Stable equivalence relations of 4-manifolds

Daniel Kasprowski joint with John Nicholson and Simona Veselá

University of Southampton

May 17, 2024

arXiv:2405.06637

(重)

 $\mathcal{P}Q$

4 0 K

Stable equivalence relations

All manifolds are smooth, orientable, closed and connected.

An equivalence relation \sim is stable if

 $M \sim M \#(S^n \times S^n)$

Examples:

- · Stable diffeomorphism is du 4
- · Stable homeomorphism
- Homotopy equivalence up to stabilisations
- Existence of K, K' 1-connected such that $M\#K \cong M'\#K'$ (σ Immersion equivalence $(\int_{0}^{1} x^{2} \times S^{2} \times S^{4})$)

Ξ

 Ω

Stable diffeomorphism

May 17, 2024

The normal $(n-1)$ -type of M is an *n*-coconnected map $\xi: B \rightarrow BSO$ such that there exists an *n*-connected map $\widetilde{\nu}$: $M \rightarrow B$ lifting the stable normal bundle ν : $M \rightarrow BSO$. Any such lift $\widetilde{\nu}$ is called a normal $(n-1)$ -smoothing.

Theorem (Kreck)

Two 2n-manifolds are stably diffeomorphic if they have the same normal $(n-1)$ -type and admit bordant normal $(n-1)$ -smoothings.

Theorem (Kreck)

Two 2n-manifolds are stably diffeomorphic if they have the same normal $(n-1)$ -type and admit bordant normal $(n-1)$ -smoothings.

In particular, every $A \leq \Omega_{2n}(\xi)$ gives rise to a stable equivalence relation. Is there a geometric meaning of these equivalence relations?

Given a stable equivalence relation that implies that M and M' have the same normal $(n-1)$ -type ξ , is there a subgroup A of $\Omega_{2n}(\xi)$ such the relation holds if and only if there are normal $(n - 1)$ -smoothings $\widetilde{\nu}, \widetilde{\nu}'$ such that

$$
(M,\widetilde{\nu}]-[M',\widetilde{\nu}']\in A\leq \Omega_4(\xi)?
$$

- 4 로 ▶ - 로

 Ω

Normal 1-types of 4-manifolds

- $\bullet \ \pi := \pi_1(M)$
- If M is not spin, then the normal 1-type of M is $pr_2: B\pi \times BSO \rightarrow BSO.$
- If M is spin, the normal 1-type of M is $B\pi \times BSpin \rightarrow BSO$, where the map is the projection to *BSpin* followed by the canonical map to BSO.
- If \tilde{M} is spin, but M is not, the normal 1-type is a twisted version of $B\pi \times BSpin \rightarrow BSO$.

 $C^{\text{2}}U = L(1)$

 DQQ

◀ □ ▶ ◀ 何 ▶ ◀ 三 ▶ ◀ 三 ▶ │ 三 │

The totally non-spin case

 \bullet Assume \dot{M} is not spin.

• We have

$$
\Omega_4^{SO}(B\pi)\cong\mathbb{Z}\oplus\mathsf{H}_4(\pi;\mathbb{Z}).\\\llbracket c\colon M\to B\pi\rrbracket\mapsto(\sigma(M),c_*[M])
$$

- The signature and $c_*[M]$ are homotopy invariants. Hence homotopy equivalence up to stabilisations is the same as stable diffeomorphism.
- There exist K, K' simply connected such that

 $M\#K \cong M'\#K'$

Add O^{2'}'s
to mele
size the same

if and only if $c_*[M] = c'_*[M] \in H_4(\pi;\mathbb{Z})/\text{Out}(\pi)$.

(重)

 DQQ

(□) (何) (三) (三) 。

The spin case

In the spin case we have to understand $\Omega_4^{spin}(B\pi)$.

$$
\frac{n}{\Omega_{n}^{spin}} \frac{0}{\mathbb{Z}} \frac{1}{\mathbb{Z}/2} \frac{2}{\mathbb{Z}/2} \frac{3}{0} \frac{4}{\mathbb{Z}/2}
$$
\n
$$
AHSS H_{p}(\tau_{j} \Omega_{q}^{\mathbf{p}_{r}}) \implies \Omega_{p_{r_{r_{r}}}}^{\mathbf{p}_{r}} (\mathbb{B}_{\tau})
$$
\n
$$
\gamma_{ie}U_{s} \quad \text{a} \quad \int_{\mathbb{C}} \text{Lb}^{h_{r_{r_{r}}}} \leq F_{s_{r_{r}}} \leq \Omega_{q}^{\mathbf{p}_{r_{r_{r}}}} (\mathbb{B}_{\tau})
$$
\n
$$
0 \leq F_{o,q} \leq F_{s_{r_{r}}} \leq F_{s_{r_{r}}} \leq \Omega_{q}^{\mathbf{p}_{r_{r_{r}}}} (\mathbb{B}_{\tau})
$$
\n
$$
\frac{\Omega_{q_{r_{r}}}}{\Omega_{q_{r_{r}}}} \frac{\Omega_{q_{r_{r}}}}{\Omega_{q_{r_{r}}}}
$$
\n
$$
162
$$

 4 ロ } 4 \overline{f} } 4 \overline{E} } 4 \overline{E} }

그는 그

 $\mathcal{P}(\mathcal{A}) \subset \mathcal{P}(\mathcal{A})$

Stable equivalence relations of spin 4-manifolds

 DQQ

Classical surgery

- \bullet $\mathcal{S}(M) = \{f: N \stackrel{\simeq}{\rightarrow} M\} /$ diffeomorphism
- $\mathcal{N}(M)$ = degree 1 normal maps up to normal bordism.
- The surgery exact sequence

Step 21

\nSubstituting the values:

\n
$$
L_{5}(\mathbb{Z}\pi) \rightarrow S(M) \rightarrow \mathcal{N}(M) \stackrel{\alpha}{\rightarrow} L_{4}(\mathbb{Z}\pi)
$$
\n
$$
L_{6}(\mathbb{Z}\pi) \rightarrow \mathcal{N}(M) \stackrel{\alpha}{\rightarrow} L_{4}(\mathbb{Z}\pi)
$$
\n
$$
L_{7}(\mathbb{Z}\pi) \stackrel{\beta}{\rightarrow} L_{8}(\mathbb{Z}\pi) \stackrel{\beta}{\rightarrow} L_{1}
$$
\n
$$
L_{8}(\mathbb{Z}\pi) \stackrel{\beta}{\rightarrow} L_{1}
$$
\n
$$
L_{9}(\mathbb{Z}\pi) \stackrel{\beta}{\rightarrow} L_{1}(\mathbb{Z}\pi) \stackrel{\beta}{\rightarrow} L_{1}
$$
\n
$$
L_{1}(\mathbb{Z}\pi) \stackrel{\beta}{\rightarrow} L_{2}(\mathbb{Z}\pi) \stackrel{\beta}{\rightarrow} L_{1}
$$
\n
$$
L_{1}(\mathbb{Z}\pi) \stackrel{\alpha}{\rightarrow} L_{2}(\mathbb{Z}\pi) \stackrel{\beta}{\rightarrow} L_{1}
$$
\n
$$
L_{1}(\mathbb{Z}\pi) \stackrel{\alpha}{\rightarrow} L_{2}(\mathbb{Z}\pi) \stackrel{\beta}{\rightarrow} L_{3}
$$
\n
$$
L_{1}(\mathbb{Z}\pi) \stackrel{\alpha}{\rightarrow} L_{4}(\mathbb{Z}\pi) \stackrel{\alpha}{\rightarrow} L_{4}(\mathbb{Z}\pi) \stackrel{\beta}{\rightarrow} L_{4}(\
$$

$$
M(M) \longrightarrow \frac{\int_{\tau}^{T} S_{\mu,\nu}}{(M)} \int_{S} \frac{\int_{\omega}^{T} (M)}{M} \int_{S} \frac{\int_{\omega}^{T} (R_{\pi})}{\int_{\omega}^{T} (R_{\pi})}
$$

K ロ ▶ K 印 ▶ K 重 ▶ K 重 ▶ │ 重 │ め Q ⊘

Theorem (K-Nicholson-Veselá)

There exist normal 1-smoothings such that $[M] - [M'] \in F_{2,2}$ if and only if there exists k' such that there is a degree one normal map

 $M' \# k'(S^2 \times S^2) \to M_* \# k(\int_X^1 s'')$

 ${\cal M}$

 \blacksquare

- 重

 DQQ

◀ □ ▶ ◀ 何 ▶ ◀ ≡ ▶

Theorem (K-Nicholson-Veselá)

M and M' are homotopy equivalent up to stabilisations if and only if there exist normal 1-smoothings such that

 $[M] - [M'] \in \overline{\ker \kappa_2 \cap \ker (w \cap -)} \leq F_{2,2} \leq \Omega_4^{spin}(B\pi).$

◀ □ ▶ ◀ 何 ▶ ◀ 言 ▶

→ 唐 ▶ ○唐 |

 DQQ

Stable equivalence relations

Ξ.

◆ □ ▶

1 冊 ▶

重

€.

 $\mathcal{P}(\mathcal{A}) \subset \mathcal{P}(\mathcal{A})$

Stable rigidity

- We say that a group π satisfies stable rigidity if homotopy equivalent 4-manifolds with fundamental group π are stably diffeomorphic.
- (Davis) If κ_2 is injective for π , then π satisfies stable rigidity.
- If π is torsion-free and satisfies the Farrell-Jones conjecture, κ_2 is injective.
- (Teichner) D_{∞} and Q_{4n} for $n \geq 3$ do not satisfy stable rigidity.

Theorem (K-Nicholson-Veselá)

All abelian groups satisfy stable rigidity.

Theorem (K-Nicholson-Veselá)

A finite group π with dihedral Sylow 2-subgroup satisfies stable rigidity if and only if π is not a semi-direct product $P \rtimes D_{2^n}$ with $n \geq 3$.

그는 아

 DQQ

◀ ロ ▶ ◀ 何 ▶ ◀ 三 ▶ ◀ 三 ▶ .

Open questions

Question

Are there homotopy equivalent spin 4-manifolds that are not stably diffeomorphic?

In that case the fundamental group cannot be abelian, quaternion, dihedral or semi-dihedral. By the Farrell-Jones conjecture, it probably cannot be torsion-free.

Question

Is there a group π such that ker $\kappa_2^h \neq$ ker κ_2^s ?

This is equivalent to the existence of homotopy equivalent 4-manifolds that are not simple homotopy equivalent up to stabilisations.

Question

What about $2n$ -manifolds for $n > 3$?

 \rightarrow \equiv \rightarrow

重

 DQQ

◀ ロ ▶ ◀ 伊 ▶ ◀ 三 ▶