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10 years a go in Greifswald ---000

Uti was as fast in the sand as in Lectures .

The immersion order on 4-manifolds

Motivation from quantum cellular automate :

O a cellular automator is a local rule for

updating states of some collection of sites,
offer points on a lattice or a grid in a monifold,
e .g. Conway's game life.

· a QCA is a local unitary evolution , eating
on a collection of Hilbert- spaces .
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do M > QCA(M) leads to &

coarse (??) lonology Heory that has

(controvariant) transfer maps for codin .O

immersions M & Nand in fact for

M-Smol =: My 2, N healing the puncture
if MP

,
N
d
are closed

,
connected.

Def : 1) MIN if 5 My2 N

2) MAN if MeN & NEM

immersion equivalence classes in herit partial order
&" is the minimum ,

M
..
Ma = N => M#M2 = N

Mike's question : For d= 4
,
which orders appear ?



Warm-up : d = 2. The S2 < IRP2

represents Re entire inversion order

Con closed ,
connected 2-manifolds
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Proof : ga [ M is absolute minimum d
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of M2 is orintable ten M
.
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e . g.
torns : and similarly

for higher genus
(and non-oriat .)
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I hona. Y : M >Prop: MN
WeM := werM=0 i

We We

1) SME) Moriable , 1
2) IRPX si is global maximum and HPXSNN

= Exet
,
N : 1 but Wild to .

3) SE5=N El N is non-orientable

4) M : Ses E FM
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E
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Alan Reid's appendix is about a

hyperbolic M3 sit seeMIIRPEs

isQuestions

:
Does He immersion order contain

a chain..... I Mo IMrEM2E ... .. d=/



Prop .
: 17 M2= &Y Es M spin ,

i.
. e . WeM=M= 0

d=4

2) M = 40 ) M Orientable (Emax.?)
3) Cp2 = M - wa + 0

4) S' = S2ME M non-orientable

5) M = S' * 5 Es wiM lifts to E , WM
=0

Proofs: By R-principle (or Phillips' thm . (

j : M>2 N exists #) TM > TN exists
↓ ↓
f

M > N
Moreover, 4-dim . Vectorbundles *

over I-complexes are classified by We and

the Wh-formulas give WyM= SqwM + wow
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From analysis to honoopy theory
Cor : The quadruple (t,M , WR , WM ,IM]
determines immersion A

#(i) ; HiE t
equiv class !
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Theorem 1 : Immersion equivalence classes
of Orientable 4-manifolds will cyclic
fundamental group form He as chain
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M(2") is not spir but almost spin , iniE
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S(3 . j) = M(2)
T IRP2 w(+M(2)) = w + (3p0+MP&

II ↑seri
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=
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e(x ,y) = (- x ,

-y) free action

t = u
,
u(x

, y) = = (y ,
- x) also free
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=U t = id 10 su has #F E4

Is a (non-orientable II
and X = 1

rational homology 4-balls : N(4 ,
1
, 1) andalso

N(
,
1

,
17 := IRPY



Theorem2 : The immersion order graph for
non-orientable 4-wfds ·

Will cyclic the is
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Constructions : N(29 , we , 0) as before !
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Prop :M(2) = NC2 we , c) < w = or E We=& MGet = on all 4-mdds will golic It
[

e
.g . The 50,x , Y given partial order grope

Bai Wa

NA,GRL)Ot - No.All Her Un

Da Un Wh Un

Un Ha

local maxima
-

↑


