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What are topological insulators?

insonctative

A topological insulator is a material toposlaion: emlce d.s'ci?s?ﬁi?ﬁim
whose interior behaves as an electrical
insulator while its surface behaves as

an electrical conductor,! meaning that

electrons can only move along the
surface of the material.
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Basic mathematical description



Gapped Hamiltonians

We consider physical systems described by a Hamiltonian H.

self-adjoint (possibly unbounded)

operator acting on a Hilbert space # .

Definition. The Hamiltonian H is insulating at the energy level E if

E & spec(H).
Fopeet




Lattice systems

Given a discrete metric space X, one typically considers
the Hilbert space

X =7(X)Q C"

A typical toy model Hamiltonian for I' = Z¢ would be

1 & I &
H:Z—iZ}(Sj—S]?k)®7{,-+(m+32(5j+5}?’<))®}’o
]:

j=1

For suitable values of m, this has a spectral gap at £ = 0.



Continuous systems

Let X be a Riemannian manifold (typically X = R?) and consider 9/6)
the Hilbert space # = L*(X). The typical Hamiltonians are
differential operators (usually Dirac or Laplace type). 716|

A toy example is the Landau Hamiltonian, 5|0
H=(d—-1iA)*(d—iA),
where X = R? and A € Q!(R?) satisfies

dA=0-vol, 0OeRr. 10
spec(H )
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E.quivariant case

20
eV

SiC

Suppose that X C R is invariant under
translations by Z¢ and that the Hamiltonian
H 1s equivariant.

Fourier transform:
£4(X) ® C LT ® C°
o] — (H (k) ) keTd

1

spec(H) = U spec(H(k)) :20
keT




E.quivariant case

20
eV

SiC
If H has a spectral gap at E, we may

construct a vector bundle V over T¢, with
fibers

V. = @ Eig(H(k), 1).

A<E

Non-triviality of V may be measured by
characteristic classes (Chern insulator).

-20




Example: H(k) = (COS(kl) + cos(ky) +m sin(k,) — isin(k;) )

sin(k,) + i sin(k;) —cos(k;) — sin(k,) — m

Get line bundles with non-
trivial first Chern class if

me (—2,0)orm e (0,2)




Disordered systems

Disordered systems are often considered to be rather mysterious!

There are several ad hoc ways to calculate some b ° o ®
generalized ,, Chern number” from the projection P e °* |°
onto the spectrum below the Fermi energy (,, Fermi
projection”).

Example. Kitaev’s formula

V(P) = 127Z'i2 Z 2 (nyszsz - szpzypyx)

x€A yeB ze(




The non-commutatve framework



C*-algebraic treatment

We start with some ,,observable” C*-algebra & and EREGAsCt: ally, a possibly

a Hamiltonian H € &/, which is insulating at E. unbounded operator on a
Hilbert &/-module

The corresponding Fermi projection P = ¢(H) is an
element of .

—> Get a class [P] in K (A). P

Definition. A topological insulator is an insulator
such that this class | P| 1s non-trivial. spec( H ) R .




C*-algebraic treatment

Example: T'he spectral projection onto each eigenvalue of the Landau

FHamiltonian is a generator ot K,(C HRY)) = Z

The corresponding Fermi projection P = ¢(H) is an

element of . 5‘9 ‘
—> Get a class [P] in K (A). 3|6
Definition. A topological insulator is an insulator ‘9‘

such that this class [ P] is non-trivial.

spec(H )



Roe algebras

Consider a metric space X and let Z be an ample X-module.
The Roe algebra of X is

C*(X) = {T € B(#) | T locally compact, of finite propagation}

For Y C X, the Roe algebra localized at Y is
C*(YCX)= {T € C*(X) | T supported near Y}.

Roe algebras are coarsely invariant!



What about boundary behavior?



Bulk-boundary correspondence

idealized ,bulk Hamiltonian®
sl = 000.€

For suitable subsets Y C X, we have a coarse Mayer-
Vietoris sequence and a corresponding boundary map

5+ Ky(C*(X)) — K,(C*(3Y C X))

Suppose that H is insulating at £ and let P be
the corresponding Fermi projection.

Theorem. If 6([P]) # 0, then the Hamilton with

boundary conditions H has no spectral gap at E.

\

Hamiltonian with boundary
—> conducting edge modes! conditions H € C*(Y C X)



Proof. Pl e Ko(C*(X)) >0

Theorem. If o([P]) # O, then the Hamilton with

boundary conditions H has no spectral gap at E.

Measures failure of
Pe CH(Y) CH0Y) to litt to a
projection in C*(Y)

It spectral gap was not filled
— can lift P = @(H) to P = @(H) in C*(Y)




Proof. Pl e Ko(C*(X)) >0

Theorem. If o([P]) # O, then the Hamilton with

boundary conditions H has no spectral gap at E.

Measures failure of
Pe CH(Y) CH0Y) to litt to a
projection in C*(Y)

It spectral gap was not filled
— can lift P = @(H) to P = @(H) in C*(Y)




Example: Suppose that Y is a ,,coarse half space” in X = |

o K\(C*X))=Z
e Yand Y* are flasque, so K,(C*(Y)) = K,(C*(Y“)) =0

AN

0 0

hd

Ki(C*(X)) « Ki(C*(Y)) & K1(C*(Y*)) « K1(C*(0Y))

— boundary maps are isomorphisms.

—> Landau Hamiltonian on Y has all gaps filled!



Equivariant version

If a group [ acts on X, then we may get an equivariant version:

C*(0Y CY) > QOC*(Y)* > C*(X)F

h

C*(0Y C Y) . C*(Y)

quasi-invariant

Roe algebra

. C*(Y)/CH(dY CY)

Cobordism invariance of topological edge-following states (2023), with G. C. Thiang
Breaking symmetries for equivariant coarse homology theories (2024), with Uli



Why do the edge states travel?

Coup(Z) ® K & C*(2)” € C*(2)

e | mclus.lon 1.nduces
isomorphism in K-theory

(7)) & Z is generated
by the shift operator.

The group K;(CZp



How to extract numbers
from K-theory classes?



Kitaev's formula

V(P) = 127”'2 Z Z (nyPyZPZX - PXZPZYP)’X)

xX€A yeB ze(C

Idea: This defines a coarse cohomology class.

Quantization of conductance and the coarse cohomology of partitions (2024), with G. C. Thiang



Coarse cohomology

A coarse cochain is a locally bounded Borel function ¢ : X"*! — R such that
supp(¢@) N B.(A) is bounded for each r > 0.

The differential is the Alexander-Spanier differential
OP(Xyy -3 X,) = 2 (—l)i(p(xo, s Ky ey X))
=0

—> get a cohomology groups HZ"(X).



Pairing with K-theory

algebra of finite propagation,

There is a map (the Connes character map) locally trace-class operators
¥ HY"(X) — HC'(BX)S
such that y(fy ® -+ ® f,)(Ay, ... A,) = Tr(fAufid -1, A,).

Composing with the cyclic homology Chern character gives pairings

Ky(B(X)) x HL*"(X) — |

given by
([PL.fo ® - ® fo,) = Tr(foPfiP-fo,P).



Partition classes

Given a partition such that for all > 0,
B.(A) N B.(B) N B,(C)is bounded, we get a closed
coarse 2-cochain by

A

D

Papc=ARBR®C+BRCRA+CRARB
- AQCR®B-CQRBRA-BRARC

Indicator functions




Partition classes

Given a partition such that for all > 0, .
B.(A) N B.(B) N B,(C)is bounded, we get a closed
coarse 2-cochain by .

Papc=ARBRC+BQCRA+CRARB
—AQRCRXB—-—CRXBRXA—-—BRKARC

Indicator functions

Observe: For any r > 0, if x = (xy, Xp, X3) € supp(@, p ¢) is such that d(x;, x;) < r,
then x;,x,,x; € B(A) N B(B) N B.(C).



Partition classes

For pairing with K-theory, we get
(@4 5> P) = 3(Tr(APBPCP) — Tt(APCPBP))

=32, 20 2 (PuPyPec= PiPyPy),

x€A yeB ze(

This is (up to a factor of 4xi) precisely the formula of Kitayev.

Note: This is well-defined, as if P has propagation bound r, then APBPCP is
supported on the bounded set B;,(A) N B; (B) N B;,(C), hence trace-class.



Locality

Calculate: Tr(APBPCP) = Z Tr(xPBPCP) = Z Tr(PBPCPx)

xXEA xX€EA

If P has propagation bound r, then xP has support in B (x).
—> If d(x, B) > r, then xPB = 0 and if d(x, C) > r, then CPx = 0.

The same argument for B, C instead of A shows that (¢, -, P) can be
calculated , near the coarse intersection” of A, B, C:

<§”A,B,C9 P) =3 2 (P PyZsz - szpzyPyx)
(x,y,2)€B (A)NB,(B)NB,(C)



Locality

Strict locality fails if P does not have finite propagation, but remains
approximately true if P has rapid decay.

Example: If Y C X and H is the restriction of the Hamiltonian H to Y, equipped
with boundary conditions, then by finite propagation of H, we have that

P—P=q@(H) - ¢(H)

is small away from dY, for any ¢ € C,(R).



Real-space Chern number calculation for an amorphous network

‘ Chern number results
E

=0.000
. 0 : : U .

o | B

... -1.0 , : ,
0. 0. 0. 0.
‘ - Fraction of gyros in sum



Integrality?



Higson corona

For r > 0, the r-variation of f : X — C is

Var, f(x) = sup |f(x) —fO).

YEB,(x)
Let
C,(X) =4f€ C,X) |Vr>0: Var,f € CyX)}
be the algebra of functions with bounded variation at infinity.

The Higson corona 0X of X is the compact Hausdorff space such that
C(0X) = C,(X)/ Cy(X).



Higson corona

For T € C*(X), we have that
e [T,f]is compactiffe C,(X);
e fTand Tf are compactif f € Cy(X).
Get a *-homomorphism
C(0X) ® C*(X) — C*X)/IK,

Which induces a map on K-theory,

K (0X) x K;(C*(X)) » K1(C*(X)/K)

° 5 Ko(K)

12



Have a commutative diagram

K'(0X) » Hom (K,(C*(X)), Z)

ch

hd

Hodd (8X)

T

HX*(X) — Hom(Ko(C*(X)),R)

One may show that 47 - @, p - is the image of a generator of K'(0X)
under the left vertical map. Hence 47i - ¢, p - pairs integrally with K|,






