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Plan: Motivation: orbifolding

9 An application of the equivariant index theorem?
© Appreciating g-series
@ Regularized elliptic genera for simple surface singularities

[Hou/W] The complex elliptic genus for simple surface singularities, work in progress, based on
Yuhang Hou's 2021 PhD thesis Elliptic genera of ADE type singularities, Freiburg
[W17] Hodge-elliptic genera and how they govern K3 theories, Commun. Math. Phys. 368
(2019), 187-221; arXiv:1705.09904 [hep-th]




1. Motivation: orbifolding
[ ]

Orbifolding partition functions

CFT elliptic genus of a toroidal CFT in two complex dimensions:
H: subspace of space of states (a vector space), Jo, Jo, LBOp € End(H),
7,z € C, Im(7) > 0, g = exp(27iT), y = exp(27iz);

“[[-a)* LA -a" R —qy Py 1 -2+ 1)

n(r)~* (91(7,2)/n(7))?
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Orbifolding partition functions

CFT elliptic genus of a toroidal CFT in two complex dimensions:
H: subspace of space of states (a vector space), Jo, Jo, LBOp € End(H),
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[ ]

Orbifolding partition functions

CFT elliptic genus of a toroidal CFT in two complex dimensions:
H: subspace of space of states (a vector space), Jo, Jo, LBOp € End(H),
7,z € C, Im(7) > 0, g = exp(27iT), y = exp(27iz);
{1 327, HP2=L(1+0H, &2 =10a[ |+[ )
1 1

~Jo =145, )

(1+gm)~* 1;[1(1+q” L2(1+q"y )2yt (1424 1)

= try
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-1
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1. Motivation: orbifolding
°

Geometric orbifolds

M: a Calabi-Yau D-fold, G: a symmetry group of M, that is,
G C SU(D): afinite group, acting holomorphically, isometrically on M,
such that the holomorphic volume form is preserved.

Then X := M/G is a Calabi-Yau D-fold, a G-orbifold of M.

Expect: existence of orbifold conformal field theories
and geometric interpretations on orbifold Calabi-Yaus.
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1. Motivation: orbifolding
°

Geometric orbifolds: orbifold constructions of K3

M: a Calabi-Yau D-fold, G: a symmetry group of M, that is,
G C SU(D): afinite group, acting holomorphically, isometrically on M,
such that the holomorphic volume form is preserved.

Then X := M/G is a Calabi-Yau D-fold, a G-orbifold of M.

Expect: existence of orbifold conformal field theories
and geometric interpretations on orbifold Calabi-Yaus.

Kummer-like constructions:
Let M =T =C?/L, L C C? a lattice of rank 4; G a finite group with
G CcSU(2),1< |G|, GL=L; then T/G is a K3 surface.
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1. Motivation: orbifolding
°

Geometric orbifolds: orbifold constructions of K3

M: a Calabi-Yau D-fold, G: a symmetry group of M, that is,
G C SU(D): afinite group, acting holomorphically, isometrically on M,
such that the holomorphic volume form is preserved.

Then X := M/G is a Calabi-Yau D-fold, a G-orbifold of M.

Expect: existence of orbifold conformal field theories
and geometric interpretations on orbifold Calabi-Yaus.

Kummer-like constructions:
Let M =T = (C2/L, L C C? a lattice of rank 4; G a finite group with
G CSU(2),1 < |G|, GL=L; then T/G is a K3 surface.

[Fujiki88]: G is cyclic of order 2,3, 4 or 6,
or binary dihedral of order 8 or 12, or binary tetrahedral.
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1. Motivation: orbifolding
[ ]

Building the bridge: K3 theories

Result (generalizing [Nahm /W99, W00])
For a complex 2-torus or a K3 surface M and G C SU(2) as above,
let Xo := M/G and X := Xq;
then we have definitions of TOROIDAL THEORIES and K3 THEORIES,
such that the SCFT associated with X
is the G-orbifold of the theory associated with M.
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Building the bridge: K3 theories

Result (generalizing [Nahm /W99, W00])
For a complex 2-torus or a K3 surface M and G C SU(2) as above,
let Xo := M/G and X := Xq;
then we have definitions of TOROIDAL THEORIES and K3 THEORIES,
such that the SCFT associated with X
is the G-orbifold of the theory associated with M.

The CFT ELLIPTIC GENUS of a SCFT associated with X
with topologically half-twisted model H is

5(7’, z) = try ((_1)Jo—]0yJo_1q,_;op>
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1. Motivation: orbifolding
[ ]

Building the bridge: K3 theories

Result (generalizing [Nahm /W99, W00])

For a complex 2-torus or a K3 surface M and G C SU(2) as above,
let Xo := M/G and X := Xq;

then we have definitions of TOROIDAL THEORIES and K3 THEORIES,

such that the SCFT associated with X
is the G-orbifold of the theory associated with M.

The CFT ELLIPTIC GENUS of a SCFT associated with X
with topologically half-twisted model H is

5(7_’ z) = try ((_1)J0—J~oyJo—1q1_;op)’
a WEAK JACOBI FORM of weight 0 and index 1 on SL(Z):
E(t+1,2) = &(T, 2), E(—1/7,z/7) = exp(2miz? /7)E(T, 2),
E(r,z+1) = &(, 2), E(r,z+7) = g7ty =2&(7, 2).
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1. Motivation: orbifolding
[ ]

Building the bridge: K3 theories

Result (generalizing [Nahm /W99, W00])

For a complex 2-torus or a K3 surface M and G C SU(2) as above,
let Xo := M/G and X := Xq;

then we have definitions of TOROIDAL THEORIES and K3 THEORIES,

such that the SCFT associated with X
is the G-orbifold of the theory associated with M.

The CFT ELLIPTIC GENUS of a SCFT associated with X
with topologically half-twisted model H is

5(7_’ z) = try ((_1)J0—J~oyJo—1q1_;op)’
a WEAK JACOBI FORM of weight 0 and index 1 on SL(Z):
E(t+1,2) = &(T, 2), E(—1/7,z/7) = exp(2miz? /7)E(T, 2),
E(r,z+1) = &(, 2), E(r,z+7) = g7ty =2&(7, 2).

& agrees with the COMPLEX ELLIPTIC GENUS of X.
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1. Motivation: orbifolding
[ ]

The guiding question

For K3 surfaces and/or K3 theories
that are obtained as toroidal orbifolds,
can we disentangle the orbifold data
to determine the contributions to the elliptic genus
from each resolved simple surface singularity?
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1. Motivation: orbifolding
[ ]

The guiding question

For K3 surfaces and/or K3 theories
that are obtained as toroidal orbifolds,
can we disentangle the orbifold data
to determine the contributions to the elliptic genus
from each resolved simple surface singularity?

From now on:

I C SU(2) is a finite subgroup,
i.e. cyclic (Ax) or binary dihedral (Dy) or binary Platonic (Eg);

—_——

I also denotes C2/T.
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2. Applying the equivariant index theorem?
[ ]

The complex elliptic genus in equivariant index format

Definition [Hirzebruch88, Witten88]
COMPLEX ELLIPTIC GENUS &(M; T, z) of
M: a compact complex D-dimensional manifold, with
T := THOM its holomorphic tangent bundle;

D
using the splitting principle, ¢(T) = [](1 + x;),

D P
eMinz) = y o [ T [0 o ye).
M j=1 — e N —
" ch(A_,T*)

Td
T (1—ye9q")(1 —y 'erq")
=1 (L—e79g")(1—e¥gn)

where for any bundle £ — M, A E := @ x*A\E, S,E := @ x*SrE
k=0 k=0
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The complex elliptic genus in equivariant index format

Definition [Hirzebruch88, Witten88]
COMPLEX ELLIPTIC GENUS &(M; T, z) of
M: a compact complex D-dimensional manifold, with
T := TYOM its holomorphic tangent bundle;

D
using the splitting principle, ¢(T) = [](1 + x;),

D =1
E(M;7,2) = y_D/2/ [ (- ye xj-)
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Td

1xjn)

™)
T (L=yeq") (1 =
L )i
) ch(SgnT)
where for any bundle £ — M, A\ E := @ x*AE, S,E := @ x*SrE
k=0 k=0
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2. Applying the equivariant index theorem?
[ ]

The complex elliptic genus in equivariant index format

Definition [Hirzebruch88, Witten88]
COMPLEX ELLIPTIC GENUS &(M; T, z) of
M: a compact complex D-dimensional manifold, with
T := T1O9M its holomorphic tangent bundle;

D
using the splitting principle, c¢(T) = [[(1 + x;),
1

D X
EM;T,z) = y_D/z/ H{ J,X. (1—ye ).
ST x )1 - ytesq)
< (1—ye q")(1—y "e9q"
11

ae1 (1—e79g")(1 - e¥q")
e e A

il 0T =)

where for any bundle £ — M, A\ E := @ x*A\E, S,E := @ x*SrE
k=0 k=0

Katrin Wendland Disentangling orbifold data 5/11 ‘



2. Applying the equivariant index theorem?
[ ]

The equivariant index theorem

Equivariant index theorem [Atiyah/Bott67, Atiyah/Singer68]

(see also [Hirzebruch/Berger/Jung92, Waelder08])
M: a compact complex D-dimensional manifold,
C: a compact topological group, acting holomorphically on M, g € C.

With M& = L'JKM? the decomposition into connected components,
T|M5 = @ N the eigenbundle decomposition

with respect to the action of g, with eigenvalues \ = e2™/¢x,
and according to the splitting principle, for the total Chern class c(Nf),

(V) =H (1+):

the corresponding EQUIVARIANT ELLIPTIC GENUS is

1917-)Z+<>\_ )
(M 2, ) Z/MKHXIHH e

g m=1
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2. Applying the equivariant index theorem?
L ]

Application to resolved simple surface singularities
Example [Hou/W)|

With the C*-action induced by C* < GLo(C), { — £ -id,

for M = C?/Zj:
if £ € C*, & =e?™C ¢4 41 ME=CPL Tepr = Ni @ Neo,
H(r,z —x1) - 91(r, 2+ 2( — x2)
E(A;: _ 1
G /(C]P’le V1(7, —x1) - V1(7,2¢ — x2)

0,91(7,2) - 91(7, 2 + 2¢) — V1(7, 2) - O91(T, z + 2()
m1(7,2¢) - n(7)?
+’l91(7’, Z) . ’191(7',2 + 2() . 82191(7', 2<)
w1(7,20) - 1(7)3
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2. Applying the equivariant index theorem?
L ]

Application to resolved simple surface singularities
Example [Hou/W)|

With the C*-action induced by C* < GLo(C), { — £ -id,

for M = C?/Zj:
if £ € C*, & =e?™C ¢4 41 ME=CPL Tepr = Ni @ Neo,

h(r,z—x1) - (1, z4+ 2 — x
E(AL T, 2) = /(CP1 X1 (191(7_7 —Xz)-ﬂf(r, 2 _sz) )
0,91(7,2) - 91(7, 2 + 2¢) — V1(7, 2) - O91(T, z + 2()
m1(7,2¢) - n(7)?
+'l91(7’, Z) . 191(7’,2 + 2() . 32191(7', 2<)
w1(7,20) - 1(7)3

Result [Hou/W)]

Similar/fgimulas for each of the ADE-type singularities

M = C2/T, T C SU(2), yielding a C*-equivariant elliptic genus
ES(T; 7, 2) for all £ = e2™¢ with ¢V # 1 for all divisors N of |T].
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3. Appreciating g-series
.

Topologically half-twisted models for ADE singularities

Fixing ' € SU(2) of type Ak, Dy, Ei for ((/3_2\//F:
Can we associate a topologically half-twisted model
and a conformal field theoretic elliptic genus?
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Topologically half-twisted models for ADE singularities

3. Appreciating g-series
.

Fixing I C SU(2) of type Ak, Dy, Ej for 627?3

Can we associate a topologically half-twisted model
and a conformal field theoretic elliptic genus?

HC ~C [{af,, bﬁ,}ee{ll}v 1®

meEN,nEN~, £€{1,2},meN,nEN
mevatto | b | b | o |
[L(t)op’ ] m- m- n-
[Jo, ] 0 | 0 | L (=)
[jo’ ] 0 0 0

Then try.» ((_1)J0770 yJO*quSOp> is ill-defined.

(C{emp AC{vn}),

with B
LP, Jo, Jo all
vanishing on 1€ H.
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3. Appreciating g-series
.

Topologically half-twisted models for ADE singularities

Fixing ' € SU(2) of type Ak, Dy, Ej for (62/\?3

Can we associate a topologically half-twisted model

and a conformal field theoretic elliptic genus?
HE QC[{a bt }ze{l 2, | ® ((C {‘pfn}/\c{wﬁ})'
EN,nEN>o £€{1,2},meN,neN~
ke{1,2}, :
meintn || @t | BG | of | wt | with
Top LO p, Jo, Jo all
(L] n m m- n vanishing on 1€ H
[Jo, ] 0 0 L] (=1)
— and
& (*) RS & | & Er &hid

Then tryee ((—=1)%~hy4=1g5" ) is ill-defined,

but tr..» ((—1)Jo—~’0yJo Lglo’ 5.) is well-defined.
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3. Appreciating g-series
°

The C*-equivariant elliptic genera for ADE singularities

V71 € C with Im(T) > 0, z, C e C: q:= e27ri‘r y = 627”77 5 = 927"’(;
EEHTin20) = e (IR
_ —1H 1—q" 15}’) (1—‘1"(5)’)_1)2 _ 91(7, ¢ + z)?
—qn1e)* (1—qne 1) D1 (7, )2
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3. Appreciating g-series
°

The C*-equivariant elliptic genera for ADE singularities

V7 € C with Im(7) >0, z, ¢ €C: q = e2mIT y = @2miz ¢ .= Q27iC,
8(HC2;T7 z,¢) = tryc2 ((71)J0_J~°}’J0_1QL‘§OP50)
_ 1°—°[ (1-a"'y)* (1-a"(N™? _ di(r,¢+2)°
o (=g (1 —gret)? 91(7, )2

Bl 4 € 4 SEEE) - Bz b L = e

91(r, ¢+ BT g1 (7, ¢ — BEET)

K
E(AT,2,0) = g1 D

m,n=0

previously found by [Harvey/Lee/Murthy15].
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3. Appreciating g-series
°

The C*-equivariant elliptic genera for ADE singularities

V7 € C with Im(7) >0, z, (€C: q =Ty = &2z ¢ = &2miC,
E(HCZ;T,z, ¢) = trHCZ (( )Ju—JoyJo 1 L 5
_ ‘11'[ 1“’" 'e)? (- e’ _ 0(rC+ 2
—qm 1) (1 - g 1) 91(r, ¢

k
9 mtnTy 9 _ m+tnT
EAimz ) = oy 3 LT ) Salr 24 ¢ - gy

791(7-7 ¢+ n;:,nl‘r) . 191(7-7 ¢— n;::?— ’

previously found by [Harvey/Lee/Murthy15].

m,n=0

By [Hou/W]:

E(Di; 7, 2,0) = 3E(Agk—si 7, 2,0) + £(A3; 7,2,¢) — 3E(A1iT, 2,0),
E(Es;7,2,0)= E(AsiT,z,() + 15(/43 7,z,() — 1€(A1;T,Z,C),
E(Erim,2,0)=3E(A1;7,2,0) + 3E(As; 7,2,0) + 3E(A3; 7, 2,¢) — SE(A1; 7, 2,C),
E(Es;T,z,() = 1(‘)(Ag;T,z, )+ %S(A5;T, z,¢) + %5(A3;7‘,z, ¢)— %g(Al;T,Z, ¢).
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3. Appreciating g-series
°

The C*-equivariant elliptic genera for ADE singularities

m—+nT1

k
9 9 _ mtnT
E(AkiT,2,() = lel E Wz +C+ ) - H(nz+ ¢~

T O G B (7, - BET)

k+1

previously found by [Harvey/Lee/Murthy15].

By [Hou/W]:

E(Dii 7, 2,¢) = 5E(Agk—si 7, 2,C) + E(A3; 7, 2,¢) — 3E(A1i T, 2,0),
E(EsiT,2,0)= E(As;iT,2,0) + 3E(Asi7,2,0) — 3E(ALi T, 2,C),

E(Erim,2,0) = 3E(A1;7,2,0) + 3E(As; 7,2,0) + 3E(A3; 7, 2,¢) — SE(A1; 7, 2,C),
E(EsiT,2,0) = 3E(A0i 7,2,0) + 3E(Asi 7, 2,C) + L1E(Asi 7, 2,¢) — 3E(A1; 7, 2,0).

Result [Hou /W]
For each of the ADE-type singularities M = (C2/F I c SU(2),

and all £ = e?™¢ with ¢V £ 1 for all divisors N of |I:
EM; 7, 2) = E(T; 7, 2,C).
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4. Regularization and folding
L]

Regularizing the elliptic genera of ADE singularities

Inspired by [Dixon/Harvey/Vafa/Witten85], for a Calabi-Yau D-fold
M and G C SU(D) a finite group acting on M, such that the Calabi-Yau
structure is preserved, let S C M/G denote the set of singular points in
M/ G, which we assume to be discrete;
then for each s € S, one can define an

ORBIFOLD EULER CHARACTERISTIC x"¢(s) € Q, such that

X(M]G) = dx(M) + 50 (s)
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4. Regularization and folding

Regularizing the elliptic genera of ADE singularities

Inspired by [Dixon/Harvey/Vafa/Witten85], for a Calabi-Yau D-fold
M and G C SU(D) a finite group acting on M, such that the Calabi-Yau
structure is preserved, let S C M/G denote the set of singular points in
M/ G, which we assume to be discrete;
then for each s € S, one can define an

ORBIFOLD EULER CHARACTERISTIC x"¢(s) € Q, such that

X(M]G) = dx(M) + 50 (s)

Result [Hou/W]
For any finite subgroup I' C SU(2), set
greg(r;T,zvc) = 5(r;7727<) |%‘8(HC2 T,Z,C).

With M a compact Calabi-Yau 2-fold and G C SU(2) a finite group
that acts on M preserving the Calabi-Yau structure, if S denotes the
set of singular points in M/G, then let I'; C SU(2) denote the type of
the singulir\i:cz s€S. Then

EM/G;T,2) = |G|S(M Tz)+ > I|m Sreg(rs,r z,().

ses ¢
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4. Regularization and folding
[ ]

Quotienting simple surface singularities

Recall from [Hou /W] the relations of the form

E(Dyy1;71,2,0) = %5(A2k73;7,z,0 + E(As; 1, 2,C) — %S(Al;T,Z,C).
In [Hou/W], we give a geometric explanation:
— use [Slodowy80]:

0—0—4—< Diy1  C?/T is the resolution of (%/(I’/Zg),

—~

where C2?/7Z; is Ay;
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4. Regularization and folding
[ ]

Quotienting simple surface singularities

Recall from [Hou /W] the relations of the form

E(Dyy1;71,2,0) = %5(A2k73;7,z,0 + E(As; 1, 2,C) — %S(Al;T,Z,C).
In [Hou/W], we give a geometric explanation:
— use [Slodowy80]:

LA, A 277,
2423 jA Dy C?/T is the resolution of C?/Z,/(T'/Z>),
5A3

where C2?/7Z; is Ay;
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4. Regularization and folding
[ ]

Quotienting simple surface singularities

Recall from [Hou /W] the relations of the form

E(Dyy1;71,2,0) = %5(A2k73;7,z,0 + E(As; 1, 2,C) — %S(Al;T,Z,C).
In [Hou/W], we give a geometric explanation:
— use [Slodowy80]:

LA, A 277,
2423 jA Dy C?/T is the resolution of C?/Z,/(T'/Z>),
3A3

where C2?/7Z; is Ay;

E6 g(E6;Tvz><)
I = E(As;i7,2,0) + (A3, 2,¢) — 3E(ALi T, 2,C),
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4. Regularization and folding
[ ]

Quotienting simple surface singularities

Recall from [Hou /W] the relations of the form

E(Dyy1;71,2,0) = %5(A2k73;7,z,0 + E(As; 1, 2,C) — %S(Al;T,Z,C).
In [Hou/W], we give a geometric explanation:
— use [Slodowy80]:

LA, A 277,
2423 jA Dy C?/T is the resolution of C?/Z,/(T'/Z>),
3A3

where C2?/7Z; is Ay;

._._I_H E6 g(E6;Tvz><)
=E&(As; 7, 2,0) + %5(/\3;7'7 z,¢) — %E(Al?’ﬂz’ ),
o—o—I—o—o—oE7 E(Er;m,2,¢) = %S(A7;T, z,¢) + %E(As:T,Za <)
+3E(A37,2,¢) — 3E(A1; T, 2,€),
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4. Regularization and folding
[ ]

Quotienting simple surface singularities

Recall from [Hou /W] the relations of the form

E(Dyy1;71,2,0) = %5(A2k73;7,z,0 + E(As; 1, 2,C) — %S(Al;T,Z,C).
In [Hou/W], we give a geometric explanation:
— use [Slodowy80]:

LA, A 277,
2423 jA Dy C?/T is the resolution of C?/Z,/(T'/Z>),
3A3

where C2?/7Z; is Ay;
._._I_H E6 g(E6;Tvz> C)
=E&(As; 7, 2,0) + %5(/\3;7'7 z,¢) — %E(Al?’ﬂz’ ),
o—o—I—o—o—oE7 E(Er;m,2,¢) = %S(A7;T, z,¢) + %E(As:T,Za <)
+3E(A37,2,¢) — 3E(A1; T, 2,€),
-—-—I—o—-—-—-Eg E(Egim,2,¢) = 26(A0im,2,0) + 1E(Asi 7, 2,C)
+3E(A3i7,2,¢) = 3E(A1i T, 2,Q).
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The End

THANK YOU
FOR YOUR ATTENTION!
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The End

HAPPY BIRTHDAY,
ULt!
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