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Orbifolding partition functions

CFT elliptic genus of a toroidal CFT in two complex dimensions:
H: subspace of space of states (a vector space), J0, J̃0, L

top
0 ∈ End(H),

τ, z ∈ C, Im(τ) > 0, q = exp(2πiτ), y = exp(2πiz);

{1, ι}∼= Z2, HZ2 = 1
2 (1 + ι)H, EZ2 = 1
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1

)
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1

= trH
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ι

)
=
∞∏
n=1

(1− qn)−4︸ ︷︷ ︸
η(τ)−4

∞∏
n=1

(1− qn−1y)2(1− qny−1)2 · y−1︸ ︷︷ ︸
(ϑ1(τ,z)/η(τ))2

·(1− 2 + 1)

1
ι

(τ, z) := exp(−2πiz2/τ) · ι
1
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ι
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(
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1
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) = EK3.
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Geometric orbifolds

M: a Calabi-Yau D-fold, G : a symmetry group of M, that is,
G ⊂ SU(D): a finite group, acting holomorphically, isometrically on M,

such that the holomorphic volume form is preserved.

Then X := M̃/G is a Calabi-Yau D-fold, a G -orbifold of M.

Expect: existence of orbifold conformal field theories
and geometric interpretations on orbifold Calabi-Yaus.
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Geometric orbifolds: orbifold constructions of K3

M: a Calabi-Yau D-fold, G : a symmetry group of M, that is,
G ⊂ SU(D): a finite group, acting holomorphically, isometrically on M,

such that the holomorphic volume form is preserved.

Then X := M̃/G is a Calabi-Yau D-fold, a G -orbifold of M.

Expect: existence of orbifold conformal field theories
and geometric interpretations on orbifold Calabi-Yaus.

Kummer-like constructions:

Let M = T = C2/L, L ⊂ C2 a lattice of rank 4; G a finite group with

G ⊂ SU(2), 1 < |G |, GL = L; then T̃/G is a K3 surface.
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Geometric orbifolds: orbifold constructions of K3

M: a Calabi-Yau D-fold, G : a symmetry group of M, that is,
G ⊂ SU(D): a finite group, acting holomorphically, isometrically on M,

such that the holomorphic volume form is preserved.

Then X := M̃/G is a Calabi-Yau D-fold, a G -orbifold of M.

Expect: existence of orbifold conformal field theories
and geometric interpretations on orbifold Calabi-Yaus.

Kummer-like constructions:

Let M = T = C2/L, L ⊂ C2 a lattice of rank 4; G a finite group with

G ⊂ SU(2), 1 < |G |, GL = L; then T̃/G is a K3 surface.

[Fujiki88]: G is cyclic of order 2, 3, 4 or 6,
or binary dihedral of order 8 or 12, or binary tetrahedral.
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Building the bridge: K3 theories

Result (generalizing [Nahm/W99, W00])
For a complex 2-torus or a K3 surface M and G ⊂ SU(2) as above,

let X0 := M/G and X := X̃0;
then we have definitions of toroidal theories and K3 theories,
such that the SCFT associated with X

is the G -orbifold of the theory associated with M.

The CFT elliptic genus of a SCFT associated with X
with topologically half-twisted model H is

E(τ, z) := trH

(
(−1)J0−J̃0y J0−1qL

top
0

)

,

a weak Jacobi form of weight 0 and index 1 on SL2(Z):

E(τ+1, z) = E(τ, z), E(−1/τ , z/τ) = exp(2πiz2/τ)E(τ, z),

E(τ, z+1) = E(τ, z), E(τ, z+τ) = q−1y−2E(τ, z).

E agrees with the complex elliptic genus of X .
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The guiding question

For K3 surfaces and/or K3 theories
that are obtained as toroidal orbifolds,

can we disentangle the orbifold data
to determine the contributions to the elliptic genus

from each resolved simple surface singularity?

From now on:

Γ ⊂ SU(2) is a finite subgroup,
i.e. cyclic (Ak) or binary dihedral (Dk) or binary Platonic (Ek);

Γ also denotes C̃2/Γ.
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The complex elliptic genus in equivariant index format

Definition [Hirzebruch88, Witten88]
Complex elliptic genus E(M; τ, z) of

M: a compact complex D-dimensional manifold, with
T := T 1,0M its holomorphic tangent bundle;

using the splitting principle, c(T ) =
D∏
j=1

(1 + xj),

E(M; τ, z) := y−D/2

∫
M

D∏
j=1

[ xj
1− e−xj︸ ︷︷ ︸

Td

(1− ye−xj︸ ︷︷ ︸
ch(Λ−yT∗)

) ·

·
∞∏
n=1

(1− ye−xjqn)(1− y−1exjqn)

(1− e−xjqn)(1− exjqn)

]

=

∫
M

D∏
j=1

[
xj
ϑ1(τ, z − xj)

ϑ1(τ,−xj)

]
∈ y−D/2 · Z[[q, y±1]],

where for any bundle E → M, ΛxE :=
∞⊕
k=0

xkΛkE , SxE :=
∞⊕
k=0

xkSkE
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The equivariant index theorem

Equivariant index theorem [Atiyah/Bott67, Atiyah/Singer68]
(see also [Hirzebruch/Berger/Jung92, Waelder08])

M: a compact complex D-dimensional manifold,
C : a compact topological group, acting holomorphically on M, g ∈ C .

With Mg = ∪̇KMK
g the decomposition into connected components,

T|MK
g

= ⊕λNK
λ the eigenbundle decomposition

with respect to the action of g , with eigenvalues λ = e2πiζλ ,
and according to the splitting principle, for the total Chern class c(NK

λ ),

c(NK
λ ) =

rKλ∏
j=1

(1 + x jλ):

the corresponding equivariant elliptic genus is

Eg (M; z , τ) =
∑
K

∫
MK

g

rK1∏
m=1

xm1
∏
λ

rKλ∏
j=1

ϑ1(τ, z + ζλ − x jλ)

ϑ1(τ, ζλ − x jλ)
.
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Application to resolved simple surface singularities

Example [Hou/W]

With the C∗-action induced by C∗ ↪→ GL2(C), ξ 7→ ξ · id,
for M = C̃2/Z2:

if ξ ∈ C∗, ξ = e2πiζ , ξ 6= ±1: Mξ ∼= CP1, T|CP1 = N1 ⊕ Nξ2 ,

Eξ(A1; τ, z) =

∫
CP1

x1
ϑ1(τ, z − x1) · ϑ1(τ, z + 2ζ − x2)

ϑ1(τ,−x1) · ϑ1(τ, 2ζ − x2)

=
∂zϑ1(τ, z) · ϑ1(τ, z + 2ζ)− ϑ1(τ, z) · ∂zϑ1(τ, z + 2ζ)

πϑ1(τ, 2ζ) · η(τ)3

+
ϑ1(τ, z) · ϑ1(τ, z + 2ζ) · ∂zϑ1(τ, 2ζ)

πϑ1(τ, 2ζ)2 · η(τ)3

Result [Hou/W]
Similar formulas for each of the ADE-type singularities

M = C̃2/Γ, Γ ⊂ SU(2), yielding a C∗-equivariant elliptic genus
Eξ(Γ; τ, z) for all ξ = e2πiζ with ξN 6= 1 for all divisors N of |Γ|.
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Topologically half-twisted models for ADE singularities

Fixing Γ ⊂ SU(2) of type Ak , Dk , Ek for C̃2/Γ:

Can we associate a topologically half-twisted model
and a conformal field theoretic elliptic genus?

For M = C2:

HC2 ∼= C [
{
a`n, b

`
m

}
`∈{1,2},

m∈N,n∈N>0

]⊗
∧

`∈{1,2},m∈N,n∈N>0

(
C
{
ϕ`m
}
∧ C

{
ψ`n
})

,

k∈{1,2},
m∈N,n∈N>0 a`n b`m ϕ`m ψ`n

[Ltop0 , ·] n· m· m· n·
[J0, ·] 0 0 1· (−1)·
[J̃0, ·] 0 0 0 0

with
Ltop0 , J0, J̃0 all
vanishing on 1∈ H

and
C∗ ↪→ GL2(C),
ξ 7→ ξ · id.

Then trHC2

(
(−1)J0−J̃0y J0−1qL

top
0

)
is ill-defined.
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For M = C2:

HC2 ∼= C [
{
a`n, b

`
m

}
`∈{1,2},

m∈N,n∈N>0

]⊗
∧

`∈{1,2},m∈N,n∈N>0

(
C
{
ϕ`m
}
∧ C

{
ψ`n
})

,

k∈{1,2},
m∈N,n∈N>0 a`n b`m ϕ`m ψ`n

[Ltop0 , ·] n· m· m· n·
[J0, ·] 0 0 1· (−1)·
[J̃0, ·] 0 0 0 0

ξ• (·) ξ−1· ξ· ξ· ξ−1·

with
Ltop0 , J0, J̃0 all
vanishing on 1∈ H

and
C∗ ↪→ GL2(C),
ξ 7→ ξ · id.

Then trHC2

(
(−1)J0−J̃0y J0−1qL

top
0

)
is ill-defined,

but trHC2

(
(−1)J0−J̃0y J0−1qL

top
0 ξ•

)
is well-defined.
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The C∗-equivariant elliptic genera for ADE singularities

∀τ ∈ C with Im(τ) > 0, z, ζ ∈ C : q := e2πiτ , y := e2πiz , ξ := e2πiζ :

E(HC2
; τ, z, ζ) := trHC2

(
(−1)J0−J̃0yJ0−1qL

top
0 ξ•

)
= y−1

∞∏
n=1

(
1− qn−1ξy

)2 (
1− qn(ξy)−1

)2

(1− qn−1ξ)2 (1− qnξ−1)2
=
ϑ1(τ, ζ + z)2

ϑ1(τ, ζ)2
,
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E(Ak ; τ, z, ζ) = 1
k+1

k∑
m,n=0

ϑ1(τ, z + ζ + m+nτ
k+1

) · ϑ1(τ, z + ζ − m+nτ
k+1

)

ϑ1(τ, ζ + m+nτ
k+1

) · ϑ1(τ, ζ − m+nτ
k+1

)
,

previously found by [Harvey/Lee/Murthy15].
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previously found by [Harvey/Lee/Murthy15].

By [Hou/W]:

E(Dk ; τ, z, ζ) = 1
2
E(A2k−5; τ, z, ζ) + E(A3; τ, z, ζ)− 1

2
E(A1; τ, z, ζ),

E(E6; τ, z, ζ) = E(A5; τ, z, ζ) + 1
2
E(A3; τ, z, ζ)− 1

2
E(A1; τ, z, ζ),

E(E7; τ, z, ζ) = 1
2
E(A7; τ, z, ζ) + 1

2
E(A5; τ, z, ζ) + 1

2
E(A3; τ, z, ζ)− 1

2
E(A1; τ, z, ζ),

E(E8; τ, z, ζ) = 1
2
E(A9; τ, z, ζ) + 1

2
E(A5; τ, z, ζ) + 1

2
E(A3; τ, z, ζ)− 1

2
E(A1; τ, z, ζ).
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Result [Hou/W]
For each of the ADE-type singularities M = C̃2/Γ, Γ ⊂ SU(2),

and all ξ = e2πiζ with ξN 6= 1 for all divisors N of |Γ|:
Eξ(Γ; τ, z) = E(Γ; τ, z , ζ).
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Regularizing the elliptic genera of ADE singularities

Inspired by [Dixon/Harvey/Vafa/Witten85], for a Calabi-Yau D-fold
M and G ⊂ SU(D) a finite group acting on M, such that the Calabi-Yau
structure is preserved, let S ⊂ M/G denote the set of singular points in
M/G , which we assume to be discrete;
then for each s ∈ S , one can define an

orbifold Euler characteristic χreg(s) ∈ Q, such that

χ(M̃/G ) = 1
|G |χ(M) +

∑
s∈S

χreg(s).

Result [Hou/W]
For any finite subgroup Γ ⊂ SU(2), set

Ereg(Γ; τ, z , ζ) := E(Γ; τ, z , ζ)− 1
|Γ|E(HC2

; τ, z , ζ).

With M a compact Calabi-Yau 2-fold and G ⊂ SU(2) a finite group
that acts on M preserving the Calabi-Yau structure, if S denotes the
set of singular points in M/G , then let Γs ⊂ SU(2) denote the type of
the singularity s ∈ S . Then

E(M̃/G ; τ, z) = 1
|G |E(M; τ, z) +

∑
s∈S

lim
ζ→0
Ereg(Γs ; τ, z , ζ).
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Quotienting simple surface singularities

Recall from [Hou/W] the relations of the form
E(Dk+1; τ, z , ζ) = 1

2E(A2k−3; τ, z , ζ) + E(A3; τ, z , ζ)− 1
2E(A1; τ, z , ζ).

In [Hou/W], we give a geometric explanation:

s s ... s s
s

��
@@
s

1
2 A2k−3

1
2 A3

1
2 A3

Dk+1

– use [Slodowy80]:

C̃2/Γ is the resolution of C̃2/Z2/(Γ/Z2),

where C̃2/Z2 is A1;

s s s s sss E6 E(E6; τ, z, ζ)

= E(A5; τ, z, ζ) + 1
2
E(A3; τ, z, ζ)− 1

2
E(A1; τ, z, ζ),s s s s s sss E7 E(E7; τ, z, ζ) = 1

2
E(A7; τ, z, ζ) + 1

2
E(A5; τ, z, ζ)

+ 1
2
E(A3; τ, z, ζ)− 1

2
E(A1; τ, z, ζ),s s s s s s sss E8 E(E8; τ, z, ζ) = 1

2
E(A9; τ, z, ζ) + 1

2
E(A5; τ, z, ζ)

+ 1
2
E(A3; τ, z, ζ)− 1

2
E(A1; τ, z, ζ).
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The End

Thank you
for your attention!
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The End

Happy Birthday,
Uli!
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