Homology Spheres, Acyclic Groups and Kan-Thurston Theorem

Mikhail Kornev

Steklov Institute of Mathematics

From Analysis to Homotopy Theory

Greifswald, May 14, 2024

Basic Notions

Definitions

An *integer homology sphere* is a smooth closed *n*-manifold Σⁿ such that

 $H_*(\Sigma^n) \cong H_*(\mathbb{S}^n).$

- **2** A discrete group G is called *perfect* if $H_1(G) = 0$.
- A discrete group *G* is called *superperfect* if $H_1(G) = H_2(G) = 0$.

E.g., $\forall n \ge 3$ the group SL (n, \mathbb{F}_q) is superperfect except for SL $(3, \mathbb{F}_2)$, SL $(4, \mathbb{F}_2)$, SL $(3, \mathbb{F}_4)$.

Kervaire and Novikov's Result

Proposition (folklore)

Let Σ^n be a homology *n*-sphere ($n \ge 3$) with fundamental group *G*. Then *G* is superperfect.

Theorem (M. Kervaire'69, S. Novikov'62 (unpubl.))

If *G* is a finitely presented superperfect group then for any $n \ge 5$ there exists a homology *n*-sphere Σ^n with $\pi_1(\Sigma^n) = G$.

Poincaré Sphere

Recall, it is

$$\mathbb{S}^3/2I$$
,

where

$$2I \cong \langle a, b \mid a^2 = b^3 = (ab)^5 \rangle \cong SL(2, \mathbb{Z}/5)$$

is called the *binary icosohedral group* acting by some quaternionic representation on $\mathbb{S}^3 \subset \mathbb{H}$ by the left multiplication.

Theorem (J. Milnor'57)

The Poincaré sphere is *the only homology* 3*–sphere* with a finite nontrivial fundamental group up to homeomorphism.

The Poincaré sphere is the Brieskorn sphere $\Sigma(2, 3, 5)$.

Deficiency of a Group

Definition

The *deficiency* def(*G*) of a finitely presented group *G*:

$$\max\{f - r \mid f = |F|, r = |R|, G \cong \langle F \mid R \rangle\}$$

over all representations of G with finite f and r.

E.g., def(2I) = 0, since we have

Proposition (folklore)

If a superperfect group has a balanced representation with |F| = |R|, then its deficiency vanishes.

Deficiency of a Group

The Proposition above follows from

Epstein's Lemma

For any finitely presented group $G = \langle F \mid R \rangle$ we have

$$F|-|R| \leq \operatorname{rank} H_1(G) - s(H_2(G)),$$

where $s(H_2(G))$ denotes the minimal number of generators of the group $H_2(G)$.

Thus, we get

Proposition (folklore)

The fundamental groups of any homology 3-sphere has zero deficiency.

Brieskorn Spheres Σ_a

Definition

For positive integers a_1 , a_2 and a_3 a *3-dimensional Brieskorn manifold*

$$M(a_1, a_2, a_3) := \{ z \in \mathbb{C}^3 \mid z_1^{a_1} + z_2^{a_2} + z_3^{a_3} = 0 \} \cap \{ z \in \mathbb{C}^3 \mid |z| = 1 \}.$$

There is an equivalent characterization as some Seifert manifold (W. Neumann, F. Raymond'77).

 M_a is a homology sphere $\Leftrightarrow a_1, a_2$ and a_3 are pairwise coprime (Brieskorn'66).

A triple $a = (a_1, a_2, a_3)$ is a complete topological invariant for Brieskorn spheres Σ_a (W. Neumann'70).

Fundamental Group of Σ_a

$$\pi_1(\Sigma_a) \cong \Gamma'(a_1, a_2, a_3)$$

$$1 \to C \to \Gamma(p, q, r) \to D(p, q, r) \to 1 - \text{central}$$

$$D(p, q, r) = \langle x, y, z \mid x^p = y^q = z^r = xyz = 1 \rangle$$

This is by J. Milnor'75.

From Seifert's characterization, one gets:

$$\pi_1(\Sigma_a) = \langle x_1, x_2, x_3, h \mid \forall i: \ [h, x_i] = 1, \ x_1 x_2 x_3 = 1, \ x_i^{a_i} h = 1 \rangle$$

From Milnor's results, one can derive

Proposition (K.)

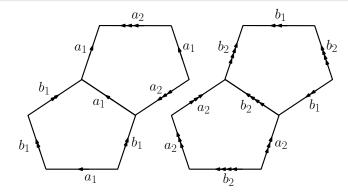
 $\Gamma(p, q, r)$ has zero deficiency for any $p, q, r \ge 1$.

Acyclic Groups

Definition

A discrete group *G* is called *acyclic* if

 $H_*(G,\mathbb{Z}) \cong H_*(\{e\},\mathbb{Z}).$



 $\mathrm{Hig}_4 = \{a_1, b_1, a_2, b_2 \mid b_1^{a_1} = b_1^2, \ a_1^{a_2} = a_1^2, \ a_2^{b_2} = a_2^2, \ b_2^{b_1} = b_2^2 \}$

More generally, Higman defined

$$\text{Hig}_{n} = \langle x_{i}, \ i \in \mathbb{Z}/n \mid x_{i}^{x_{i-1}} = x_{i}^{2} \rangle,$$

where $x_{i}^{x_{i-1}} := x_{i-1}^{-1} x_{i} x_{i-1}$.

Proposition (N. Monod'17)

Hig_n is acyclic for all $n \ge 4$.

Universal Acyclic Groups

Definition

A finitely presented group G is called *universal* if it contains all recursively enumerable finitely generated groups.

The combination of Higman and Chiodo-Hill's results gives

Proposition (K.)

Every finitely presented group can be embedded into a universal acyclic group with 12 generators and 38 relations.

$\pi_1(\Sigma_3)$ Is Not Acyclic

Proposition (A. Berrick, J. Hillman'03)

The fundamental group (nontrivial) of any 3-manifold cannot be acyclic.

Corollary

The groups Hig_n ($n \ge 4$) cannot serve as fundamental groups of homology 3-spheres.

Σ^3 and Smooth Structures

Theorem (F. Gonzalez-Acuña'70)

If $n \neq 3$ then

$$\Theta^n \cong \Theta^n_{\mathbb{Z}}$$
,

where Θ^n is the cobordism group of *homotopy n*-spheres, $\Theta_{\mathbb{Z}}^n$ is the one of *homology n*-spheres.

In particular, the groups $\Theta_{\mathbb{Z}}^n$ are finite for all $n \neq 3$.

Theorem (K. Hendricks et al.'21)

Let Θ^3_{SF} be the subgroup of $\Theta^3_{\mathbb{Z}}$ generated by the homology Seifert spheres. Then the quotient group $\Theta^3_{\mathbb{Z}}/\Theta^3_{SF}$ has \mathbb{Z}^{∞} as a subgroup.

Kervaire and Novikov's Result for Σ^4

Theorem (M. Kervaire'69, S. Novikov'62 (unpubl.))

Every balanced superperfect finitely presented group can be the fundamental group of a homology 4-sphere.

E.g., SL(2, \mathbb{F}_p) for p > 3 (the author thanks Peter Teichner for this observation) and Hig_n for $n \ge 4$ serve as fundamental groups of homology 4-spheres.

Corollary

The fundamental group of any Σ^3 can serve as the fundamental group of some $\Sigma^4.$

Another way to get the corollary: the Suciu 1-spin $\sigma_1(\Sigma^3)$.

Deficiency of $\pi_1(\Sigma^4)$

Question

Is every acyclic group the fundamental group of some homology 4-sphere?

It seems that the universal acyclic finitely presented group would serve as a counterexample.

Theorem (J. Hillman'02)

There is a homology 4-sphere with the fundamental group of deficiency -1.

Theorem (C. Livingston'03)

For any N > 0, there exists a homology 4-sphere whose fundamental group of deficiency smaller than -N.

Finite $\pi_1(\Sigma^4)$

Suppose the homology 4-sphere Σ^4 has finite nontrivial fundamental group.

According to Donaldson's theory $\widetilde{\Sigma^4}$ is homeomorphic to

$$(\mathbb{C}P^2)^{\#m}$$
, $(\overline{\mathbb{C}P^2})^{\#n}$, or $(\pm \mathfrak{M}_{E_8})^{\#p} \#(\mathbb{S}^2 \times \mathbb{S}^2)^{\#q}$,

where # — the connected sum of manifolds, \mathcal{M}_{E_8} — Milnor's E_8 -manifold.

For the signatures we have $\sigma(\widetilde{\Sigma^4}) = |\pi_1(\Sigma)| \cdot \sigma(\Sigma^4) = 0$. Hence,

Proposition (K.)

For Σ^4 with finite nontrivial $\pi_1(\Sigma^4)$, we have

$$\widetilde{\Sigma^4} \cong \left(\mathbb{S}^2 \times \mathbb{S}^2 \right)^{|\pi_1(\Sigma^4)| - 1}$$

Finite $\pi_1(\Sigma^4)$

Question

How many homology spheres are there with a fixed finite fundamental group?

Theorem (I. Hambleton, M. Kreck'88)

Let π and χ be a finite group and integer, respectively. Then, there is only a *finite number* of closed orientable 4-manifolds with the fundamental group π and the Euler characteristic χ up to homeomorphism.

Corollary

Let π be a finite group. Then, there are *only finitely many* homology 4-spheres with the fundamental group π up to homeomorphism.

Homology Spheres With Fixed π_1

As follows from the results of A. Suciu'90, the corollary above doesn't hold for $|\pi| = \infty$.

For M^n and p > 0 we get the *p*-spin of M:

$$\sigma_{p}\mathcal{M}^{n}:=\partial\left(\mathcal{M}_{0}\times\mathbb{D}^{p+1}\right)=\mathcal{M}_{0}\times\mathbb{S}^{p}\bigsqcup_{\mathbb{S}^{n-1}\times\mathbb{S}^{p}}\mathbb{S}^{n-1}\times\mathbb{D}^{p+1},$$

where $M_0 = M \setminus \text{Int } \mathbb{D}^n$.

Theorem (A. Suciu'90)

For $n \ge 3$ and $N \ge 2$ there are N homology n-spheres with isomorphic π_1 's and π_2 's as $\mathbb{Z} \pi_1$ -modules, but with different k-invariants.

Theorem (J.-C. Hausmann, Sh. Weinberger'85)

There are nontrivial superperfect finitely presented groups, both with and without torsion, which cannot serve as fundamental groups of homology 4-spheres.

The case of a non-torsion group uses the *Kan–Thurston construction*.

Kan-Thurston Construction

Theorem (D. Kan, W. Thurston'76)

For every path connected $X \in sSet_*$, there exists

 $t: K(G_X, 1) \simeq TX \to X,$

such that

$$H_*(TX; t^*\mathcal{A}) \cong H_*(X; \mathcal{A}), \ H^*(TX; t^*\mathcal{A}) \cong H^*(X; \mathcal{A})$$

for every local coefficient system A on X.

It is based on the *ad hoc* constructions of acyclic group cones.

Categorical Meaning

Corollary (A. Deleanu'82)

$$\pi_0 \mathcal{C} \mathcal{W} \cong \mathcal{G} \mathcal{P}[\Gamma^{-1}].$$

Objects of \mathcal{GP} are pairs (G, P), $P \triangleleft G$, $H_1(P) = 0$. *Morphisms* of \mathcal{GP} are homomorphisms of pairs $f : (G, P) \rightarrow (G', P')$ for which $f(P) \subset P'$.

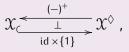
The set of morphisms Γ consists of those morphisms $f : (G, P) \rightarrow (G', P')$ such that $f : G/P \cong G'/P'$ and $f_* : H_*(G; A) \cong H_*(G'; A)$ for any G'/P'-module A.

Functors of the Quillen plus and Kan-Thurston construction are *inverse* in some sense.

∞ -topos Meaning?

Theorem (M. Hoyois'19)

 $\mathfrak{X} - \infty$ -topos where π_1 preserves products. Then, there is an adjunction



 \mathfrak{X}^{\diamond} — an ∞ -category of pairs (X, P), $X \in \mathfrak{X}$ and P is a perfect normal subgroup of $\pi_1(X)$.

Moreover, the map $pr_1 \circ \eta : X \to (X, P)^+$ is acyclic, η — the unit.

Question

Is there an ∞ -topos meaning of the Kan-Thurston construction?

Recognition of Spheres

Question

Is there an algorithm for recognition of the standard sphere \mathbb{S}^n ?

Theorem (H. Rubinstein, A. Thompson'94)

Yes, there is for n = 3.

Theorem (S. Novikov'62)

The property of an *n*-dimensional manifold to be a standard *n*-dimensional sphere $(n \ge 5)$ or the property of a contractible region in an (n + 1)-dimensional Euclidean space with a smooth boundary to be the ordinary (n + 1)-disk, *unrecognizable*.

Question

What about homology 4-spheres?

Thank you!