

Matthias Ludewig

Coarse geometry and topological insulators

Universität Regensburg SFB 1085 "Higher invariants"

What are topological insulators?

A topological insulator is a material whose interior behaves as an electrical insulator while its surface behaves as an electrical conductor,^[3] meaning that electrons can only move along the surface of the material.

-
-
-

Topological Phase of Bi₂Se₃ and Bi₂Te</sub> $2^{16}3$ unu Diziez

Nash, Kleckner, Read, Vitelli, Turner, Irvine (2015): *Topological mechanics of gyroscopic metamaterials*

Metamaterial constructed from suspended gyroscopes

 $t = -3.7s$

 $t = -3.0s$ ø Ü. G Ω \mathbf{C} Q

Mitchell, Nash, Hexner, Turner, Irvine (2018): *Amorphous topological insulators constructed from random point sets*

Simulation of metamaterial constructed from random point cloud.

Basic mathematical description

Definition. The Hamiltonian *H* is *insulating* at the energy level *E* if

Gapped Hamiltonians

 $E \notin spec(H)$. "Fermi energy"

 self-adjoint (possibly unbounded) operator acting on a Hilbert space ℋ.

We consider physical systems described by a Hamiltonian *H*.

Lattice systems

Given a discrete metric space *X*, one typically considers the Hilbert space

$\mathscr{H} = \ell^2(X) \otimes \mathbb{C}^n$.

A typical toy model Hamiltonian for $\Gamma = \mathbb{Z}^d$ would be

$$
H = \frac{1}{2i} \sum_{j=1}^{d} (S_j - S_j^*) \otimes \gamma_j + \left(m + \frac{1}{2} \right)
$$

For suitable values of *m,* this has a spectral gap at $E = 0$.

Continuous systems

Let X be a Riemannian manifold (typically $X = \mathbb{R}^d$) and consider the Hilbert space $\mathcal{H} = L^2(X)$. The typical Hamiltonians are differential operators (usually Dirac or Laplace type).

-
- where $X = \mathbb{R}^2$ and $A \in \Omega^1(\mathbb{R}^2)$ satisfies
- $9|\theta|$ 1 $7|\theta|$ $5|\theta|$ A toy example is the **Landau Hamiltonian**, $H = (d - iA)^*(d - iA),$ $3|\theta|$

 $dA = \theta \cdot \text{vol}, \qquad \theta \in \mathbb{R}.$

 $|\theta|$

Equivariant case

Suppose that $X \subseteq \mathbb{R}^d$ is invariant under translations by \mathbb{Z}^d and that the Hamiltonian is equivariant. *H*

 $\ell^2(X) \otimes \mathbb{C}^d$ (X) \otimes \mathbb{C}^d \cong $L^2(\mathbb{T}^d)$ \otimes \mathbb{C}^d *H* ← → $spec(H) = 0$ $k \in \mathbb{T}^d$ spec(*H*(*k*))

Fourier transform:

Equivariant case

If H has a spectral gap at E , we may construct a vector bundle *V* over \mathbb{T}^d , with fibers

Non-triviality of *V* may be measured by characteristic classes (*Chern insulator*).

$$
V_k = \bigoplus_{\lambda \leq E} \text{Eig}(H(k), \lambda).
$$

$H(k) =$ $cos(k_1) + cos(k_2) + m$ $sin(k_2) - i sin(k_1)$ **Example:** $H(k) = \begin{pmatrix} 1 & k \\ sin(k_2) + i sin(k_1) & -cos(k_1) - sin(k_2) - m \end{pmatrix}$

Get line bundles with nontrivial first Chern class if *m* ∈ (-2, 0) or *m* ∈ (0, 2)

Disordered systems

Example. Kitaev's formula *ν*(*P*) = 12*πi* ∑ ∑ ∑ *x*∈*A y*∈*B z*∈*C* $(P_{xy}P_{xz}P_{zx}-P_{xz}P_{zy}P_{yx})$

Disordered systems are often considered to be rather mysterious!

There are several *ad hoc* ways to calculate some generalized "Chern number" from the projection P onto the spectrum below the Fermi energy ("Fermi projection").

The non-commutative framework

We start with some "observable" C*-algebra $\mathscr A$ and a Hamiltonian $H \in \mathcal{A}$, which is insulating at E.

The corresponding Fermi projection $P = \varphi(H)$ is an element of $\mathscr A$.

 \implies Get a class [P] in $K_0(A)$.

*C**-algebraic treatment

or, more generally, a possibly unbounded operator on a Hilbert A-module

 φ

Definition. A *topological insulator* is an insulator such that this class [*P*] is non-trivial.

*C**-algebraic treatment

$$
P = \varphi(H)
$$
 is an

Example: The spectral projection onto each eigenvalue of the Landau Hamiltonian is a generator of $K_0(\mathbb{C}^*(\mathbb{R}^2)) \cong \mathbb{Z}$

The corresponding Fermi projection F element of $\mathscr A$.

 \implies Get a class [P] in $K_0(A)$.

Definition. A *topological insulator* is an insulator such that this class [*P*] is non-trivial.

Roe algebras

Consider a metric space X and let \mathcal{H} be an ample X -module. The *Roe algebra of* X is

$C^*(X) = \{T \in B(\mathcal{H}) \mid T \text{ locally compact, of finite propagation}\}$

For $Y \subseteq X$, the *Roe algebra localized at* Y is $C^*(Y \subseteq X) = \{T \in C^*(X) \mid T \text{ supported near } Y\}.$

Roe algebras are coarsely invariant!

What about boundary behavior?

Bulk-boundary correspondence

For suitable subsets $Y \subseteq X$, we have a *coarse Mayer*-*Vietoris sequence* and a corresponding boundary map

$\delta: K_0(C^*(X)) \longrightarrow K_1(C^*(\partial Y \subseteq X))$

X ∂*Y* idealized "bulk Hamiltonian" $H \in C^*(X)$

Suppose that H is insulating at E and let P be the corresponding Fermi projection.

Theorem. If $\delta([P]) \neq 0$, then the Hamilton with boundary conditions H has no spectral gap at E. $\tilde{\textbf{z}}$ *E*

\implies conducting edge modes!

Hamiltonian with boundary conditions *H* ■带带 ∈ *C**(*Y* ⊆ *X*)

 $[$ *P* $] \in K_0(C^*(X))$ $K_0(C^*(Y)) \longrightarrow K_0(C^*(Y)/C^*(\partial Y)) \longrightarrow K_1(C^*(\partial Y))$ δ Exp Measures failure of to little to a projection in *P* ∈ *C**(*Y*)/*C**(∂*Y*) *C**(*Y*) *π** *E*

[*P* $\boldsymbol{\widetilde{D}}$] ∈

Theorem. If $\delta([P]) \neq 0$, then the Hamilton with boundary conditions H has no spectral gap at E. $\tilde{\mathbf{z}}$

If spectral gap was not filled \implies can lift $P = \varphi(H)$ to $P = \varphi(H)$ in $\boldsymbol{\widetilde{D}}$ $= \varphi(H)$ ˜) *C**(*Y*)

Proof.

If spectral gap was not filled \implies can lift $P = \varphi(H)$ to $P = \varphi(H)$ in $\boldsymbol{\widetilde{D}}$ $= \varphi(H)$ ˜) *C**(*Y*) \Rightarrow Exp(π _{*}[*P*]) = 0 \Rightarrow δ ([*P*]) = 0

[*P* $\boldsymbol{\widetilde{D}}$] ∈

Theorem. If $\delta([P]) \neq 0$, then the Hamilton with boundary conditions H has no spectral gap at E. $\tilde{\mathbf{z}}$

 $[$ *P* $] \in K_0(C^*(X))$ $K_0(C^*(Y)) \longrightarrow K_0(C^*(Y)/C^*(\partial Y)) \longrightarrow K_1(C^*(\partial Y))$ δ Exp Measures failure of to little to a projection in *P* ∈ *C**(*Y*)/*C**(∂*Y*) *C**(*Y*) *π** *E*

Proof.

Example: Suppose that *Y* is a "coarse half space" in $X = \mathbb{R}^2$. 2

- $K_0(C^*(X)) \cong \mathbb{Z}$
- Y and Y^c are flasque, so *Y* and Y^c are flasque, so $K_\bullet(C^*(Y)) = K_\bullet$

 \implies boundary maps are isomorphisms. \implies **Landau Hamiltonian on** *Y* **has all gaps filled!**

$(C^*(Y^c)) = 0$

Equivariant version

If a group Γ acts on X , then we may get an equivariant version:

Cobordism invariance of topological edge-following states (2023), with G. C. Thiang *Breaking symmetries for equivariant coarse homology theories* (2024), with Uli

$C^*_{\text{group}}(\mathbb{Z}) \otimes \mathbb{K} \cong C^*(\mathbb{Z})$ ^ℤ ⊆ *C**(ℤ) Group C^{*}-algebra inclusion induces

*^K*0(*C*[∗](*^Y*)) *^K*0(*C*[∗](*^Y*)*/C*[∗](∂*^Y*)) *^K*1(*C*[∗](∂*^Y*))

The group $K_1(C^*_{\text{group}}(\mathbb{Z})) \cong \mathbb{Z}$ is generated by the shift operator.

Why do the edge states travel?

How to extract numbers from K-theory classes?

Kitaev's formula

Idea: This defines a coarse cohomology class.

ν(*P*) = 12*πi* ∑ ∑ ∑ *x*∈*A y*∈*B z*∈*C* $(P_{xy}P_{yz}P_{zx}-P_{xz}P_{zy}P_{yx})$

Quantization of conductance and the coarse cohomology of partitions (2024), with G. C. Thiang

Coarse cohomology

supp(φ) \cap *B_r*(Δ) is bounded for each $r > 0$. The differential is the Alexander-Spanier differential $\delta \varphi(x_0, \ldots, x_n) =$ *n* ∑

 \implies get a cohomology groups $H\mathscr{X}^n(X)$.

- A *coarse cochain* is a locally bounded Borel function $\varphi : X^{n+1} \to \mathbb{R}$ such that
	-

$$
\sum_{i=0}^n (-1)^i \varphi(x_0, \ldots, \hat{x}_i, \ldots, x_n)
$$

$$
^n(X).
$$

Pairing with K-theory

There is a map (the *Connes character map*) $\chi : H\mathscr{X}^n(X) \longrightarrow H\mathbb{C}^n(\mathscr{B}(X))$ $\text{such that } \chi(f_0 \otimes \cdots \otimes f_n)(A_0, \ldots, A_n) = \text{Tr}(f_0 A_0 f_1 A_1 \cdots f_n A_n).$ Composing with the cyclic homology Chern character gives pairings $K_0(\mathcal{B}(X)) \times H\mathcal{X}^{2n}$ $(X) \longrightarrow \mathbb{R}$

algebra of nite propagation, locally that class operators

given by

 $\langle [P], f_0 \otimes \cdots \otimes f \rangle$

$$
f_{2n} = \text{Tr}(f_0 P f_1 P \cdots f_{2n} P).
$$

Partition classes

Given a partition such that for all $r > 0$, $B_r(A) ∩ B_r(B) ∩ B_r(C)$ is bounded, we get a closed coarse 2-cochain by

 $\varphi_{A,B,C} = A \otimes B \otimes C + B \otimes C \otimes A + C \otimes A \otimes B$ −*A* ⊗ *C* ⊗ *B* − *C* ⊗ *B* ⊗ *A* − *B* ⊗ *A* ⊗ *C*

Partition classes

Given a partition such that for all $r > 0$, $B_r(A) ∩ B_r(B) ∩ B_r(C)$ is bounded, we get a closed coarse 2-cochain by

 $\varphi_{A,B,C} = A \otimes B \otimes C + B \otimes C \otimes A + C \otimes A \otimes B$ −*A* ⊗ *C* ⊗ *B* − *C* ⊗ *B* ⊗ *A* − *B* ⊗ *A* ⊗ *C*

Observe: For any $r > 0$, if $x = (x_1, x_2, x_3) \in \text{supp}(\varphi_{A,B,C})$ is such that $d(x_i, x_j) \le r$, *then* x_1, x_2, x_3 ∈ $B_r(A) \cap B_r(B) \cap B_r(C)$.

Partition classes

For pairing with K-theory, we get $\langle \varphi_{A,B,C}, P \rangle = 3(\text{Tr}(APBPCP) - \text{Tr}(APCPBP))$ $= 3 \sum \sum (P_{xy}P_{yz}P_{zx} - P_{xz}P_{zy}P_{yx}).$ *x*∈*A y*∈*B z*∈*C* $(P_{xy}P_{yz}P_{zx}-P_{xz}P_{zy}P_{yx})$

This is (up to a factor of 4*πi*) precisely the formula of Kitayev.

Note: This is well-defined, as if P has propagation bound r, then *APBPCP* is \sup supported on the bounded set $B_{3r}(A) \cap B_{3r}(B) \cap B_{3r}(C)$, hence trace-class.

Locality

 $(P_{xy}P_{yz}P_{zx}-P_{xz}P_{zy}P_{yx})$

 $B_r(B) ∩ B_r(C)$

Calculate: $Tr(APBPCP) = \sum Tr(xPBPCP) = \sum Tr(PBPCPx)$ *x*∈*A x*∈*A*

If P has propagation bound r, then xP has support in $B_r(x)$. \implies If $d(x, B) > r$, then $xPB = 0$ and if $d(x, C) > r$, then $CPx = 0$.

The same argument for *B*, *C* instead of *A* shows that $\langle \varphi_{A,B,C}, P \rangle$ can be calculated "near the coarse intersection" of A, B, C:

$$
\langle \varphi_{A,B,C}, P \rangle = 3 \sum_{(x,y,z) \in B_r(A) \cap B}
$$

Locality

Strict locality fails if P does not have finite propagation, but remains approximately true if P has rapid decay.

with boundary conditions, then by finite propagation of H , we have that $\tilde{\mathbf{d}}$

is *small* away from ∂Y , for any $\varphi \in C_0(\mathbb{R})$.

Example: If $Y \subseteq X$ and H is the restriction of the Hamiltonian H to Y , equipped *H Y*

$$
\tilde{P} - P = \varphi(\tilde{H}) - \varphi(H)
$$

Real-space Chern number calculation for an amorphous network

Integrality?

Why is $4\pi i \cdot \langle \varphi_{A,B,C}, P \rangle \in \mathbb{Z}$?

Higson corona

For $r > 0$, the *r*-variation of $f: X \to \mathbb{C}$ is

be the algebra of functions with bounded variation at infinity. *The Higson corona ∂X* of *X* is the compact Hausdorff space such that

 $Var_r f(x) = \sup |f(x) - f(y)|.$ $y \in B_r(x)$

- $C_h(X) = \{ f \in C_b(X) \mid \forall r > 0 : \text{Var}_r f \in C_0(X) \}$
	-
	-
	- $C(\partial X) = C_h(X)/C_0(X).$

Let

Higson corona

For $T \in C^*(X)$, we have that

- [*T*, *f*] is compact if $f \in C_h(X)$;
- *fT* and *Tf* are compact if $f \in C_0(X)$.
- Get a *-homomorphism

Which induces a map on K-theory,

$C(\partial X)$ ⊗ $C^*(X)$ → $C^*(X)/K$,

$K^{i+1}(\partial X) \times K_i(C^*(X)) \longrightarrow K_1(C^*(X)/\mathbb{K}) \longrightarrow K_0(\mathbb{K}) \cong \mathbb{Z}$

One may show that $4\pi i \cdot \varphi_{A,B,C}$ is the image of a generator of

$H\mathcal{X}^{ev}(X) \longrightarrow \text{Hom}(K_0(C^*(X)), \mathbb{R})$

under the left vertical map. Hence $4\pi i \cdot \varphi_{A,B,C}$ pairs integrally with $K_{0}.$ $4\pi i \cdot \varphi_{A,B,C}$ is the image of a generator of K^1 (∂*X*)

