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What are topological insulators?
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Coarse Geometric Origin of the 
Topological Phase of Bi Se  and Bi Te  
from Orbital Resolved Scanning 
Tunneling Microscopy
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mechanics of gyroscopic 
metamaterials

Metamaterial constructed from 
suspended gyroscopes
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Simulation of metamaterial 
constructed from random 
point cloud.



Basic mathematical description



Definition. The Hamiltonian  is insulating at the energy level  if

 

H E

E ∉ spec(H) .

Gapped Hamiltonians

 self-adjoint (possibly unbounded) 
operator acting on a Hilbert space . ℋ

„Fermi energy“

We consider physical systems described by a Hamiltonian .H



Lattice systems
Given a discrete metric space , one typically considers 
the Hilbert space

 . 

X

ℋ = ℓ2(X) ⊗ ℂn

A typical toy model Hamiltonian for  would be 

For suitable values of , this has a spectral gap at .

Γ = ℤd

H =
1
2i

d

∑
j=1

(Sj − S*j ) ⊗ γj + (m +
1
2

d

∑
j=1

(Sj + S*j )) ⊗ γ0

m E = 0



Continuous systems
Let  be a Riemannian manifold (typically ) and consider 
the Hilbert space . The typical Hamiltonians are 
differential operators (usually Dirac or Laplace type). 

X X = ℝd

ℋ = L2(X)

A toy example is the Landau Hamiltonian,

,

where  and  satisfies

                            .

H = (d − iA)*(d − iA)

X = ℝ2 A ∈ Ω1(ℝ2)

dA = θ ⋅ vol, θ ∈ ℝ



Equivariant case
Suppose that  is invariant under 
translations by  and that the Hamiltonian 

 is equivariant.

Fourier transform:

              

X ⊆ ℝd

ℤd

H

ℓ2(X) ⊗ ℂd ≅ L2(𝕋d) ⊗ ℂd

H ⟷ (H(k))k∈𝕋d

spec(H) = ⋃
k∈𝕋d

spec(H(k))



Equivariant case

If  has a spectral gap at , we may 
construct a vector bundle  over , with 
fibers

.

Non-triviality of  may be measured by 
characteristic classes  (Chern insulator).

H E
V 𝕋d

Vk = ⨁
λ≤E

Eig(H(k), λ)

V



H(k) = (cos(k1) + cos(k2) + m sin(k2) − i sin(k1)
sin(k2) + i sin(k1) −cos(k1) − sin(k2) − m)Example:

m =
1
3

Get line bundles with non-
trivial first Chern class if 

 or m ∈ (−2, 0) m ∈ (0, 2)
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Disordered systems
Disordered systems are often considered to be rather mysterious!

There are several ad hoc ways to calculate some 
generalized „Chern number“ from the projection  
onto the spectrum below the Fermi energy („Fermi 
projection“).

Example. Kitaev’s formula

P

ν(P) = 12πi∑
x∈A

∑
y∈B

∑
z∈C

(PxyPxzPzx − PxzPzyPyx)



The non-commutative framework



-algebraic treatmentC*

We start with some „observable“ -algebra  and 
a Hamiltonian , which is insulating at .

C* 𝒜
H ∈ 𝒜 E

or, more generally, a possibly 
unbounded operator on a 

Hilbert -module𝒜

The corresponding Fermi projection  is an 
element of .

P = φ(H)
𝒜

Definition. A topological insulator is an insulator 
such that this class  is non-trivial.[P]

 Get a class  in .⟹ [P] K0(A)



-algebraic treatmentC*

The corresponding Fermi projection  is an 
element of .

P = φ(H)
𝒜

Definition. A topological insulator is an insulator 
such that this class  is non-trivial.[P]

 Get a class  in .⟹ [P] K0(A)

Example: The spectral projection onto each eigenvalue of the Landau 
Hamiltonian is a generator of K0(C*(ℝ2)) ≅ ℤ



Roe algebras

Consider a metric space  and let  be an ample -module.  
The Roe algebra of  is

X ℋ X
X

C*(X) = {T ∈ B(ℋ) ∣ T locally compact, of finite propagation}
For , the Roe algebra localized at  is

.

Y ⊆ X Y

C*(Y ⊆ X) = {T ∈ C*(X) ∣ T supported near Y}

Roe algebras are coarsely invariant!



What about boundary behavior?



 

Bulk-boundary correspondence
For suitable subsets , we have a coarse Mayer-
Vietoris sequence and a corresponding boundary map

Y ⊆ X

δ : K0(C*(X)) ⟶ K1(C*(∂Y ⊆ X))

Y
X

∂Y

idealized „bulk Hamiltonian“
H ∈ C*(X)

Hamiltonian with boundary 
conditions H̃ ∈ C*(Y ⊆ X)

Suppose that  is insulating at  and let  be 
the corresponding Fermi projection.

H E P

Theorem. If , then the Hamilton with 
boundary conditions  has no spectral gap at .

δ([P]) ≠ 0
H̃ E

 conducting edge modes!⟹



K0(C
∗(X))

K0(C
∗(Y )) K0(C

∗(Y )/C∗(∂Y )) K1(C
∗(∂Y ))

δ
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Measures failure of 
 to lift to a 

projection in 
P ∈ C*(Y)/C*(∂Y)

C*(Y)

If spectral gap was not filled

[P̃]
[P]

∈

∈

π*

 can lift  to  in ⟹ P = φ(H) P̃ = φ(H̃) C*(Y)

Theorem. If , then the Hamilton with 
boundary conditions  has no spectral gap at .

δ([P]) ≠ 0
H̃ E

Proof.



K0(C
∗(X))

K0(C
∗(Y )) K0(C

∗(Y )/C∗(∂Y )) K1(C
∗(∂Y ))

δ

Exp

1

Measures failure of 
 to lift to a 

projection in 
P ∈ C*(Y)/C*(∂Y)

C*(Y)

If spectral gap was not filled

[P̃]
[P]

∈

∈

π*

 can lift  to  in ⟹ P = φ(H) P̃ = φ(H̃) C*(Y)
         ⟹ Exp(π*[P]) = 0 ⟹ δ([P]) = 0

Theorem. If , then the Hamilton with 
boundary conditions  has no spectral gap at .

δ([P]) ≠ 0
H̃ E

□

Proof.



Example: Suppose that  is a „coarse half space“ in .Y X = ℝ2

•

•  and  are flasque, so 

K0(C*(X)) ≅ ℤ
Y Yc K∙(C*(Y)) = K∙(C*(Yc)) = 0

 boundary maps are isomorphisms.⟹
 Landau Hamiltonian on  has all gaps filled!⟹ Y
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Equivariant version

Cobordism invariance of topological edge-following states (2023), with G. C. Thiang 
Breaking symmetries for equivariant coarse homology theories (2024), with Uli

If a group  acts on , then we may get an equivariant version: Γ X

quasi-invariant  
Roe algebra



Why do the edge states travel?
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The group  is generated 
by the shift operator. 

K1(C*group(ℤ)) ≅ ℤ

C*group(ℤ) ⊗ 𝕂 ≅ C*(ℤ)ℤ ⊆ C*(ℤ)

Group -algebraC* inclusion induces 
isomorphism in K-theory



How to extract numbers  
from K-theory classes?



Kitaev’s formula

Idea: This defines a coarse cohomology class.

Quantization of conductance and the coarse cohomology of partitions (2024), with G. C. Thiang

ν(P) = 12πi∑
x∈A

∑
y∈B

∑
z∈C

(PxyPyzPzx − PxzPzyPyx)



Coarse cohomology

A coarse cochain is a locally bounded Borel function  such that 
 is bounded for each . 

The differential is the Alexander-Spanier differential

 get a cohomology groups .

φ : Xn+1 → ℝ
supp(φ) ∩ Br(Δ) r > 0

δφ(x0, …, xn) =
n

∑
i=0

(−1)iφ(x0, …, ̂xi, …, xn)

⟹ H𝒳n(X)



There is a map (the Connes character map)

,   

such that  .  

χ : H𝒳n(X) ⟶ HCn(ℬ(X))

χ( f0 ⊗ ⋯ ⊗ fn)(A0, …, An) = Tr(f0A0 f1A1⋯fnAn)

Pairing with K-theory

Composing with the cyclic homology Chern character gives pairings

given by

.

K0(ℬ(X)) × H𝒳2n(X) ⟶ ℝ

⟨[P], f0 ⊗ ⋯ ⊗ f2n⟩ = Tr(f0Pf1P⋯f2nP)

algebra of finite propagation, 
locally trace-class operators



Partition classes
Given a partition  such that for all , 

 is bounded, we get a closed 
coarse 2-cochain by

                           
                

r > 0
Br(A) ∩ Br(B) ∩ Br(C)

φA,B,C = A ⊗ B ⊗ C + B ⊗ C ⊗ A + C ⊗ A ⊗ B
−A ⊗ C ⊗ B − C ⊗ B ⊗ A − B ⊗ A ⊗ C

Indicator functions

A

B

C



Partition classes
Given a partition  such that for all , 

 is bounded, we get a closed 
coarse 2-cochain by

                           
                

r > 0
Br(A) ∩ Br(B) ∩ Br(C)

φA,B,C = A ⊗ B ⊗ C + B ⊗ C ⊗ A + C ⊗ A ⊗ B
−A ⊗ C ⊗ B − C ⊗ B ⊗ A − B ⊗ A ⊗ C

Indicator functions

A

B

C

Observe: For any , if  is such that , 
then .

r > 0 x = (x1, x2, x3) ∈ supp(φA,B,C) d(xi, xj) ≤ r
x1, x2, x3 ∈ Br(A) ∩ Br(B) ∩ Br(C)



Partition classes
For pairing with K-theory, we get

⟨φA,B,C, P⟩ = 3(Tr(APBPCP) − Tr(APCPBP))

Note: This is well-defined, as if  has propagation bound , then  is 
supported on the bounded set , hence trace-class.

P r APBPCP
B3r(A) ∩ B3r(B) ∩ B3r(C)

This is (up to a factor of ) precisely the formula of Kitayev.4πi

.= 3∑
x∈A

∑
y∈B

∑
z∈C

(PxyPyzPzx − PxzPzyPyx)



Locality

Calculate:                            Tr(APBPCP) = ∑
x∈A

Tr(xPBPCP) = ∑
x∈A

Tr(PBPCPx)

If  has propagation bound , then  has support in .

          If , then  and if , then .

P r xP Br(x)

⟹ d(x, B) > r xPB = 0 d(x, C) > r CPx = 0

The same argument for  instead of  shows that  can be 
calculated „near the coarse intersection“ of :

B, C A ⟨φA,B,C, P⟩
A, B, C

⟨φA,B,C, P⟩ = 3 ∑
(x,y,z)∈Br(A)∩Br(B)∩Br(C)

(PxyPyzPzx − PxzPzyPyx)



Locality

Strict locality fails if  does not have finite propagation, but remains 
approximately true if  has rapid decay.

P
P

Example: If  and  is the restriction of the Hamiltonian  to , equipped 
with boundary conditions, then by finite propagation of , we have that 

 

is small away from , for any .

Y ⊆ X H̃ H Y
H

P̃ − P = φ(H̃) − φ(H)

∂Y φ ∈ C0(ℝ)





Integrality?

Why is  ?4πi ⋅ ⟨φA,B,C, P⟩ ∈ ℤ



Higson corona
For , the -variation of  is

.

Let 

be the algebra of functions with bounded variation at infinity. 

The Higson corona  of  is the compact Hausdorff space such that

.

r > 0 r f : X → ℂ

Varr f(x) = sup
y∈Br(x)

| f(x) − f(y) |

Ch(X) = {f ∈ Cb(X) ∣ ∀r > 0 : Varr f ∈ C0(X)}

∂X X

C(∂X) = Ch(X)/C0(X)



Higson corona
For , we have that

•  is compact if ;

•  and  are compact if .

Get a -homomorphism

,

Which induces a map on K-theory,

T ∈ C*(X)

[T, f ] f ∈ Ch(X)

fT Tf f ∈ C0(X)

*

C(∂X) ⊗ C*(X) ⟶ C*(X)/𝕂



Have a commutative diagram

One may show that  is the image of a generator of  
under the left vertical map. Hence  pairs integrally with .

4πi ⋅ φA,B,C K1(∂X)
4πi ⋅ φA,B,C K0




