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Equivariant index theory: a bit of history

>

Atiyah, Bott, Segal and Singer extended the Atiyah-Singer
index theorem to the case in which a compact Lie group G
acts on the given compact manifold X and the relevant
operator D is G-equivariant (commutes with the action)

many subsequent contributions

Atiyah was the first to pass to a_non-compact situation by
considering the universal cover X% of X?¢ compact

M= 7r1(X) acts properly, freely and cocompactly on X and
XTI =

Atiyah defined a von Neumann index for a [-equivariant Dirac

operator D, 1ndVN(D+) and proved that it was equal to the
Fredholm index of the operator D induced on X

Connes and Moscovici (Topology, 1990), using K-theory and
cyclic cohomology, extended Atiyah’s theorem, defining higher
indices Ind,(D™"), a € H*(') and proving explicit formulas



there are (non-trivial) extensions of these results to manifolds
with boundary (Donnelly, Lott, Leichtnam-P, Wahl,
P-Schick-Zenobi, Chen-Wang-Xie-Yu); in this case the higher
indices are parametrized by o € HC*(CT, (g)) with (g) an
arbitrary conjugacy class. Need assumptions on I,

Atiyah-Schmidt and Connes-Moscovici (Annals of
Mathematics, 1982) extended Atiyah to non-compact Lie
groups, considering the von Neumann index on G/K, with G
a unimodular non-compact Lie group and K a maximal
compact subgroup

Hang Wang extended the result of Connes-Moscovici to an
arbitrary G-proper manifold (will give definitions)

we are interested in generalizing the results for coverings to
results in G-equivariant index theory with G a non compact
Lie group, both on manifolds without boundary and manifolds
with boundary

thus we consider equivariant index theory on G-proper
manifolds, with G a non-compact Lie group.



G-Proper manifolds: gometric set up

We consider:
» G a connected linear real reductive Lie group
» K < G maximal compact subgroup

» (X,h), a cocompact G-proper manifold, dim X even, 90X = {),
with a G-invariant riemannian metric h

v

proper: the map G x X — X x X, (g,x) — (x, gx) is proper

v

Slice theorem: there exists a K-invariant compact submanifold
S C X s.t. the action map [g,s] — gs, g € G, s € S, defines
a G-equivariant diffeomorphism G xx S % X

» D, a Zp-graded odd G-equivariant Dirac operator on X acting
on the sections of a G-equivariant vector bundle E = ET @ E~



A warning

» let us consider X := G xx S

v

on the left there is a " product” Dirac operator Dqpj;t

> it is stated in some published papers (not by me !) that
Dypriv = D

» this is wrong !

P several proofs in recent literature are affected by this

mistake....

> in particular large and short time behaviour of exp(—tD?).....



Ko-group

>
>

Let A be a unital algebra, for us a C*-algebra

Ko(A) = {formal differences of iso. classes of finitely
generated projective A-modules} (Grothendieck group
associated to the semigroup Proj(A))

a fin. gen. proj. A-module is by definition a direct summand
of a free A-module of finite rank: A® --- @ A (n times, for
some n)

thus a finitely generated projective A-module is the image of a
projector in Mgy k(A) for some k

so, an element in Ky(A) is a formal difference of projectors in
kak(A), ke N

if Ais not unital we work with its unitalization

if A C A is a subalgebra which is dense and holomorphically
closed then Ky(A) = Ko(A)



G-Proper manifolds: compactly supported index classes

» One has a G-equivariant pseudodifferential calculus with
G-compact support W (X, E)

» Can use this calculus to show that DT has a parametrix
Q € VL (X,E~,ET) with remainders Sy € W

> W7 (X, E) is the algebra of G-equivariant smoothing kernels
of G-compact support.

> We set AZ(X,E) :=V T (X,E)

» We define the projector

p._ ST S(I+S)Q
' S_Dt | —S2 ‘

» The compactly supported index class is by definition

Inde(D) = [P] - [e1] € Ko(AG(X, E)) with e := ( 8 C1) >

We shall often forget about vector bundles in the notation...



G-Proper manifolds: C*-index classes

>

>
>
>

we now consider C*(X, E)® := closure of Vo (M, E)in
B(L*(X, E))

this is called the Roe algebra;

Ind(D) =: [P] — [e1] € Ko(C*(X, E)®) is the C*-index class
Important: Ind(D) € Ko(C*(X, E)®) is the class we are
interested in !

Indeed: (i) C*-index class of the spin-Dirac operator of a
G-invariant PSC metric vanishes

(ii) C*-index class of the signature operator is a G-homotopy
invariant

Remark: we can give a different representative of this index
class, the Connes-Moscovici projector:

—-D-D* —~1p-D+ /—e—D’D*) -
Vem(D) = © ¢’ ( o-or )P
e300 p+ | — e—D'D™



Cyclic cohomology

A = Fréchet algebra over C

Hochschild cochains of degree k: CK(A)

CKk(A) : all continuous k -+ 1-linear functionals ® on A
Hochschild codifferential b: CX(A) — Ck*1(A)
bd(ap ® -+ ® ak+1)

—E, o( 1)®P(ag® - ®ajaj+1 @ -+ ® ak+1)
+(— )k+1¢(3k+130 ®a;® - ® ag).

» Hochschild cohomology of A is cohomology of (C*(A), b)
» a Hochschild k-cochain ® € C¥(A) is called cyclic if
CD(ak, ag, ...y ak_l) = (—1)k¢(ao, Al ...y ak)

C¥(A)= {cyclic cochains} ; it is closed under b.

» cyclic cohomology HC*(A) = cohomology of (CX(.A), b).

v



0-cyclic cocycles (traces)

» HC%(A)={d: A— C continuous | P(agar) = ®(a1a0)}
» = HCY(A) = continuous traces on A

> we remark that there exists a natural pairing

(-, Ko(A) ® HC°(A) — C:

((pi), ® Z ®(py)

> in general there is a paring (-,-) : Ko(A) @ HC?(A) — C

1
H Z q)(piol'la cey pigkio)

0501512k

([P, ®) =



Higher numeric indices

>

| 2

vvyyy

we want to extract numbers out of the C*-index class

Ind(D) € Ko(C*(X)©)

first we extract numbers out of the compactly supported index
class Indc(D) € Ko(Ag(X))

we use the cyclic cohomology groups HC*(A%(X)

and the pairing (-,-) : Ko(AG(X)) @ HCV (AL (X)) — C
= want cyclic cocycles for the algebra AZ(X)

next we want to

(1) find a dense and holomorphically closed subalgebra
AZ(X) of C*(X)C such that

AZ(X) C AZ(X) C C*(X)©

(this will ensure that Ko(AZX (X)) = Ko(C*(X)®)) and
(2) EXTEND the cyclic cocycles from AZ(X) to AZ(X)

the latter step, which is analytical, is often quite technical



Cyclic cocycles from group cocycles

> we start with cyclic cocycles for C2°(G)

> we first define H};(G) and prove that there is a morphism
Hiig(G) = HC*(C2(G))

> let's define Hiq(G): we consider C>(G*K);
§: C®(G*K) — C*°(G*¥) defined by
o(p)(81: -, 8rr1) = (82, -+ B41) — P(8182, - Bkv1) +

(D) (g grgkn) + (=1 T olgr, - gk)-

» differentiable group cohomology Hj(G) is the cohomology
of (C*(G**),9)

» there is a Van Est isomorphism H}.:(G) = H;i (G/K)



Cyclic cocycles from group cocycles (cont)

> let ¢ € H 2 (G)
> let ag,...,ax € C°(G)
Define 7,(ao, .. ., ak) =
Joxkole, g1, g1 gk)ao((g1- - gk) Hai(gr) - - - ak(gk)dg - - - dgk
Proposition: 7, € HC*(CZ°(G))
Conclusion: we have defined a map
Hg(G) 3 p— 7, € HC*(CZ°(G))
which is a morphism



Example

> we take G = SL(2,R)

» observe that K = SO(2) is a max compact subgroup and that
SL(2,R)/SO(2) = H?, the hyperbolic plane;

> gS0(2) =g

> define an element w € H3,5(SL(2,R)) by
w(go, 81,82) = Area A(go, 81, 8>) (geodesic triangle)

» 7, is the following cyclic 2-cocycle on C2°(SL(2,R)):

To(fo, i, o) 1=

/ f((g122) V) fi(81)f(g2) Areare (A (e, 71, B))den dgo
SL(2,R)*2



Cyclic cocycles from orbital integrals

> Given g € G semisimple we consider the so called orbital
integral trg: if Z:= Zg(g) and f € C°(G) then

trg(f) = /G/Z f(xex 1)d(xZ).

» Proposition: trg is a trace and hence defines a class
trg € HCO(C°(G))

» trg does not come from the differentiable cohomology of G; it
is a delocalized cocycle



Cyclic cocycles from higher orbital integrals

» Song and Tang defined for each P < G cuspidal parabolic
subgroup with Langlands decomposition P = MAN,
m :=dim A and g € M semisimple an element

®F € HC™(C(G))

» these are higher delocalized cocycles

» we skip the definition which is somewhat involved



Cyclic cocycles for A% (X, E)
> given ¢ € H].:(G) we have defined 7, € HC"(C2°(G))
> can similarly define 7¥ € HC"(AG(X)).
> Tg(ko,...,k,,) is

/ / c(x0) -+ c(xn) ko(x0; 81X1) -+ - kn(xn: (81 &n) " X0)
Gk J X(k+1)
o(e, 81,8182, -, 81~ &n)dxo - - - dX,dg1 - - - dgp.

cis a cut-off funct. on X: [ c(g™tx)dg =1Vx e X
> similarly, from trg we define try € HCO(AZ(X)):

trg(k) = /G/Z/Xc(hghlx)tr(hgh1m(hg1h1x,x))dxd(hZ)

» and similarly, from CDg € HC™(C2°(G)) we can define
b ¢ € HCT(AG(X))



Extension of cyclic cocycles on G

vy

vvyyypy

v

we have defined cyclic cocycles on C2°(G)

we must fix a dense holomorphically closed subalgebra of

¢ (6)

the Harish-Chandra algebra C(G) is such a subalgebra

C(G) is made of functions of "rapid decay” on G

Ceo(6) cC(6) c ¢(6)

Theorem: the cyclic cocycles 7, extend continuously to C(G)
(P-Posthuma 2020)

Theorem: the cyclic cocycle trg extends continuously to C(G)
(Harish-Chandra)

Theorem: the cyclic cocycles ® extend continuously to C(G)
(Song-Tang 2018)



Harish-Chandra smoothing operators

> go back to AG(X) := VT (X), the smoothing G-equivariant
operators on X of G-compact support

» recall slice theorem: X = G xx S

> as a consequence A% (X) = (CZ(G)@W~>2(S))K*K

> define AX(X) := (C(G)RWY~2(S))K*K
these are the Harish-Chandra smoothing operators

> AX(X) dense and holomorphically closed in C*(X)®

» from extension properties of 7, trg, ¢£,’ =

T;(, trg, <D§7g extend continuously to AZ (X)



Higher indices

» Theorem (P-Postuma 2020) The Connes-Moscovici projector

—D-D+ “1p=pt (|—e D DPT\ 4=
e e ? (W b

_1lp+tp- _D+D—
e 3D"DT p+ | — e~ D*D

Vem(D) = (

has entries in AX(X)

» this defines a "smooth” index class:
Indo (D) € Ko(AZ (X)) = Ko(C*(X)°)
» we define higher indices by pairing:

(Indoo(D), 7). (Indso(D), try),  (Indec(D), X ;)

» there are, correspondingly, 3 index theorems



Higher index formulae

» Pflaum-Posthuma-Tang give a formula (Indoo (D), 7X): if

®
¢ € Hi(G)

Indy(D) := (Inds(D), 7) = C(p)/XcAS(X)A%

with ¢ a cut-off function, w, an explicit closed G-invariant
form on X.

» Pflaum-Posthuma-Tang use algebraic index theorem of
Nest-Tsygan;
P-Posthuma gave a heat kernel proof using Getzler rescaling



Higher genera

Consider the signature operator D8 and, if X admits a
G-invariant spin structure, the spin-Dirac operator DSP™®,
Then up to the factor C(p),

>

| 2
>

Ind,,(D™8") equals [, c L(X) A w, with ¢ a a cut-off funct.
Ind,, (D) equals [, ¢ A(X) A w,
define the higher signature associated to [¢] as
o(X,[¢]) == [x c L(X) Awy
define the higher A genus as A(X [¢]) == [y CA ) AWy

index class of the signature operator is a G—homotopy
invariant (Fukumoto)

index class of spin-Dirac operator vanishes if 3 a G-invariant
metric of positive scalar curvature (Guo-Mathai-Wang)

thus, under our assumptions, (X, [¢]) is a G-homotopy
invariant and A(X [¢]) vanishes in the presence of PSC.



Delocalized (higher) index theorems

» Peter Hochs and Hang Wang proved the following index
formula

(Induo(D), %) = /X cEAS,(X)

> ASg(X) is the Atiyah-Segal form on the fixed point set X&

» warning: they use the wrong operator....; corrected proof in
P-Postuma-Song-Tang (August 2023).

» Hochs-Song-Tang give a formula for <Indoo(D),<D)P<7g) by a
clever reduction to a O-degree index theorem (a la
Hochs-Wang) on the M-manifold X/AN with P = MAN:

(Indso(Dy), ®% ) :/

c? AS(Yo/AN
(Yo/ AN), Yo/AN ( 0/ )g



Questions

» what about G-proper manifolds with boundary ?

» Can we prove a higher (delocalized) Atiyah-Patodi-Singer
index theorem for cocompact G-proper manifolds with
boundary ?

» Can we define secondary invariants (higher rho numbers) for
an invertible operator on a cocompact G-proper manifold
without boundary by looking at the boundary correction term
in these APS theorems ?

» Are these higher rho numbers interesting invariants 7



Short answers

» for the cyclic cocycles 7, ¢ € Hjy.4(G) (and the
corresponding Té() a higher APS index theorem is proved by
P-Posthuma (2021)

» for the delocalized O-cyclic cocycle trgy defined by the orbital
integral a APS index theorem has been proved by Peter
Hochs-Hang Wang-Bai Ling Wang (2020) under the
assumption that G/Zg(g) is compact

» P-Posthuma-Song-Tang : completely different proof and no
assumption on G/Zg(g) (August 2023)

» P-Posthuma-Song-Tang : extension to perturbed operators
D + A, with A a Lafforgue smoothing operators (quite a
technical proof, August 2023)

» for the delocalized m-cocycles <I>'gD defined by higher orbital
integrals this is again a result by P-Posthuma-Song-Tang

» crucial technique: interplay between absolute and relative
K-theory and absolute and relative cyclic cohomology



Precise statements: geometric data

> Yp is a cocompact G-proper manifold with boundary

P metrics, bundles, connections etc are all of product type near
the boundary

» D is a G-equivariant Dirac operator; Dy boundary operator

» Y is the G-manifold with cylindrical end associated to Yj

» if Dy is L2-invertible than there exists a well defined
Indc+(D) € Ki(C*(Yo C Y)©) (John Roe)

» we want to define higher C*-indices and prove higher C*
Atiyah-Patodi-Singer index formulas



Statements: higher APS indices

Theorem
(1) There exists a dense holomorphically closed subalgebra AZ(Y')
of C*(Yo C Y)© (defined in terms of the residual b-operators)
(2) There exists a smooth representative Inds (D) of the index
class in Ko(AZ(Y)) = Ko(C*(Yo C Y)©).
(3) The cyclic cocycles
TJ tr;/ , (D?g
are well defined in HC*(AZ(Y))
(4) by pairing we obtain higher APS indices

(Indso(D),7) ), (Indse(D),tr) ), (Indss(D), d% ;).



Statements: index formula for 7,

» Because of time we skip the APS index theorem for
(Inds(D), 7)) (P-Posthuma, Annals of K-theory, 2021)

> we concentrate on (Indw(D), try ) and (Indoo(D), % ,);
these are delocalized (higher) APS indices

» we begin with <Indoo(D),trg,/ )

Theorem
Assume Dy L?-invertible. Then the delocalized eta invariant

1(0a) = = [ a2 (Do expl~D3)

is well defined and

1
(Indoo (D), tr)) = / cBASe(Yo) — ~ng(Da).
(Yo) 2



With Posthuma, Song and Tang we have spent a lot of energy
proving the following result (where we do not assume that the
operator is a boundary operator):

Theorem

Let (X, g) be a cocompact G-proper manifold without boundary
and let D be an L?-invertible G-equivariant Dirac-type operator.
Let g be a semi-simple element. Then the integral

ng(D) = \}7?/000 trf;(D exp(—tD2))jtE (1)

converges.



Perturbed operators

» In a second paper we also deal with Dx + Ax, Ax € AZ(X),
X without boundary and prove convergence of 7,(D + A)
under the assumption that Dx + Ax is L?-invertible; large
time behaviour rather delicate

» we then prove a higher APS index theorem for operators
Dy + Ay with Y manifold with cylindrical ends and Ay a lift
of Apy such that Dyy + Ay is invertible

P the first result applies for example to the disjoint union of two
G-proper manifold without boundary Xi, X, for which there is
a G-homotopy equivalence f : X3 — X3

» second result applies to two G-manifolds with boundary Y7,
Y> with a G-homotopy equivalence f : 9Y; — 0Y>

» on Galois coverings these results are crucial in connection with
the surgery exact sequence in differential topology (Wahl,
P-Schick)



Statements: index formula for Cbg

» Next we tackle (Indoo(D),d)?g).

Theorem
Assume Dyy L?-invertible. Then

1
(ndoc(D), 0 ) = [k AS(Yo/ AN)— 31 Doy am)

(Yo/AN)g

This is proved in P-Postuma-Song-Tang by jazzing-up to manifolds
with boundary the reduction procedure of Hochs-Song-Tang and
then applying the previous theorem.



rho numbers

| 4

>

Let X a G-proper manifold without boundary. Assume we
have a G-equivariant spin structure.

if h is a G-invariant metric of positive scalar curvature then
we can define

pg(h) = ng(Dn)
we can also define pg(h)

if g does not have fixed points then these are invariants for
equivariant concordance and equivariant psc-bordism

we could similarly define a rho number associated to a
G-equivariant homotopy equivalence f : X — X’ by using the
Fukumoto-Hilsum-Skandalis perturbation A(f) and considering

pe(f) 1= ng(DVE" + A(F))

connection with G-h-cobordism through our APS theorem
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This is a survey !l Last version on arxiv is the best...



Thank You
Happy Birthday to Ulrich !
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