***-models**

D-brane charges in Type IIA String theory are classified by twisted K-theory $K^0(Z, H)$ and in Type IIB String theory are classified by twisted K-theory $K^1(Z, H)$ (Bouwknegt-Mathai 2000, Bouwknegt-Carey-Mathai-Murray-Stevenson 2002)

In [BEM], using the correspondence space, it shows that there is an isomorphism

 T_K : $K^*(Z, H) \to K^{*+1}(\hat{Z}, \hat{H}),$

and moreover, there is commutative diagram,

(2)
$$
K^*(Z, H) \xrightarrow{T_K} K^{*+1}(\hat{Z}, \hat{H})
$$

\n C_{h_H} \n \downarrow \n $H^*(Z, H) \xrightarrow{T_H} H^{*+1}(\hat{Z}, \hat{H})$

Fei Han Graded T-duality with H-flux for

. .

 $.990$

Topological T-duality with H-flux

(3) Loop space perspective

Atiyah-Witten-Bismut's work ([A], [B]) studied equivariant cohomolgy of free loop spaces, and formally realized the Atiyah-Singer index theory as fixed point theory on free loop spaces.

Indicates that T-duality with *H*-flux and the Hori formulae for spacetime should be a shadow of T-duality and Hori formulae for loop space of spacetime.

Along this free loop space perspective, we mention some work :

A. Linshaw and V. Mathai, *Twisted Chiral De Rham Complex, Generalized Geometry, and T-duality*, Comm. Math. Phys., 339, No. 2, (2015).

 $\Box \rightarrow \neg \left(\frac{\partial}{\partial \theta} \right) \rightarrow \neg \left(\frac{\partial}{\partial \theta} \right) \rightarrow \neg \left(\frac{\partial}{\partial \theta} \right) \rightarrow \neg \left(\frac{\partial}{\partial \theta} \right)$. . F. Han and V. Mathai, *Exotic twisted equivariant cohomology of loop spaces, twisted Bismut-Chern character and T-duality*, Comm. Math. Phys., 337, no. 1, (2015) 127–150.

 $.990$ **Fei Han Graded T-duality with H-flux for** 2*d σ***-models**

Topological T-duality with H-flux

We highlight that, mathematically we obtained a delocalization of the twisted cohomology $H^*(Z, H)$, from Z , the S^1 -fixed point set of LZ , to *LZ*,

$$
Z\!\rightsquigarrow LZ
$$

$$
H^*(Z, H) \stackrel{\cong}{\longrightarrow} H^*(LZ, \mathcal{L}_H),
$$

where \mathcal{L}_H is the holonomy line bundle on the loop space LZ arising from the flux or gerbe *H* on *Z*.

Natural Questions : (1) what's the data on the double loop space *LLZ* arising from the flux or gerbe *H* on *Z* ? (2) is there a delocalization from *Z* to the double loop space *LLZ* ?

 $Z \rightarrow LLZ$?

Topological T-duality with H-flux

(4) Double loop spaces perspective

The main topic for this talk.

Double loop the T-dual pair, we have the following picture :

 $\Box \rightarrow \neg \left(\frac{\partial}{\partial \theta} \right) \rightarrow \neg \left(\frac{\partial}{\partial \theta} \right) \rightarrow \neg \left(\frac{\partial}{\partial \theta} \right)$ $.990$ where T^2 is the 2-dimensional torus, $C^{\infty}(T^2, Z) = LLZ$ is the double loop space, $C^{\infty}(T^2, Z)^H$ is certain circle bundle over the double loop space, τ is a modular parameter, $(\mathcal{L}_{H,\tau}, \nabla^{\mathcal{L}_{H,\tau}})$ is the average *τ* -holonomy line bundle with a canonical connection. Similarly notations on the dual side.

Fei Han Graded T-duality with H-flux for 2*d σ***-models**

Topological T-duality with H-flux

We will explain the notations in more details later, construct some complexes from the objects $(\mathcal{L}_{H,\tau}, \nabla^{\mathcal{L}_{H,\tau}}) \to C^{\infty}(T^2, Z)^H$ and establish the T-dual map between the Z side and \hat{Z} side.

This result in some sense is the *T*-duality with *H*-flux for $2d \sigma$ -model, answering a question of Hori.

Double loop spaces

To study T-duality from the perspective of 2d, joint with Mathai, we give relevant constructions and discover some properties on double loop spaces.

A. we introduce the double loop Bryinski cover for *M* : ${U_{\alpha}}$: maximal open cover of *M* with the property that $H^{i}(U_{\alpha_{I}}) = 0$ for $i \geq 3$, where $U_{\alpha} = \bigcap_{i \in I} U_{\alpha_i}, |I| < \infty$.

In fact, let $x: T^2 \to M$ be a smooth loop in M and U_x a tubular neighbourhood of *x* in *M*. $\{LLU_x, x \in \overrightarrow{L}M\}$ covers $\overrightarrow{L}LM$.

Double loop spaces

B. we construct various transgression maps or averaging maps :

Let *ev* is the evaluation map

$$
ev: LLM \times T^2 \to M: (x, s, t) \mapsto x(s, t),
$$

we have the double transgression map :

$$
\mu_{1,2} : \Omega^{\bullet}(\mathsf{U}_{\alpha_I}) \longrightarrow \Omega^{\bullet-2}(LL\mathsf{U}_{\alpha_I})
$$

defined by

$$
\mu_{1,2}(\xi_I) = \int_{T^2} ev^*(\xi_I), \qquad \xi_I \in \Omega^{\bullet}(\mathsf{U}_{\alpha_I}).
$$

Double loop spaces

we have the averaging after transgression map :

$$
\overline{\mu_1}^2 : \Omega^{\bullet}(\mathsf{U}_{\alpha_I}) \longrightarrow \Omega^{\bullet-1}(LL\mathsf{U}_{\alpha_I})
$$

defined by

$$
\overline{\mu_1}^2(\xi_I) = \int_{S^1} \left(\int_{S^1} e v^*(\xi_I) \right) dt, \qquad \xi_I \in \Omega^{\bullet}(\mathsf{U}_{\alpha_I}),
$$

i.e. integrate *ev[∗]* (*ξI*) along the first circle and then average along the second circle. Similarly, one has

$$
\overline{\mu_2}^1 : \Omega^{\bullet}(\mathsf{U}_{\alpha_I}) \longrightarrow \Omega^{\bullet-1}(LL\mathsf{U}_{\alpha_I}).
$$

Double loop spaces

Let $\omega \in \Omega^i(M)$. One also has the double loop averaging map

$$
\overline{\overline{\omega}} := \int_{T^2} e v^*(\omega) \, ds \wedge dt \in \Omega^i(LLM).
$$

Clearly $L_{K_i} \overline{\overline{\omega}} = 0, i = 1, 2$. Moreover it is not hard to see that

$$
d\overline{\overline{\omega}} = \overline{d\omega}, \quad \mu_{1,2}(\omega) = \iota_{K_2}\iota_{K_1}\overline{\overline{\omega}}.
$$

In addition to evaluation map (3), there are also partial evaluation maps

 $ev_1: LLM \times S^1 \to LM$, $(x, s) \mapsto x(s, *),$

$$
ev_2: LLM \times S^1 \to LM, \quad (x, t) \mapsto x(*, t),
$$

and certain projections from double loops to one loops

$$
\pi_i:LLM \to LM, \ i=1,2
$$

defined by $\pi_1 = ev_2|_{t=0}$, i.e restriction to the first circle and $\pi_2 = ev_1|_{s=0}$, i.e restriction to the second circle. $\pi_2 = ev_1|_{s=0}$, i.e restriction to the second circle. $\Box \rightarrow \Box \oplus \rightarrow \Box \oplus \Box$

C. we construct the average holonomy line bundle on the double loop space arising from the following data.

Suppose *M* carries a gerbe with connection $(H, B_{\alpha}, F_{\alpha\beta}, (L_{\alpha\beta}, \nabla^{L_{\alpha\beta}}))$, with $H \in \Omega^3(M), B_\alpha \in \Omega^2(\mathsf{U}_\alpha)$ and $(L_{\alpha\beta}, \nabla^{L_{\alpha\beta}})$ being a complex line bundle over $\mathsf{U}_{\alpha\beta} = \mathsf{U}_{\alpha} \cap \mathsf{U}_{\beta}$ such that

H = dB_{α} on U_{α} , $B_{\beta} - B_{\alpha} = F_{\alpha\beta} = (\nabla^{L_{\alpha\beta}})^2$ on $U_{\alpha} \cap U_{\beta}$, $(L_{\alpha\beta}, \nabla^{L_{\alpha\beta}}) \otimes (L_{\beta\gamma}, \nabla^{L_{\beta\gamma}}) \otimes (L_{\gamma\alpha}, \nabla^{L_{\gamma\alpha}}) \simeq (\mathbb{C}, d)$ on $\mathsf{U}_{\alpha} \cap \mathsf{U}_{\beta} \cap \mathsf{U}_{\gamma}$.

Double loop spaces

Let $\mathcal L$ be the holonomy line bundle on LM arising from H .

Let $\tau \in \mathbb{H}$, the upper half plane. This means now we consider the complex structures on the source $T^2 \to M$.

Roughly speaking, our construction of the *τ* -average holonomy line bundle is to make sense of the following line bundle over *LLM*

 $\pi_1^*(\mathcal{L}) \otimes \pi_2^*(\mathcal{L})^{\otimes \tau},$

i.e. $\pi_1^*(\mathcal{L})\otimes$ tensored with the "*τ*-th power" of $\pi_2^*(\mathcal{L})^{\otimes \tau}$, similar to $a + b\tau \in \mathbb{C}$.

Unfortunately, since τ is not an integer, but a complex number with positive imaginary part, $\pi_2^*(\mathcal{L})^{\otimes \tau}$ does not make sense.

In the following, we will explain a situation that can make sense out of this. Let *ξ* be a complex line bundle over a manifold *X*.

Let $\mathfrak{U} = \{U_{\alpha}\}\$ be an open good cover of *X*. Let $\{g_{\alpha\beta}\}\$ be a system of $U(1)$ -valued transition functions w.r.t \mathfrak{U} . This gives us a closed Cech cocycle $\{\theta_{\alpha\beta}\}\$ valued in \mathbb{R}/\mathbb{Z} by taking $\theta_{\alpha\beta} = \frac{1}{2\pi i} \ln g_{\alpha\beta}$ in the $\arg \text{ument interval } [0, 2\pi)$. So $\{\theta_{\alpha\beta}\}\in C^1(\mathfrak{U}, \mathbb{R}/\mathbb{Z})$.

Double loop spaces

Let

$$
0 \to \mathbb{Z} \to \mathbb{R} \to \mathbb{R}/\mathbb{Z} \to 0
$$

be the obvious exact sequence. It is not hard to show that

(1) $\{\theta_{\alpha\beta}\}\)$ can lifted as the image of a Cech cocyle in $C^1(\mathfrak{U}, \mathbb{R}) \iff \xi$ is trivial.

(2) Different liftings differ by δc for some $c \in C^1(\mathfrak{U}, \mathbb{Z})$.

Let ξ be trivial and $\eta_{\alpha\beta} \in C^1(\mathfrak{U}, \mathbb{R})$ be a lifting of $\{\theta_{\alpha\beta}\}$. Then we can consider the C-valued functions $\{e^{2\pi i\tau\eta_{\alpha\beta}}\}$, which satisfying

 $e^{2\pi i \tau \eta_{\alpha\beta}} \cdot e^{2\pi i \tau \eta_{\beta\gamma}} \cdot e^{2\pi i \tau \eta_{\gamma\alpha}} = 1$

and therefore glues us a complex line bundle over *X*. One can consider it as the τ -th power of ξ . One may think of this construction by taking $\tau = \frac{1}{n}$, $n \in \mathbb{Z}$ and the construction of an *n*-th root of ξ .

Double loop spaces

Let us come back to the double loop space. Although $\pi_2^*(\mathcal{L})^{\otimes \tau}$ does not make sense, but suppose

$$
p: \mathcal{S} \rightarrow {\cal L} {\cal L} {\cal M}
$$

be the circle bundle of $\pi_2^*(\mathcal{L})$, the pull back $p^*(\pi_2^*(\mathcal{L}))$ is a trivial bundle over *S*. Then $p^*(\pi_2^*(\mathcal{L}))^{\otimes \tau}$ makes sense as explained above. So on S , we have the line bundle

$$
p^*(\pi_1^*(\mathcal{L})) \otimes p^*(\pi_2^*(\mathcal{L}))^{\otimes \tau}.
$$

This is just the $\tau\text{-average holonomy}$ line bundle we are going to construct.

Double loop spaces

1. Topological T-duality with H-flux 2. Double loop spaces and *τ***-holonomy line bundles 3. Graded T-duality for 2d** *σ***-models**

Note that on LLM , there is the T^2 -action. Hence we have to give a T^2 -invariant transition function for the line bundle

$$
p^*(\pi_1^*(\mathcal{L})) \otimes p^*(\pi_2^*(\mathcal{L}))^{\otimes \tau}.
$$

To achieve this, we have to give $(K_1 + \tau K_2)$ -invariant transition functions for this line bundle, which we will explain in the following.

Double loop spaces

1. Topological T-duality with H-flux 2. Double loop spaces and *τ***-holonomy line bundles 3. Graded T-duality for 2d** *σ***-models**

For any double loop $x \in LL\cup_{\alpha} \cap LL\cup_{\beta}$, i.e. $x: T^2 \to \cup_{\alpha\beta}$, denote the holonomy of the $\nabla^{L_{\alpha\beta}}$ along the *K*₁-direction of by $hol^{\hat{I}}$, which is a function of *t*; and the holonomy of the $\nabla^{L_{\alpha\beta}}$ along the *K*₂-direction by *hol*² , which is a function of *s*.

Consider the function on $LLU_{\alpha} \cap LLU_{\beta}$

$$
g_{\alpha\beta} := e^{\overline{\ln ho l_{\alpha_\beta}^1}^2} \cdot e^{\tau \overline{\ln ho l^2}_{\alpha_\beta}^1}.
$$

Note here for $\ln h \circ l^1$, it is continuously defined for $t \in [0, 1)$, and for ln *hol*², it is continuously defined for $s \in [0, 1)$.

Double loop spaces

$$
L_{K_1+\tau K_2} g_{\alpha\beta}
$$

\n
$$
=L_{K_1+\tau K_2} \left(e^{\frac{\ln ho l_{\alpha\beta}^1}{h_o l_{\alpha\beta}}} \cdot e^{\tau \ln ho l_{\alpha\beta}^1}\right)
$$

\n
$$
=e^{\frac{\ln ho l_{\alpha\beta}^1}{h_o l_{\alpha\beta}}} \cdot e^{\tau \ln ho l_{\alpha\beta}^1} [L_{\tau K_2} \overline{\ln ho l_{\alpha\beta}}^2 + L_{K_1} \tau \overline{\ln ho l_{\alpha\beta}^1}]
$$

\n
$$
=e^{\frac{\ln ho l_{\alpha\beta}^1}{h_o l_{\alpha\beta}}} \cdot e^{\tau \overline{\ln ho l_{\alpha\beta}^1}} [\tau \overline{K_2} \overline{\ln ho l_{\alpha\beta}^1}^2 + \tau \overline{K_1} \overline{\ln ho l_{\alpha\beta}^1}]
$$

\n
$$
=e^{\frac{\overline{\ln ho l_{\alpha\beta}^1}}{h_o l_{\alpha\beta}}} \cdot e^{\tau \overline{\ln ho l_{\alpha\beta}^1}} \tau \overline{L_{K_2} d \ln ho l_{\alpha\beta}^1}^2 + \overline{\iota_{K_1} d \ln ho l_{\alpha\beta}^1}^1
$$

\n
$$
=e^{\frac{\overline{\ln ho l_{\alpha\beta}^1}}{h_o l_{\alpha\beta}}} \cdot e^{\tau \overline{\ln ho l_{\alpha\beta}^1}} \tau \left[\overline{\iota_{K_2} \iota_{K_1} \overline{F_{\alpha\beta}}^1}^2 + \overline{\iota_{K_1} \iota_{K_2} \overline{F_{\alpha\beta}}^2}^1\right]
$$

\n
$$
=e^{\frac{\overline{\ln ho l_{\alpha\beta}^1}}{h_o l_{\alpha\beta}}} \cdot e^{\tau \overline{\ln ho l_{\alpha\beta}^1}} \tau \left[\iota_{K_1} \iota_{K_2} \overline{F_{\alpha\beta}} + \iota_{K_2} \iota_{K_1} \overline{F_{\alpha\beta}}^1\right]
$$

\n=0.

So $g_{\alpha\beta}$ is $(K_1 + \tau K_2)$ -invariant.

. **Fei Han Graded T-duality with H-flux for** 2*d σ***-models**

Double loop spaces

Denote

$$
h_{\alpha\beta\gamma} := g_{\alpha\beta} g_{\beta\gamma} g_{\gamma\alpha}.
$$

On the triple intersection $LLU_{\alpha} \cap LLU_{\beta} \cap LLU_{\gamma}$,

$$
hol_{\alpha\beta}^i hol_{\beta\gamma}^i hol_{\gamma\alpha}^i = 1, \ i = 1, 2.
$$

Hence $\ln hol_{\alpha\beta}^i + \ln hol_{\beta\gamma}^i + \ln hol_{\gamma\alpha}^i \in 2\pi i\mathbb{Z}$. As $\ln hol_{\delta}^i$ are continuously defined, one must have

(3)
$$
h_{\alpha\beta\gamma} = e^{2\pi i m_{\alpha\beta\gamma}\tau}
$$

for some $m_{\alpha\beta\gamma} \in \mathbb{Z}$, where $\{m_{\alpha\beta\gamma}\}$ forms the Cech cocycle representing $\pi_2^*(c_1(\mathcal{L}_B))$ in $H^2(LLM,\mathbb{Z})$ with $c_1(\mathcal{L}_B)$ being the first Chern class of the holonomy line bundle \mathcal{L}_B on LM arising from the ω on *M*.

Double loop spaces

Let $p : S_B \to LM$ be the circle bundle of the line bundle $\mathcal{L}_B \to LM$. Then $p^* \mathcal{L}_B$ is a trivial line bundle over \mathcal{S}_B . Hence the class $p^*(c_1(\mathcal{L}_B))$ be 0 on \mathcal{S}_B . Therefore $\tilde{\pi}_2^* \circ p^*(c_1(\mathcal{L}_B))$ is 0 on $p^* \mathcal{S}_B$, the pulled back circle bundle over *LLM*.

 \mathcal{S}_B

p

ľ

For simplicity, in the sequel we will denote the total space p^*S_B by LLM^{ω} , which carries the induced T^2 -action arising from LLM .

> Using ${g_{\alpha\beta}}$, after some treatment on LLM^{ω} , we can construct a complex line bundle $\mathcal{L}_{B,\tau}$ on LLM^{ω} , which we call average *τ* -holonomy line bundle, which also carries a canonical connection $\nabla^{\mathcal{L}_{B,\tau}}$ out from the *B*-field.

Double loop spaces

D. Equivariantly super flatness

Denote by $\Omega_{bas}^{\bullet}(LLM^{\omega}, \mathcal{L}_{H,\tau})$ the space of basic differential forms on *LLM^ω* with values in the average *τ*-holonomy line bundle $\mathcal{L}_{B,\tau}$. Here basic form means that contracted with vertical tangent vectors gives 0. Let u be an indeterminate such that deg $u = 2$. Consider the odd operator

 $Q_{B,\tau} := \nabla^{\mathcal{L}_{B,\tau}} - u \iota_{K_1 + \tau K_2} + u^{-1} \tilde{p}^* \overline{\omega}$

which acts on $\Omega^{\bullet}(LLM^{\omega}, \mathcal{L}_{B,\tau})_{bas}[[u, u^{-1}]].$

Double loop spaces

Theorem (H.-Mathai)

The following identities hold,

$$
\frac{1}{2}[Q_{B,\tau}, Q_{B,\tau}] = Q_{B,\tau}^2 = -uL_{K_1 + \tau K_2}^{\mathcal{L}_{B,\tau}}, \quad [Q_{B,\tau}, -uL_{K_1 + \tau K_2}^{\mathcal{L}_{B,\tau}}] = 0,
$$

where $L_{K_1+\tau K_2}^{\mathcal{L}_{B,\tau}}$ *is the Lie derivative along the direction* $K_1+\tau K_2$ *.*

So the odd operator $Q = Q_{B,\tau}$ and the even operator $P = -uL_{K_1+\tau K_2}^{\mathcal{L}_{B,\tau}}$ obey the relations

$$
\frac{1}{2}[Q, Q] = P, [Q, P] = 0
$$

of the superalgebra considered in Witten's paper *Supersymmetry and Morse theory*.

Double loop spaces

E. Localization

The above theorem tells us there is a complex

 $(\Omega_{bas}^{\bullet}(LLM^{\omega}, \mathcal{L}_{B,\tau})^{K_1+\tau K_2}[[u, u^{-1}]], Q_{B,\tau}).$

Note that the zeros of the complex vector field $K_1 + \tau K_2$ are T^2 -fixed points of *LLM*, i.e.*M*. We have the Borel-Witten type localization :

Theorem (H.-Mathai)

Let $i : M \times S^1 \to LLM^{\omega}$ be the inclusion map. Then the restriction map i^* : $(\Omega_{bas}^{\bullet}(LLM^{\omega}, \mathcal{L}_{B,\tau})^{K_1+\tau K_2}[[u, u^{-1}]], Q_{B,\tau})$ $\to (\Omega^{\bullet}_{bas}(M\times S^1)[[u, u^{-1}]], d+u^{-1}p^*\omega) \cong (\Omega^{\bullet}(M)[[u, u^{-1}]], d+u^{-1}\omega)$ *is a quasi-isomorphism,* $\forall \tau \in \mathbb{H}$.

> . . **Fei Han Graded T-duality with H-flux for** 2*d σ***-models**

.

. .

Now we apply our theory on double loop spaces to study T-duality from the perspective of 2d Recall that we have the T-dual pair with H-flux :

$$
(Z, A, H) \qquad (\widehat{Z}, \widehat{A}, \widehat{H})
$$

$$
\pi \searrow \qquad X
$$

$$
\pi_!(H) = F^A, \quad \widehat{\pi}_!(\widehat{H}) = F^A
$$

Double loop the T-dual pair, we have the following picture :

. **Fei Han Graded T-duality with H-flux for** 2*d σ***-models**

 \equiv 990

A sheaf over upper half plane H

For the pair (Z, H) , define a sheaf $(G(C^{\infty}(T^2, Z)^{H}, \mathcal{L}_H), \mathcal{Q}_H)$ on \mathbb{H} of commutative differential graded algebras that to $U \subset \mathbb{H}$ assigns the graded complex of $\mathcal{O}(U)$ -modules

$$
(G(C^{\infty}(T^2, Z)^H, \mathcal{L}_H)(U), \mathcal{Q}_H)
$$

 :=
$$
\bigoplus_{m \in \mathbb{Z}} \left(\mathcal{O}(U; \Omega_{bas}^{\bullet, \mathbb{T}}(C^{\infty}(T^2, Z)^H, \mathcal{L}_{H,\tau}^{\otimes m})[[u, u^{-1}]]^{K_1 + \tau K_2}) \cdot y^m, Q_{m, \tau} \right),
$$

where $\mathcal{O}(U; \Omega_{bas}^{\bullet, \mathbb{T}}(C^{\infty}(T^2, Z)^H, \mathcal{L}_{H,\tau}^{\otimes m})[[u, u^{-1}]]^{K_1 + \tau K_2})$ means i.e for each $\tau \in U$, one assigns to it an element in $\Omega_{bas}^{\bullet, \mathbb{T}}(\mathbb{C}^{\infty}(\mathbb{T}^2, Z)^{H}, \mathcal{L}_{H,\tau}^{\bar{\otimes}m})[[u, u^{-1}]]^{K_1+\tau K_2}$. Dually, one can also define the sheaf $(G(C^{\infty}(T^2, \widehat{Z})^H, \mathcal{L}_{\widehat{H}}), \mathcal{Q}_{\widehat{H}}).$

Note that we have assembled mH for $m \in \mathbb{Z}$, i.e. we consider the graded version. Here *y* is a formal variable to keep track of the level *m* by y^m .

Passing to cohomology, we get the sheaves $\mathcal{G}(C^{\infty}(T^2, Z)^H, \mathcal{L}_H)$ and $G(C^{\infty}(T^2, \hat{Z})^H, \mathcal{L}_{\hat{H}})$. The localisation theorem tells us that the restriction maps

 $res: \mathcal{G}(C^{\infty}(T^2, Z)^H, \mathcal{L}_H) \to \mathcal{G}(Z, H), \ \ \widehat{res}: \mathcal{G}(C^{\infty}(T^2, \widehat{Z})^H, \mathcal{L}_{\widehat{H}}) \to \mathcal{G}(\widehat{Z}, \widehat{H})$

are isomorphisms of sheaves.

In a previous work joint with Mathai, we constructed the **graded Hori morphisms** between the sheaves

 $GHor_*:(G(Z,H), D^H)\to (G(\widehat{Z},\widehat{H}), D^H), \; GHor:\mathcal{G}(Z,H)\to \mathcal{G}(\widehat{Z},\widehat{H}).$

$$
\widehat{GHor} _*: (\mathrm{G}(\widehat{Z},\widehat{H}),D^{\widehat{H}})\rightarrow (\mathrm{G}(Z,H),D^H),\ \widehat{GHor}:\mathcal{G}(\widehat{Z},\widehat{H})\rightarrow \mathcal{G}(Z,H).
$$

and showed that they send Jacobi forms to Jacobi forms.

Now we construct the **graded Hori morphisms for** $2d \sigma$ **-models** by

$$
GHor^{\sigma} := \widehat{res}^{-1} \circ GHor \circ res : \mathcal{G}(C^{\infty}(T^2, Z)^H, \mathcal{L}_H) \to \mathcal{G}(C^{\infty}(T^2, \widehat{Z})^{\widehat{H}}, \mathcal{L}_{\widehat{H}}),
$$

$$
\widehat{GHor}^{\sigma} := res^{-1} \circ \widehat{GHor} \circ \widehat{res} : \mathcal{G}(C^{\infty}(T^2, \widehat{Z})^{\widehat{H}}, \mathcal{L}_{\widehat{H}}) \to \mathcal{G}(C^{\infty}(T^2, Z)^H, \mathcal{L}_H),
$$

assembled in the following commutative diagram,

$$
\begin{array}{c}\mathcal{G}(C^{\infty}(T^{2},Z)^{H},\mathcal{L}_{H})\xleftarrow[G\overline{H}\overline{\sigma^{\sigma}}]{G\overline{H}\sigma^{\sigma}}\mathcal{G}(C^{\infty}(T^{2},\widehat{Z})^{\widehat{H}},\mathcal{L}_{\widehat{H}})\\ \downarrow^{res\cong} \qquad\qquad \downarrow^{res\cong} \qquad\qquad \downarrow^{res\cong} \\ \mathcal{G}(Z,H)\xleftarrow[\overline{G\overline{H}\sigma}]{G\overline{H}\sigma^{\sigma}}\mathcal{G}(\widehat{Z},\widehat{H})\end{array}
$$

Theorem (H.-Mathai)

One has

(6)
$$
\widehat{GHor}^{\sigma} \circ GHor^{\sigma} = -y \frac{\partial}{\partial y}, \quad GHor^{\sigma} \circ \widehat{GHor}^{\sigma} = -y \frac{\partial}{\partial y}.
$$

. **Fei Han Graded T-duality with H-flux for** 2*d σ***-models**

. . . .

References

1. E. Witten, *Supersymmetry and Morse theory*. J. Differential Geom., **17** no.4(1983) 661-692.

2. A. Strominger, S.T. Yau and E. Zaslow, *Mirror symmetry is T-duality*, Nuclear Physics B Volume 479, Issues 1–2, 11 November 1996, Pages 243-259.

3. K. Hori and C. Vafa, *Mirror symmetry*, hep-th/0002222.

4. F. Han and V. Mathai, *Exotic twisted equivariant cohomology of loop spaces, twisted Bismut-Chern character and T-duality*, Comm. Math. Phys., 337, no. 1, (2015) 127–150.

5. Linshaw and V. Mathai, *Twisted Chiral De Rham Complex, Generalized Geometry, and T-duality*, Comm. Math. Phys., 339, No. 2, (2015).

. **Fei Han Graded T-duality with H-flux for** 2*d σ***-models***Modules*, Adv. Theo. Math. Phys., 25 no. 5 (2021) 1235-1266. . . $.990$ 6. F. Han and V. Mathai, *T-Duality, Jacobi Forms and Witten Gerbe*

1. Topological T-duality with H-flux 3. Graded T-duality for 2d *σ***-models**

Happy Birthday, Uli !

