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How to solve a polynomial equation?

It is easy to see that p(t) = t2 − 2 has no solution in Q. But there
exists a solution in the field Q[

√
2].

In general, for any non-constant polynomial, there exists a finite
field extension Q ⊂ K , such that p(t) = 0 can be solved in K .

1. Consider a simple quotient Q[t]/〈p(t)〉� K . The image of t
will satisfy the equation p(t) = 0 in K .

2. Embed Q ⊂ C, study the continuous map p : C→ C, and use
a topological argument to see that there exists α ∈ C, such
that p(α) = 0.

The second argument was essentially already present in Gauss’ first
proof in 1799. The right language was not developed until 1930.
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Equations over groups – the one variable case

Definition
Let Γ be a group and let g1, . . . , gn ∈ Γ, ε1, . . . , εn ∈ Z. We say
that the equation

w(t) = g1t
ε1g2t

ε2g3 . . . gnt
εn

has a solution in Γ if there exists h ∈ Γ such that w(h) = 1.

The equation has a solution over Γ if there is an extension Γ ≤ Λ
and there is some h ∈ Λ such that w(h) = 1 in Λ.

The study of equations like this goes back to:

Bernhard H. Neumann, Adjunction of elements to groups, J.
London Math. Soc. 18 (1943), 4-11.
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The general setting

Each equation
w(t) = g1t

ε1g2t
ε2g3 . . . gnt

εn

determines a unique map w : Γ→ Γ by evaluation.

Natural questions:

I When is 1 in the image of w?

I When is w trivial, i.e., only 1 is in the image?

I When is w surjective?

I Is every self-map of Γ of this form?
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Example

If a, b ∈ Γ, then w(t) = atbt−1 cannot be solved over Γ unless the
orders of a and b agree.

Indeed, if such a t exists, then

a−1 = tbt−1.

Example

The equation w(t) = tat−1ata−1t−1a−2 cannot be solved over
Z/pZ = 〈a〉.

Indeed, if w(t) = 1, then

a2 = (tat−1)a(tat−1)−1

and a conjugate of a (namely tat−1) would conjugate a to a2.

But the automorphism of Z/pZ which sends 1 to 2 has order
dividing p − 1 and hence the order is co-prime to p.
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Definition
We say that the equation w(t) = g1t

ε1g2t
ε2g3 . . . gnt

εn is
non-singular if

∑n
i=1 εi 6= 0.

Conjecture (Levin)

Any non-trivial equation can be solved over Γ, if Γ is torsionfree.

Conjecture (Kervaire, 1960s)

If w(t) is non-singular, then w(t) has a solution over Γ.

Theorem (Klyachko, 1993)

If Γ is torsionfree and w(t) is non-singular, then w(t) can be
solved over Γ.

Anton A. Klyachko, A funny property of sphere and equations over
groups, Comm. Algebra 21 (1993), no. 7, 2555–2575.

We will focus on the second conjecture.
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The algebraic/combinatorial approach

Why is this complicated?

Just consider:

Γ→ Γ ∗ 〈t〉
〈〈w(t)〉〉

.

But nobody can show easily that this homomorphism is injective.
In fact, injectivity is equivalent to existence of a solution over Γ.

The Kervaire conjecture originates from low dimensional topology,
where certain geometric operations on knot complements amount
to the attachment of an ”arc” and a ”disc”.

The resulting effect on fundamental groups is exactly

Γ 
Γ ∗ 〈t〉
〈〈w(t)〉〉

.
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However, using topological methods one can show:

Theorem (Gerstenhaber-Rothaus, 1962)

Any non-singular equation in U(n) can be solved in U(n).

Proof.
Consider the word map w : U(n)→ U(n), w(t) = g1t

ε1 . . . gnt
εn .

Since U(n) is connected, each gi can be moved continuously to 1n.
Thus, this map is homotopic to t 7→ t

∑
i εi , which has non-trivial

degree as a map of topological manifolds. Indeed, a generic matrix
has exactly dn preimages with d := |

∑
i εi |. Hence, the map w

must be surjective. Each pre-image of 1n gives a solution of the
equation w(t) = 1n.
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equation w(t) = 1n.



Corollary (Gerstenhaber-Rothaus, 1962)

Any non-singular equation with coefficients in a finite group Γ can
be solved over Γ.

In fact, a finite extension is enough.

The same argument works for any group that is residually finite or,
more generally, suitably approximated by unitary groups.

Such groups are called Connes-embeddable, more precisely,

Γ ⊂

(∏
n

U(n)

)
/N.

Corollary (Pestov, 2009)

Any Connes-embeddable group Γ satisfies Kervaire’s Conjecture.

Question (Connes, 1978)

Do all groups have this approximation property?
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Equations over groups – many equations and variables

Let w1,w2, . . . ,wk ∈ Fn ∗ G , and denote by ε(w1), . . . , ε(wk) ∈ Fn

their images under the natural homomorphism ε : Fn ∗ G → Fn.

Question
Under what conditions on ε(w1), . . . , ε(wk) is the homomorphism

ϕ : G → Fn ∗ G
〈〈w1,w2, . . . ,wk〉〉

injective? Equivalently, we ask when the equations w1, . . . ,wk be
solved simultaneously in a group containing G?

Question
Consider X ⊂ Y → Y /X , with Y /X two-dimensional. When is
π1(X )→ π1(Y ) injective?
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Conjecture (with Klyachko, 2015)

It is possible to solve one equation w ∈ Fn ∗ G , when ε(w) 6= 1.

Theorem (with Klyachko, 2015)

The conjecture holds, when ε(w) 6∈ [Fn, [Fn,Fn]].

The conjecture was recently proved in joint work with Nitsche. In
fact, we can prove much more:

Theorem (with Nitsche, 2018)

Let G be a Connes-embeddable group and let w1, . . . ,wk ∈ Fn ∗G.
If the presentation complex of the presentation

Q = 〈x1, . . . , xn | ε(w1), . . . , ε(wk)〉

admits a covering with trivial second homology, then the system
w1, . . . ,wn is solvable in a group containing G.
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When does the theorem apply?

Question
When does the presentation complex of the presentation
Q = 〈x1, . . . , xn | ε(w1), . . . , ε(wk)〉 admit a covering with trivial
second homology?

I We have k ≤ n and the presentation complex has itself trivial
second homology. This happens when the (n × k)-matrix,
whose (i , j)-entry is the signed number of occurances of the
letter xi in ε(wj), has rank k .

I When the presentation complex is aspherical. Note that in
this case the number of equations k can be larger than the
number of variables.

I The case when k = n − 1 and β
(2)
1 (Q) = 0, i.e. the first

`2-Betti number of the group Q vanishes.
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Sofic groups

Definition
A group G is called sofic if for all finite subsets F ⊆ G and ε > 0
there is n ≥ 1 and a mapping ϕ : F → Sym(n) such that

I if 1 ∈ F , then ϕ(1) = id ∈ Sym(n);

I if g , h, gh ∈ F , then d(ϕ(g)ϕ(h), ϕ(gh)) < ε;

I for g ∈ F \ {1} we have d(id, ϕ(g)) ≥ 1− ε.

Here

d(σ, τ) =
|{1 ≤ i ≤ n | σ(i) 6= τ(i)}|

n

is the normalized Hamming length on Sym(n).
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Approximation by symmetric groups

Question (Gromov)

Are all groups sofic?

Examples of sofic groups:

I residually finite groups and amenable groups,

I inverse and direct limits of sofic groups,

I direct and free products of sofic groups,

I subgroups and certain extensions of sofic groups.

Theorem (Elek-Szabo)

Sofic groups are Connes-embeddable.
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What does that mean?

More concretely, if Γ = 〈X | R〉 is finitely presented, then we look
for interesting homomorphisms α : FX → Sym(n), such that α(r)
is ε-close to 1n for all r ∈ R .

Such a map is called ε-homomorphism from Γ to Sym(n).

Proposition

A finitely presented group Γ = 〈X | R〉 is sofic if and only if there
exists a sequence (αn : FX → Sym(kn))n∈N such that

I αn is a (1/n)-homomorphism, and

I For g 6∈ 〈〈R〉〉, the sequence (αn(g))n∈N of permutations fixes
less and less.
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Stability

Definition
A group G is called stable, when for all ε > 0, there exists δ > 0,
such that every δ-homomorphism from G to Sym(n) is ε-close to a
homomorphism.

An IRS on G is a conjugation-invariant probability measure on the
compact space of subgroups of G – a generalization of the notion
of normal subgroup.

Theorem (with Becker and Lubotzky, 2017)

An amenable group is stable if and only if all IRS are limits of
finite-index IRS. This happens for example for polycyclic groups,
but not for all residually finite groups.

Corollary (Arzhantseva-Paunescu, 2014)

Almost commuting permutations are close to commuting
permutations.
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Why stability?

Theorem
A sofic and stable group is residually finite, i.e. its elements can be
separated in finite quotients.

It is a classical fact that finitely presented groups exist that are not
residually finite.

In fact, we have seen an example in the beginning

Γ = 〈a, t | a2 = (tat−1)a(tat−1)−1〉.

So, providing examples of non-residually finite and stable groups,
would show also the existence of non-sofic groups
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Non-residually finite central extensions

Theorem (Deligne, 1978)

There exist lattices in algebraic groups that admit finite central
extensions which are not residually finite anymore.

Theorem (with Gohla, 2024)

If Deligne’s lattices satisfies some weak form of stability, then the
central extension is not sofic.

Remark
Currently, there is no residually finite group known not to satisfy
the weak form of stability relevant in the previous theorem.
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Idea of the proof – Part I

Any sofic approximation of a group Γ leads to a non-standard
p.m.p. limit action Γ y (X , µ).

Definition (Kechris)

A p.m.p. action Γ y (X , µ) is weakly contained in a family of
p.m.p. actions Γ y (Xα, µα) if for any partition X = A1 ∪ · · · ∪An,
any ε > 0 and any K ⊂ Γ finite there exists α and a partition
Xα = B1 ∪ · · · ∪ Bn such that

|µ(Ai ∩ gAj)− µα(Bi ∩ gBj)| < ε, ∀1 ≤ i , j ≤ n, g ∈ K .

Definition
A group Γ is called stable in finite actions if the limit action of
each sofic approximation is weakly contained in finite Γ-actions.



Idea of the proof – Part I

Any sofic approximation of a group Γ leads to a non-standard
p.m.p. limit action Γ y (X , µ).

Definition (Kechris)

A p.m.p. action Γ y (X , µ) is weakly contained in a family of
p.m.p. actions Γ y (Xα, µα)

if for any partition X = A1 ∪ · · · ∪An,
any ε > 0 and any K ⊂ Γ finite there exists α and a partition
Xα = B1 ∪ · · · ∪ Bn such that

|µ(Ai ∩ gAj)− µα(Bi ∩ gBj)| < ε, ∀1 ≤ i , j ≤ n, g ∈ K .

Definition
A group Γ is called stable in finite actions if the limit action of
each sofic approximation is weakly contained in finite Γ-actions.



Idea of the proof – Part I

Any sofic approximation of a group Γ leads to a non-standard
p.m.p. limit action Γ y (X , µ).

Definition (Kechris)

A p.m.p. action Γ y (X , µ) is weakly contained in a family of
p.m.p. actions Γ y (Xα, µα) if for any partition X = A1 ∪ · · · ∪An,
any ε > 0

and any K ⊂ Γ finite there exists α and a partition
Xα = B1 ∪ · · · ∪ Bn such that

|µ(Ai ∩ gAj)− µα(Bi ∩ gBj)| < ε, ∀1 ≤ i , j ≤ n, g ∈ K .

Definition
A group Γ is called stable in finite actions if the limit action of
each sofic approximation is weakly contained in finite Γ-actions.



Idea of the proof – Part I

Any sofic approximation of a group Γ leads to a non-standard
p.m.p. limit action Γ y (X , µ).

Definition (Kechris)

A p.m.p. action Γ y (X , µ) is weakly contained in a family of
p.m.p. actions Γ y (Xα, µα) if for any partition X = A1 ∪ · · · ∪An,
any ε > 0 and any K ⊂ Γ finite

there exists α and a partition
Xα = B1 ∪ · · · ∪ Bn such that

|µ(Ai ∩ gAj)− µα(Bi ∩ gBj)| < ε, ∀1 ≤ i , j ≤ n, g ∈ K .

Definition
A group Γ is called stable in finite actions if the limit action of
each sofic approximation is weakly contained in finite Γ-actions.



Idea of the proof – Part I

Any sofic approximation of a group Γ leads to a non-standard
p.m.p. limit action Γ y (X , µ).

Definition (Kechris)

A p.m.p. action Γ y (X , µ) is weakly contained in a family of
p.m.p. actions Γ y (Xα, µα) if for any partition X = A1 ∪ · · · ∪An,
any ε > 0 and any K ⊂ Γ finite there exists α and a partition
Xα = B1 ∪ · · · ∪ Bn

such that

|µ(Ai ∩ gAj)− µα(Bi ∩ gBj)| < ε, ∀1 ≤ i , j ≤ n, g ∈ K .

Definition
A group Γ is called stable in finite actions if the limit action of
each sofic approximation is weakly contained in finite Γ-actions.



Idea of the proof – Part I

Any sofic approximation of a group Γ leads to a non-standard
p.m.p. limit action Γ y (X , µ).

Definition (Kechris)

A p.m.p. action Γ y (X , µ) is weakly contained in a family of
p.m.p. actions Γ y (Xα, µα) if for any partition X = A1 ∪ · · · ∪An,
any ε > 0 and any K ⊂ Γ finite there exists α and a partition
Xα = B1 ∪ · · · ∪ Bn such that

|µ(Ai ∩ gAj)− µα(Bi ∩ gBj)| < ε, ∀1 ≤ i , j ≤ n, g ∈ K .

Definition
A group Γ is called stable in finite actions if the limit action of
each sofic approximation is weakly contained in finite Γ-actions.



Idea of the proof – Part I

Any sofic approximation of a group Γ leads to a non-standard
p.m.p. limit action Γ y (X , µ).

Definition (Kechris)

A p.m.p. action Γ y (X , µ) is weakly contained in a family of
p.m.p. actions Γ y (Xα, µα) if for any partition X = A1 ∪ · · · ∪An,
any ε > 0 and any K ⊂ Γ finite there exists α and a partition
Xα = B1 ∪ · · · ∪ Bn such that

|µ(Ai ∩ gAj)− µα(Bi ∩ gBj)| < ε, ∀1 ≤ i , j ≤ n, g ∈ K .

Definition
A group Γ is called stable in finite actions if the limit action of
each sofic approximation is weakly contained in finite Γ-actions.



Idea of the proof – Part II

I Consider a finite central extension

1→ A→ Γ̃→ Γ→ 1

classified by [α] ∈ H2(Γ,A).

I If Γ̃ is not residually finite, then the restriction of [α] to any
finite index subgroup is non-trivial.

I Consider the Shapiro isomorphism :

H2(Γ,A) H2(Γ,map(Γ/Λ,A))

H2(Λ,A)

ιΓ/Λ

resΓ
Λ

∼
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Idea of the proof – Part III

I In presence of suitable uniform control on the expansion of the
second differential in the chain complex of EΓ, we obtain that

0 6= ι(X ,µ)([α]) ∈ H2(Γ,M(X ,A))

for any action Γ y (X , µ) weakly contained in finite Γ-actions.

I Starting with a sofic approximation of Γ̃, we obtain a
non-standard limit action Γ̃ y (X , µ) such that

0 = ι(Y ,µ′)([α]) ∈ H2(Γ,M(Y ,A))

with Y = X/A, i.e., M(Y ,A) = M(X ,A)A.

I This implies that the induced sofic approximation of Γ is not
weakly contained in finite actions.
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MIP∗ = RE

A recent breakthrough result in computer science and quantum
information theory by Zhengfeng Ji, Anand Natarajan, Thomas
Vidick, John Wright, and Henry Yuen implies that cooperative
games with quantum entanglement can compute any recursively
enumerable set.

As a consequence, the Connes Embedding Problem has a negative
answer, since a positive answer would imply that the outcome
cooperative games with quantum entanglement is computable.

This does not directly lead to a non-Connes-embeddable (hence
non-sofic) group, but it is a very promising direction to follow at
the moment.
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The closest we can get at the moment is:

Theorem (with Hiroshi Ando, 2023)

There exists a topological group of finite type which is not
Connes-embeddable.



Thank you for your attention!


