

Matthias Ludewig

Coarse geometry and topological insulators

Universität Regensburg SFB 1085 "Higher invariants"

What are topological insulators?

A topological insulator is a material whose interior behaves as an electrical insulator while its surface behaves as an electrical conductor,^[3] meaning that electrons can only move along the surface of the material.

C. Setescak (2023): *Evidence for the* Topological Phase of Bi₂Se₃ and Bi₂Te₃

Nash, Kleckner, Read, Vitelli, Turner, Irvine (2015): Topological mechanics of gyroscopic metamaterials

Metamaterial constructed from suspended gyroscopes

t = -3.7s

t = -3.0sR ú 0 0 0

Mitchell, Nash, Hexner, Turner, Irvine (2018): *Amorphous* topological insulators constructed from random point sets

Simulation of metamaterial constructed from random point cloud.

Basic mathematical description

Gapped Hamiltonians

We consider physical systems described by a Hamiltonian *H*.

Definition. The Hamiltonian *H* is *insulating* at the energy level *E* if

 $E \notin \operatorname{spec}(H)$. "Fermi energy"

self-adjoint (possibly unbounded) operator acting on a Hilbert space \mathcal{H} .

Lattice systems

Given a discrete metric space *X*, one typically considers the Hilbert space

$\mathscr{H} = \ell^2(X) \otimes \mathbb{C}^n.$

A typical toy model Hamiltonian for $\Gamma = \mathbb{Z}^d$ would be

$$H = \frac{1}{2i} \sum_{j=1}^{d} (S_j - S_j^*) \otimes \gamma_j + \left(m + \frac{1}{2}\right)$$

For suitable values of m, this has a spectral gap at E = 0.

Continuous systems

Let *X* be a Riemannian manifold (typically $X = \mathbb{R}^d$) and consider the Hilbert space $\mathcal{H} = L^2(X)$. The typical Hamiltonians are differential operators (usually Dirac or Laplace type).

- $H = (d iA)^*(d iA),$
- where $X = \mathbb{R}^2$ and $A \in \Omega^1(\mathbb{R}^2)$ satisfies

 $9|\theta|$ I $7|\theta|$ $5|\theta|$ A toy example is the Landau Hamiltonian,

 $dA = \theta \cdot \text{vol}, \quad \theta \in \mathbb{R}.$

 $3|\theta|$

 $|\theta| \bullet$

Equivariant case

Suppose that $X \subseteq \mathbb{R}^d$ is invariant under translations by \mathbb{Z}^d and that the Hamiltonian *H* is equivariant.

Fourier transform:

 $\ell^{2}(X) \otimes \mathbb{C}^{d} \cong L^{2}(\mathbb{T}^{d}) \otimes \mathbb{C}^{d}$ $H \longleftrightarrow (H(k))_{k \in \mathbb{T}^{d}}$ $\operatorname{spec}(H) = \bigcup_{k \in \mathbb{T}^{d}} \operatorname{spec}(H(k))$

Equivariant case

If *H* has a spectral gap at *E*, we may construct a vector bundle *V* over \mathbb{T}^d , with fibers

$$V_k = \bigoplus_{\lambda \le E} \operatorname{Eig}(H(k), \lambda).$$

Non-triviality of *V* may be measured by characteristic classes (Chern insulator).

Example: $H(k) = \begin{pmatrix} \cos(k_1) + \cos(k_2) + m & \sin(k_2) - i\sin(k_1) \\ \sin(k_2) + i\sin(k_1) & -\cos(k_1) - \sin(k_2) - m \end{pmatrix}$

Get line bundles with nontrivial first Chern class if $m \in (-2, 0)$ or $m \in (0, 2)$

Disordered systems

Disordered systems are often considered to be rather mysterious!

There are several *ad hoc* ways to calculate some generalized *"*Chern number" from the projection *P* onto the spectrum below the Fermi energy (*"*Fermi projection").

Example. Kitaev's formula $\nu(P) = 12\pi i \sum_{x \in A} \sum_{y \in B} \sum_{z \in C} \left(P_{xy} P_{xz} P_{zx} - P_{xz} P_{zy} P_{yx} \right)$

The non-commutative framework

We start with some "observable" C^* -algebra \mathcal{A} and a Hamiltonian $H \in \mathcal{A}$, which is insulating at E.

The corresponding Fermi projection $P = \varphi(H)$ is an element of \mathcal{A} .

 \implies Get a class [P] in $K_0(A)$.

Definition. A *topological insulator* is an insulator such that this class [*P*] is non-trivial.

C*-algebraic treatment

or, more generally, a possibly unbounded operator on a Hilbert *A*-module

 φ

Example: The spectral projection onto each eigenvalue of the Landau Hamiltonian is a generator of $K_0(C^*(\mathbb{R}^2)) \cong \mathbb{Z}$

The corresponding Fermi projection *P* element of \mathcal{A} .

 \implies Get a class [*P*] in $K_0(A)$.

Definition. A *topological insulator* is an insulator such that this class [*P*] is non-trivial.

C*-algebraic treatment

$$P = \varphi(H)$$
 is an

Roe algebras

Consider a metric space X and let \mathcal{H} be an ample X-module. The *Roe algebra of* X is

$C^*(X) = \left\{ T \in \mathcal{B}(\mathcal{H}) \mid T \text{ locally compact, of finite propagation} \right\}$

For $Y \subseteq X$, the *Roe algebra localized at* Y is $C^*(Y \subseteq X) = \overline{\{T \in C^*(X) \mid T \text{ supported near } Y\}}.$

Roe algebras are coarsely invariant!

What about boundary behavior?

Bulk-boundary correspondence

For suitable subsets $Y \subseteq X$, we have a *coarse Mayer*-*Vietoris sequence* and a corresponding boundary map

$\delta: K_0(C^*(X)) \longrightarrow K_1(C^*(\partial Y \subseteq X))$

Suppose that *H* is insulating at *E* and let *P* be the corresponding Fermi projection.

Theorem. If $\delta([P]) \neq 0$, then the Hamilton with boundary conditions \tilde{H} has no spectral gap at E.

\implies conducting edge modes!

idealized "bulk Hamiltonian" $H \in C^*(X)$ ∂Y

Hamiltonian with boundary conditions $\tilde{H} \in C^*(Y \subseteq X)$

Proof.

 $[\tilde{P}]$

Theorem. If $\delta([P]) \neq 0$, then the Hamilton with boundary conditions \tilde{H} has no spectral gap at E.

 $[P] \in K_0(C^*(X))$ π_* $K_0(C^*(Y)) \longrightarrow K_0(C^*(Y)/C^*(\partial Y)) \xrightarrow{\mathrm{Exp}} K_1(C^*(\partial Y))$ Measures failure of $P \in C^*(Y)/C^*(\partial Y)$ to lift to a projection in $C^*(Y)$

If spectral gap was not filled \implies can lift $P = \varphi(H)$ to $\tilde{P} = \varphi(\tilde{H})$ in $C^*(Y)$

Proof.

 $[\tilde{P}]$

Theorem. If $\delta([P]) \neq 0$, then the Hamilton with boundary conditions \tilde{H} has no spectral gap at E.

 $[P] \in K_0(C^*(X))$ π_* $K_0(C^*(Y)) \longrightarrow K_0(C^*(Y)/C^*(\partial Y)) \xrightarrow{\mathrm{Exp}} K_1(C^*(\partial Y))$ Measures failure of $P \in C^*(Y)/C^*(\partial Y)$ to lift to a projection in $C^*(Y)$

If spectral gap was not filled \implies can lift $P = \varphi(H)$ to $\tilde{P} = \varphi(\tilde{H})$ in $C^*(Y)$ $\Longrightarrow \operatorname{Exp}(\pi_*[P]) = 0 \implies \delta([P]) = 0$

Example: Suppose that *Y* is a *"*coarse half space" in $X = \mathbb{R}^2$.

- $K_0(C^*(X)) \cong \mathbb{Z}$
- Y and Y^c are flasque, so $K_{\bullet}(C^*(Y)) = K_{\bullet}(C^*(Y^c)) = 0$

 \implies boundary maps are isomorphisms. \implies Landau Hamiltonian on Y has all gaps filled!

$K_0(C^*(\partial Y)) \longrightarrow K_0(C^*(Y)) \oplus K_0(C^*(Y^c)) \longrightarrow K_0(C^*(X))$ $K_1(C^*(X)) \longleftarrow K_1(C^*(Y)) \oplus K_1(C^*(Y^c)) \longleftarrow K_1(C^*(\partial Y))$

Equivariant version

If a group Γ acts on *X*, then we may get an equivariant version:

Cobordism invariance of topological edge-following states (2023), with G. C. Thiang *Breaking symmetries for equivariant coarse homology theories* (2024), with Uli

$C^*_{\text{group}}(\mathbb{Z}) \otimes \mathbb{K} \cong C^*(\mathbb{Z})^{\mathbb{Z}} \subseteq C^*(\mathbb{Z})$ inclusion induces Group *C**-algebra

The group $K_1(C^*_{group}(\mathbb{Z})) \cong \mathbb{Z}$ is generated by the shift operator.

Why do the edge states travel?

How to extract numbers from K-theory classes?

$\nu(P) = 12\pi i \sum \left[\sum \left(P_{xy} P_{yz} P_{zx} - P_{xz} P_{zy} P_{yx} \right) \right]$ $x \in A \ y \in B \ z \in C$

Idea: This defines a coarse cohomology class.

Quantization of conductance and the coarse cohomology of partitions (2024), with G. C. Thiang

Kitaev's formula

Coarse cohomology

$\operatorname{supp}(\varphi) \cap B_r(\Delta)$ is bounded for each r > 0. The differential is the Alexander-Spanier differential $\delta\varphi(x_0,\ldots,x_n)=\sum_{n=1}^{\infty}$

 \implies get a cohomology groups $H\mathcal{X}^n(X)$

- A *coarse cochain* is a locally bounded Borel function $\varphi : X^{n+1} \to \mathbb{R}$ such that

$$\sum_{i=0}^{i} (-1)^{i} \varphi(x_0, \dots, \hat{x}_i, \dots, x_n)$$

$$^{n}(X).$$

Pairing with K-theory

There is a map (the *Connes character map*) $\chi : H\mathcal{X}^n(X) \longrightarrow HC^n(\mathcal{B}(X)),$ such that $\chi(f_0 \otimes \cdots \otimes f_n)(A_0, \dots, A_n) = \operatorname{Tr}(f_0A_0f_1A_1\cdots f_nA_n).$ Composing with the cyclic homology Chern character gives pairings $K_0(\mathcal{B}(X)) \times H\mathcal{X}^{2n}(X) \longrightarrow \mathbb{R}$

given by

 $\langle [P], f_0 \otimes \cdots \otimes f_{2n} \rangle$

algebra of finite propagation, locally trace-class operators

$$_{n}\rangle = \operatorname{Tr}(f_{0}Pf_{1}P\cdots f_{2n}P).$$

Partition classes

Given a partition such that for all r > 0, $B_r(A) \cap B_r(B) \cap B_r(C)$ is bounded, we get a closed coarse 2-cochain by

 $\varphi_{A,B,C} = A \otimes B \otimes C + B \otimes C \otimes A + C \otimes A \otimes B$ $-A \otimes C \otimes B - C \otimes B \otimes A - B \otimes A \otimes C$

Partition classes

Given a partition such that for all r > 0, $B_r(A) \cap B_r(B) \cap B_r(C)$ is bounded, we get a closed coarse 2-cochain by

 $\varphi_{A,B,C} = A \otimes B \otimes C + B \otimes C \otimes A + C \otimes A \otimes B$ $-A \otimes C \otimes B - C \otimes B \otimes A - B \otimes A \otimes C$

Observe: For any r > 0, if $x = (x_1, x_2, x_3) \in \text{supp}(\varphi_{A,B,C})$ is such that $d(x_i, x_j) \le r$, then $x_1, x_2, x_3 \in B_r(A) \cap B_r(B) \cap B_r(C)$.

Partition classes

For pairing with K-theory, we get $\langle \varphi_{A,B,C}, P \rangle = 3 \left(\operatorname{Tr}(APBPCP) - \operatorname{Tr}(APCPBP) \right)$ $= 3 \sum_{x \in A} \sum_{y \in B} \sum_{z \in C} \left(P_{xy} P_{yz} P_{zx} - P_{xz} P_{zy} P_{yx} \right).$

This is (up to a factor of $4\pi i$) precisely the formula of Kitayev.

Note: This is well-defined, as if *P* has propagation bound *r*, then *APBPCP* is supported on the bounded set $B_{3r}(A) \cap B_{3r}(B) \cap B_{3r}(C)$, hence trace-class.

$Tr(APBPCP) = \sum Tr(xPBPCP) = \sum Tr(PBPCPx)$ **Calculate:** $x \in A$ $x \in A$

If P has propagation bound r, then xP has support in $B_r(x)$.

The same argument for *B*, *C* instead of *A* shows that $\langle \varphi_{A,B,C}, P \rangle$ can be calculated "near the coarse intersection" of A, B, C:

$$\langle \varphi_{A,B,C}, P \rangle = 3$$

$$\sum_{(x,y,z) \in B_r(A) \cap B}$$

Locality

 \implies If d(x, B) > r, then xPB = 0 and if d(x, C) > r, then CPx = 0.

 $\left(P_{xy}P_{yz}P_{zx}-P_{xz}P_{zy}P_{yx}\right)$

 $B_r(B) \cap B_r(C)$

Locality

Strict locality fails if P does not have finite propagation, but remains *approximately* true if *P* has rapid decay.

with boundary conditions, then by finite propagation of H, we have that $\tilde{P} - P =$

is small away from ∂Y , for any $\varphi \in C_0(\mathbb{R})$.

Example: If $Y \subseteq X$ and H is the restriction of the Hamiltonian H to Y, equipped

$$\varphi(\tilde{H}) - \varphi(H)$$

Real-space Chern number calculation for an amorphous network

Integrality?

Why is $4\pi i \cdot \langle \varphi_{A,B,C}, P \rangle \in \mathbb{Z}$?

Higson corona

For r > 0, the *r*-variation of $f: X \to \mathbb{C}$ is $\operatorname{Var}_r f(x) =$ ye

Let

be the algebra of functions with bounded variation at infinity. The *Higson corona* ∂X of *X* is the compact Hausdorff space such that

$$\sup_{x \in B_r(x)} |f(x) - f(y)|.$$

- $C_h(X) = \{ f \in C_h(X) \mid \forall r > 0 : \operatorname{Var}_r f \in C_0(X) \}$

 - $C(\partial X) = C_h(X)/C_0(X).$

Higson corona

For $T \in C^*(X)$, we have that

- [T, f] is compact if $f \in C_h(X)$;
- *fT* and *Tf* are compact if $f \in C_0(X)$.
- Get a *-homomorphism

Which induces a map on K-theory,

$C(\partial X) \otimes C^*(X) \longrightarrow C^*(X)/\mathbb{K},$

$K^{i+1}(\partial X) \times K_i(C^*(X)) \longrightarrow K_1(C^*(X)/\mathbb{K}) \xrightarrow{\partial} K_0(\mathbb{K}) \cong \mathbb{Z}$

One may show that $4\pi i \cdot \varphi_{A,B,C}$ is the image of a generator of $K^1(\partial X)$

$H\mathcal{X}^{\mathrm{ev}}(X) \longrightarrow \mathrm{Hom}(K_0(C^*(X)),\mathbb{R})$

under the left vertical map. Hence $4\pi i \cdot \varphi_{A.B.C}$ pairs integrally with K_0 .

