Disentangling orbifold data

From Analysis to Homotopy Theory A conference in honor of Ulrich Bunke's 60th birthday Alfried-Krupp Wissenschaftskolleg, Greifswald, Germany May 13-17, 2024

> Katrin Wendland Trinity College Dublin

Motivation: orbifolding

An application of the equivariant index theorem?

Appreciating *q*-series

Regularized elliptic genera for simple surface singularities

[Hou/W]	The complex elliptic genus for simple surface singularities, work in progress, based on Yuhang Hou's 2021 PhD thesis Elliptic genera of ADE type singularities, Freiburg		
[W17]	Hodge-elliptic genera and how they govern K3 theories, Commun. Math. Phys. 368 (2019), 187-221; arXiv:1705.09904 [hep-th]		

CFT elliptic genus of a toroidal CFT in two complex dimensions: \mathbb{H} : subspace of space of states (a vector space), $J_0, \widetilde{J_0}, L_0^{\text{top}} \in \text{End}(\mathbb{H})$, $\tau, z \in \mathbb{C}, \text{ Im}(\tau) > 0, q = \exp(2\pi i \tau), y = \exp(2\pi i z)$;

$$1 \prod_{1} = \operatorname{tr}_{\mathbb{H}} \left((-1)^{J_{0} - \widetilde{J_{0}}} y^{J_{0} - 1} q^{L_{0}^{\operatorname{top}}} \right) \\ = \underbrace{\prod_{n=1}^{\infty} (1 - q^{n})^{-4}}_{\eta(\tau)^{-4}} \underbrace{\prod_{n=1}^{\infty} (1 - q^{n-1}y)^{2} (1 - q^{n}y^{-1})^{2} \cdot y^{-1}}_{(\vartheta_{1}(\tau, z)/\eta(\tau))^{2}} \cdot (1 - 2 + 1)$$

CFT elliptic genus of a toroidal CFT in two complex dimensions: II: subspace of space of states (a vector space), $J_0, \tilde{J_0}, \tilde{L_0^{\text{top}}} \in \text{End}(\mathbb{H}),$ $\tau, z \in \mathbb{C}, \text{ Im}(\tau) > 0, q = \exp(2\pi i \tau), y = \exp(2\pi i z);$ $\{1, \iota\} \cong \mathbb{Z}_2, \qquad \mathbb{H}^{\mathbb{Z}_2} = \frac{1}{2}(1 + \iota)\mathbb{H}, \qquad \mathcal{E}^{\mathbb{Z}_2} = \frac{1}{2}(1 - 1 + \iota).$ $1 - 1 = \operatorname{tr}_{\mathbb{H}} \left((-1)^{J_0 - \tilde{J_0}} y^{J_0 - 1} q^{L_0^{\text{top}}} \right)$ $= \prod_{n=1}^{\infty} (1 - q^n)^{-4} \prod_{n=1}^{\infty} (1 - q^{n-1}y)^2 (1 - q^n y^{-1})^2 \cdot y^{-1} \cdot (1 - 2 + 1)$

CFT elliptic genus of a toroidal CFT in two complex dimensions: III: subspace of space of states (a vector space), $J_0, \widetilde{J}_0, L_0^{\text{top}} \in \text{End}(\mathbb{H}),$ $\tau, z \in \mathbb{C}, \text{ Im}(\tau) > 0, q = \exp(2\pi i \tau), y = \exp(2\pi i z);$ $\{1, \iota\} \cong \mathbb{Z}_2, \qquad \mathbb{H}^{\mathbb{Z}_2} = \frac{1}{2}(1 + \iota)\mathbb{H}, \qquad \mathcal{E}^{\mathbb{Z}_2} = \frac{1}{2}(1 - \iota) + \iota$ $\iota = \operatorname{tr}_{\mathbb{H}} \left((-1)^{J_0 - \widetilde{J}_0} y^{J_0 - 1} q^{L_0^{\text{top}}} \iota \right)$ $= \prod_{n=1}^{\infty} (1 + q^n)^{-4} \underbrace{\prod_{n=1}^{\infty} (1 + q^{n-1}y)^2 (1 + q^n y^{-1})^2 \cdot y^{-1}}_{(\vartheta_2(\tau, 0)/2\eta(\tau))^{-2}} \cdot (1 + 2 + 1)$

CFT elliptic genus of a toroidal CFT in two complex dimensions: \mathbb{H} : subspace of space of states (a vector space), $J_0, \widetilde{J_0}, L_0^{\text{top}} \in \text{End}(\mathbb{H})$, $\tau, z \in \mathbb{C}$, Im $(\tau) > 0$, $q = \exp(2\pi i \tau)$, $y = \exp(2\pi i z)$; $\{1,\iota\}\cong\mathbb{Z}_2, \qquad \mathbb{H}^{\mathbb{Z}_2}=\frac{1}{2}(1+\iota)\mathbb{H}, \qquad \mathcal{E}^{\mathbb{Z}_2}=\frac{1}{2}(1-\iota).$ $\iota \bigsqcup_{1} = \operatorname{tr}_{\mathbb{H}} \left((-1)^{J_0 - \widetilde{J_0}} y^{J_0 - 1} q^{L_0^{\operatorname{top}}} \iota \right)$ $=\prod_{n=1}^{\infty} (1+q^n)^{-4} \prod_{n=1}^{\infty} (1+q^{n-1}y)^2 (1+q^ny^{-1})^2 \cdot y^{-1} \cdot (1+2+1)$ n=1 n=1 $(\vartheta_2(au,z)/\eta(au))^2$ $(\vartheta_2(\tau,0)/2\eta(\tau))^{-2}$ $1 \underset{\iota}{\bigsqcup}(\tau, z) := \exp(-2\pi i z^2/\tau) \cdot \iota \underset{\iota}{\bigsqcup}(-1/\tau, z/\tau) = 16 \left(\frac{\vartheta_4(\tau, z)}{\vartheta_4(\tau, 0)}\right)^2,$ $\iota \bigsqcup_{\iota} (\tau, z) := 1 \bigsqcup_{\iota} (\tau + 1, z) = 16 \left(\frac{\vartheta_3(\tau, z)}{\vartheta_3(\tau, 0)} \right)^2,$ $\frac{1}{2}(1 + \iota + \iota + 1) + \iota =) = \mathcal{E}^{K3}.$

Geometric orbifolds

M: a Calabi-Yau D-fold,G: a symmetry group of M, that is, $G \subset SU(D)$: a finite group, acting holomorphically, isometrically on M,such that the holomorphic volume form is preserved.Then $X := \widetilde{M/G}$ is a Calabi-Yau D-fold, a G-orbifold of M.

Expect: existence of orbifold conformal field theories and geometric interpretations on orbifold Calabi-Yaus.

Geometric orbifolds: orbifold constructions of K3

M: a Calabi-Yau D-fold,G: a symmetry group of M, that is, $G \subset SU(D)$: a finite group, acting holomorphically, isometrically on M,
such that the holomorphic volume form is preserved.Then $X := \widetilde{M/G}$ is a Calabi-Yau D-fold, a G-orbifold of M.

Expect: existence of orbifold conformal field theories and geometric interpretations on orbifold Calabi-Yaus.

Kummer-like constructions:

Let $M = T = \mathbb{C}^2/L$, $L \subset \mathbb{C}^2$ a lattice of rank 4; G a finite group with $G \subset SU(2)$, 1 < |G|, GL = L; then $\widetilde{T/G}$ is a K3 surface.

Geometric orbifolds: orbifold constructions of K3

M: a Calabi-Yau D-fold,G: a symmetry group of M, that is, $G \subset SU(D)$: a finite group, acting holomorphically, isometrically on M,
such that the holomorphic volume form is preserved.Then $X := \widetilde{M/G}$ is a Calabi-Yau D-fold, a G-orbifold of M.

Expect: existence of orbifold conformal field theories and geometric interpretations on orbifold Calabi-Yaus.

Kummer-like constructions: Let $M = T = \mathbb{C}^2/L$, $L \subset \mathbb{C}^2$ a lattice of rank 4; G a finite group with $G \subset SU(2)$, 1 < |G|, GL = L; then $\overline{T/G}$ is a K3 surface. [Fujiki88]: G is cyclic of order 2, 3, 4 or 6, or binary dihedral of order 8 or 12, or binary tetrahedral.

<u>Result</u> (generalizing [Nahm/W99, W00]) For a complex 2-torus or a K3 surface M and $G \subset SU(2)$ as above, let $X_0 := M/G$ and $X := \widetilde{X_0}$; then we have definitions of TOROIDAL THEORIES and K3 THEORIES, such that the SCFT associated with Xis the *G*-orbifold of the theory associated with M.

<u>Result</u> (generalizing [Nahm/W99, W00]) For a complex 2-torus or a K3 surface M and $G \subset SU(2)$ as above, let $X_0 := M/G$ and $X := \widetilde{X_0}$; then we have definitions of TOROIDAL THEORIES and K3 THEORIES, such that the SCFT associated with Xis the *G*-orbifold of the theory associated with M.

The CFT ELLIPTIC GENUS of a SCFT associated with X with topologically half-twisted model \mathbb{H} is $\mathcal{E}(\tau, z) := \operatorname{tr}_{\mathbb{H}} \left((-1)^{J_0 - \widetilde{J_0}} y^{J_0 - 1} q_0^{L_0^{\operatorname{top}}} \right)$

<u>Result</u> (generalizing [Nahm/W99, W00]) For a complex 2-torus or a K3 surface M and $G \subset SU(2)$ as above, let $X_0 := M/G$ and $X := \widetilde{X_0}$; then we have definitions of TOROIDAL THEORIES and K3 THEORIES, such that the SCFT associated with Xis the *G*-orbifold of the theory associated with M.

The CFT ELLIPTIC GENUS of a SCFT associated with X with topologically half-twisted model $\mathbb H$ is

$$\mathcal{E}(\tau,z) := \operatorname{tr}_{\mathbb{H}}\left((-1)^{J_0 - \widetilde{J_0}} y^{J_0 - 1} q^{L_0^{\operatorname{top}}}\right),$$

a WEAK JACOBI FORM of weight 0 and index 1 on $SL_2(\mathbb{Z})$:

$$\begin{split} \mathcal{E}(\tau+1,z) &= \mathcal{E}(\tau,z), \\ \mathcal{E}(\tau,z+1) &= \mathcal{E}(\tau,z), \end{split} \qquad \begin{array}{l} \mathcal{E}(-1/\tau,z/\tau) &= \exp(2\pi i z^2/\tau) \mathcal{E}(\tau,z), \\ \mathcal{E}(\tau,z+\tau) &= q^{-1} y^{-2} \mathcal{E}(\tau,z). \end{split}$$

<u>Result</u> (generalizing [Nahm/W99, W00]) For a complex 2-torus or a K3 surface M and $G \subset SU(2)$ as above, let $X_0 := M/G$ and $X := \widetilde{X_0}$; then we have definitions of TOROIDAL THEORIES and K3 THEORIES, such that the SCFT associated with Xis the *G*-orbifold of the theory associated with M.

The CFT ELLIPTIC GENUS of a SCFT associated with X with topologically half-twisted model $\mathbb H$ is

$$\mathcal{E}(\tau,z) := \operatorname{tr}_{\mathbb{H}}\left((-1)^{J_0 - \widetilde{J_0}} y^{J_0 - 1} q^{L_0^{\operatorname{top}}}\right),$$

a WEAK JACOBI FORM of weight 0 and index 1 on $SL_2(\mathbb{Z})$:

$$\begin{split} \mathcal{E}(\tau+1,z) &= \mathcal{E}(\tau,z), \\ \mathcal{E}(\tau,z+1) &= \mathcal{E}(\tau,z), \end{split} \qquad \begin{array}{l} \mathcal{E}(-1/\tau,z/\tau) &= \exp(2\pi i z^2/\tau) \mathcal{E}(\tau,z), \\ \mathcal{E}(\tau,z+\tau) &= q^{-1} y^{-2} \mathcal{E}(\tau,z). \end{split}$$

 \mathcal{E} agrees with the COMPLEX ELLIPTIC GENUS of X.

The guiding question

For K3 surfaces and/or K3 theories that are obtained as toroidal orbifolds, can we disentangle the orbifold data to determine the contributions to the elliptic genus from each resolved simple surface singularity?

The guiding question

For K3 surfaces and/or K3 theories that are obtained as toroidal orbifolds, can we disentangle the orbifold data to determine the contributions to the elliptic genus from each resolved simple surface singularity?

From now on:

 $\Gamma \subset SU(2)$ is a finite subgroup, i.e. cyclic (A_k) or binary dihedral (D_k) or binary Platonic (E_k) ; Γ also denotes \mathbb{C}^2/Γ .

The complex elliptic genus in equivariant index format

Definition [Hirzebruch88, Witten88] COMPLEX ELLIPTIC GENUS $\mathcal{E}(M; \tau, z)$ of M: a compact complex D-dimensional manifold, with $T := T^{1,0}M$ its holomorphic tangent bundle; using the splitting principle, $c(T) = \prod_{j=1}^{L} (1 + x_j)$, $\mathcal{E}(M; \tau, z) := y^{-D/2} \int_{M} \prod_{j=1}^{D} \left[\underbrace{x_j}_{1-e^{-x_j}} \underbrace{(1 - ye^{-x_j})}_{ch(A - xT^*)} \cdot \right]$ $\cdot \prod_{n=1}^{\infty} \frac{(1 - y e^{-x_j} q^n)(1 - y^{-1} e^{x_j} q^n)}{(1 - e^{-x_j} q^n)(1 - e^{x_j} q^n)} \bigg|$

where for any bundle $E \to M$, $\Lambda_x E := \bigoplus_{k=0}^{\infty} x^k \Lambda^k E$, $S_x E := \bigoplus_{k=0}^{\infty} x^k S^k E$

The complex elliptic genus in equivariant index format

Definition [Hirzebruch88, Witten88] COMPLEX ELLIPTIC GENUS $\mathcal{E}(M; \tau, z)$ of M: a compact complex D-dimensional manifold, with $T := T^{1,0}M$ its holomorphic tangent bundle; using the splitting principle, $c(T) = \prod (1 + x_i)$, $\mathcal{E}(M;\tau,z) := y^{-D/2} \int_{M} \prod_{j=1}^{D} \left[\underbrace{\frac{x_j}{1-e^{-x_j}}}_{\operatorname{ch}\left(\Lambda_{-yq^n}\tau^*\right)} \underbrace{\frac{\operatorname{ch}\left(\Lambda_{-y^{-1}q^n}\tau\right)}_{\operatorname{ch}\left(\Lambda_{-yq^n}\tau^*\right)}} \right]_{\operatorname{ch}\left(\Lambda_{-y^{-1}q^n}\tau\right)}$ $\cdot \prod_{n=1}^{\infty} \frac{(1-ye^{-x_j}q^n)(1-y^{-1}e^{x_j}q^n)}{(1-e^{-x_j}q^n)(1-e^{x_j}q^n)}$ $\operatorname{ch}(S_{a^n}T^*)$ $\operatorname{ch}(S_{a^n}T)$

where for any bundle $E \to M$, $\Lambda_x E := \bigoplus_{k=0}^{\infty} x^k \Lambda^k E$, $S_x E := \bigoplus_{k=0}^{\infty} x^k S^k E$

The complex elliptic genus in equivariant index format

Definition [Hirzebruch88, Witten88] COMPLEX ELLIPTIC GENUS $\mathcal{E}(M; \tau, z)$ of M: a compact complex D-dimensional manifold, with $T := T^{1,0}M$ its holomorphic tangent bundle; using the splitting principle, $c(T) = \prod_{j=1}^{D} (1+x_j)$, $\mathcal{E}(M; \tau, z) := y^{-D/2} \int_{M} \prod_{i=1}^{D} \left[\frac{x_j}{1-e^{-x_j}} (1-ye^{-x_j}) \cdot \right]$ $\left| \prod_{n=1}^{\infty} \frac{(1 - ye^{-x_j}q^n)(1 - y^{-1}e^{x_j}q^n)}{(1 - e^{-x_j}q^n)(1 - e^{x_j}q^n)} \right|$ $= \int_{M} \prod_{i=1}^{D} \left| x_{j} \frac{\vartheta_{1}(\tau, z - x_{j})}{\vartheta_{1}(\tau, -x_{i})} \right| \quad \in y^{-D/2} \cdot \mathbb{Z}[[q, y^{\pm 1}]],$

where for any bundle $E \to M$, $\Lambda_x E := \bigoplus_{k=0}^{\infty} x^k \Lambda^k E$, $S_x E := \bigoplus_{k=0}^{\infty} x^k S^k E$

The equivariant index theorem

Equivariant index theorem [Atiyah/Bott67, Atiyah/Singer68] (see also [Hirzebruch/Berger/Jung92, Waelder08]) *M*: a compact complex *D*-dimensional manifold, *C*: a compact topological group, acting holomorphically on *M*, $g \in C$. With $M^g = \bigcup_K M_g^K$ the decomposition into connected components, $T_{|M_g^K} = \bigoplus_\lambda N_\lambda^K$ the eigenbundle decomposition with respect to the action of *g*, with eigenvalues $\lambda = e^{2\pi i \zeta_\lambda}$,

and according to the splitting principle, for the total Chern class $c(N_{\lambda}^{K})$,

$$c(N_{\lambda}^{\kappa}) = \prod_{j=1}^{r_{\lambda}^{\kappa}} (1 + x_{\lambda}^{j}):$$

the corresponding EQUIVARIANT ELLIPTIC GENUS is

$$\mathcal{E}^{g}(M; z, \tau) = \sum_{K} \int_{M_{\varepsilon}^{K}} \prod_{m=1}^{r_{1}^{K}} x_{1}^{m} \prod_{\lambda} \prod_{j=1}^{r_{\lambda}^{K}} \frac{\vartheta_{1}(\tau, z + \zeta_{\lambda} - x_{\lambda}^{j})}{\vartheta_{1}(\tau, \zeta_{\lambda} - x_{\lambda}^{j})}$$

Application to resolved simple surface singularities

Example [Hou/W]

With the \mathbb{C}^* -action induced by $\mathbb{C}^* \hookrightarrow \operatorname{GL}_2(\mathbb{C}), \ \xi \mapsto \xi \cdot \operatorname{id},$ for $M = \mathbb{C}^2/\mathbb{Z}_2$: if $\xi \in \mathbb{C}^*, \ \xi = e^{2\pi i \zeta}, \ \xi \neq \pm 1$: $M^{\xi} \cong \mathbb{CP}^1, \ T_{|\mathbb{CP}^1} = N_1 \oplus N_{\xi^2},$ $\mathcal{E}^{\xi}(A_1; \tau, z) = \int_{\mathbb{CP}^1} x_1 \frac{\vartheta_1(\tau, z - x_1) \cdot \vartheta_1(\tau, z + 2\zeta - x_2)}{\vartheta_1(\tau, -x_1) \cdot \vartheta_1(\tau, 2\zeta - x_2)}$ $= \frac{\partial_z \vartheta_1(\tau, z) \cdot \vartheta_1(\tau, z + 2\zeta) - \vartheta_1(\tau, z) \cdot \partial_z \vartheta_1(\tau, z + 2\zeta)}{\pi \vartheta_1(\tau, 2\zeta) \cdot \eta(\tau)^3}$ $+ \frac{\vartheta_1(\tau, z) \cdot \vartheta_1(\tau, z + 2\zeta) \cdot \partial_z \vartheta_1(\tau, 2\zeta)}{\pi \vartheta_1(\tau, 2\zeta)^2 \cdot \eta(\tau)^3}$

Application to resolved simple surface singularities

Example [Hou/W]

With the \mathbb{C}^* -action induced by $\mathbb{C}^* \hookrightarrow \operatorname{GL}_2(\mathbb{C}), \ \xi \mapsto \xi \cdot \operatorname{id},$ for $M = \mathbb{C}^2/\mathbb{Z}_2$: if $\xi \in \mathbb{C}^*, \ \xi = e^{2\pi i \zeta}, \ \xi \neq \pm 1$: $M^{\xi} \cong \mathbb{CP}^1, \ T_{|\mathbb{CP}^1} = N_1 \oplus N_{\xi^2},$ $\mathcal{E}^{\xi}(A_1; \tau, z) = \int_{\mathbb{CP}^1} x_1 \frac{\vartheta_1(\tau, z - x_1) \cdot \vartheta_1(\tau, z + 2\zeta - x_2)}{\vartheta_1(\tau, -x_1) \cdot \vartheta_1(\tau, 2\zeta - x_2)}$ $= \frac{\partial_z \vartheta_1(\tau, z) \cdot \vartheta_1(\tau, z + 2\zeta) - \vartheta_1(\tau, z) \cdot \partial_z \vartheta_1(\tau, z + 2\zeta)}{\pi \vartheta_1(\tau, 2\zeta) \cdot \eta(\tau)^3}$ $+ \frac{\vartheta_1(\tau, z) \cdot \vartheta_1(\tau, z + 2\zeta) \cdot \partial_z \vartheta_1(\tau, 2\zeta)}{\pi \vartheta_1(\tau, 2\zeta)^2 \cdot \eta(\tau)^3}$

<u>Result</u> [Hou/W] Similar formulas for each of the ADE-type singularities $M = \mathbb{C}^2/\Gamma$, $\Gamma \subset SU(2)$, yielding a \mathbb{C}^* -equivariant elliptic genus $\mathcal{E}^{\xi}(\Gamma; \tau, z)$ for all $\xi = e^{2\pi i \zeta}$ with $\xi^N \neq 1$ for all divisors N of $|\Gamma|$.

Topologically half-twisted models for ADE singularities

Fixing $\Gamma \subset SU(2)$ of type A_k , D_k , E_k for $\widetilde{\mathbb{C}^2/\Gamma}$:

Can we associate a topologically half-twisted model and a conformal field theoretic elliptic genus?

Topologically half-twisted models for ADE singularities

Fixing $\Gamma \subset SU(2)$ of type A_k , D_k , E_k for \mathbb{C}^2/Γ : Can we associate a topologically half-twisted model and a conformal field theoretic elliptic genus? For $M = \mathbb{C}^2$: $\overline{\mathbb{H}^{\mathbb{C}^2}} \cong \mathbb{C}\left[\left\{a_n^{\ell}, b_m^{\ell}\right\}_{\substack{\ell \in \{1,2\}, \\ m \in \mathbb{N}, n \in \mathbb{N}_{>0}}}\right] \otimes \bigwedge_{\ell \in \{1,2\}, m \in \mathbb{N}, n \in \mathbb{N}_{>0}} \left(\mathbb{C}\left\{\varphi_m^{\ell}\right\} \wedge \mathbb{C}\left\{\psi_n^{\ell}\right\}\right),$ $\substack{k \in \{1,2\},\\ m \in \mathbb{N}, n \in \mathbb{N}_{>0}}$ with b_m^ℓ φ_m^ℓ ψ_n^ℓ al $L_0^{\text{top}}, J_0, \widetilde{J}_0$ all $[L_0^{\text{top}}, \cdot]$ n m٠ m٠ n٠ vanishing on $1 \in \mathbb{H}$. $[J_0, \cdot]$ 0 0 1. (-1)· $[J_0, \cdot]$ 0 0 0 0

Then
$$\operatorname{tr}_{\mathbb{H}^{\mathbb{C}^2}}\left((-1)^{J_0-\widetilde{J_0}}y^{J_0-1}q^{L_0^{\operatorname{top}}}\right)$$
 is ill-defined.

Topologically half-twisted models for ADE singularities

Fixing $\Gamma \subset SU(2)$ of type A_k , D_k , E_k for \mathbb{C}^2/Γ : Can we associate a topologically half-twisted model and a conformal field theoretic elliptic genus? For $M = \mathbb{C}^2$: $\mathbb{H}^{\mathbb{C}^2} \cong \mathbb{C}\left[\left\{a_n^\ell, b_m^\ell\right\}_{m \in \mathbb{N}, n \in \mathbb{N}_{>0}}\right] \otimes$ $(\mathbb{C}\left\{\varphi_{m}^{\ell}\right\} \wedge \mathbb{C}\left\{\psi_{n}^{\ell}\right\}),$ $\ell \in \{1,2\}, m \in \mathbb{N}, n \in \mathbb{N}_{>0}$ $k \in \{1,2\},\$ with a_n^ℓ b_m^ℓ φ_m^ℓ ψ_n^ℓ $m \in \mathbb{N}, n \in \mathbb{N}_{>0}$ $L_0^{\text{top}}, J_0, \widetilde{J}_0$ all $[L_0^{\text{top}}, \cdot]$ n٠ m٠ m٠ n٠ vanishing on $1 \in \mathbb{H}$ $[J_0, \cdot]$ 0 0 1. (-1)· and $[J_0, \cdot]$ 0 0 0 0 $\mathbb{C}^* \hookrightarrow \mathrm{GL}_2(\mathbb{C}),$ $\xi^{-1}\cdot$ ξ^{-1} . $\boldsymbol{\xi} \mapsto \boldsymbol{\xi} \cdot \mathrm{id}.$ $\xi_{\bullet}(\cdot)$ Ę٠ Ę.

Then $\operatorname{tr}_{\mathbb{H}^{\mathbb{C}^2}}\left((-1)^{J_0-\widetilde{J_0}}y^{J_0-1}q^{L_0^{\operatorname{top}}}\right)$ is ill-defined, but $\operatorname{tr}_{\mathbb{H}^{\mathbb{C}^2}}\left((-1)^{J_0-\widetilde{J}_0}y^{J_0-1}q^{L_0^{\operatorname{top}}}\xi_{\bullet}\right)$ is well-defined.

The \mathbb{C}^* -equivariant elliptic genera for ADE singularities

 $\forall \tau \in \mathbb{C} \text{ with } \operatorname{Im}(\tau) > 0, \ z, \zeta \in \mathbb{C} \colon \qquad q := e^{2\pi i \tau}, \ y := e^{2\pi i z}, \ \xi := e^{2\pi i \zeta} \colon$

$$\begin{split} \mathcal{E}(\mathbb{H}^{\mathbb{C}^2};\tau,z,\zeta) &:= \operatorname{tr}_{\mathbb{H}^{\mathbb{C}^2}}\left((-1)^{J_0-\widetilde{J_0}}y^{J_0-1}q^{L_0^{\operatorname{top}}}\xi_{\bullet}\right) \\ &= y^{-1}\prod_{n=1}^{\infty}\frac{\left(1-q^{n-1}\xi y\right)^2\left(1-q^n(\xi y)^{-1}\right)^2}{\left(1-q^{n-1}\xi\right)^2\left(1-q^n\xi^{-1}\right)^2} = \frac{\vartheta_1(\tau,\zeta+z)^2}{\vartheta_1(\tau,\zeta)^2}, \end{split}$$

The \mathbb{C}^* -equivariant elliptic genera for ADE singularities

 $\forall \tau \in \mathbb{C} \text{ with } \operatorname{Im}(\tau) > 0, \ z, \zeta \in \mathbb{C} \colon \qquad q := e^{2\pi i \tau}, \ y := e^{2\pi i z}, \ \xi := e^{2\pi i \zeta} \colon$

$$\begin{split} \mathcal{E}(\mathbb{H}^{\mathbb{C}^2};\tau,z,\zeta) &:= & \operatorname{tr}_{\mathbb{H}^{\mathbb{C}^2}}\left((-1)^{J_0-\widetilde{J_0}}y^{J_0-1}q^{L_0^{\operatorname{top}}}\xi_{\bullet}\right) \\ &= & y^{-1}\prod_{n=1}^{\infty}\frac{\left(1-q^{n-1}\xi y\right)^2\left(1-q^n(\xi y)^{-1}\right)^2}{\left(1-q^{n-1}\xi\right)^2\left(1-q^n\xi^{-1}\right)^2} = \frac{\vartheta_1(\tau,\zeta+z)^2}{\vartheta_1(\tau,\zeta)^2}, \end{split}$$

$$\mathcal{E}(\mathbf{A}_{k};\tau,z,\zeta) = \frac{1}{k+1} \sum_{m,n=0}^{k} \frac{\vartheta_{1}(\tau,z+\zeta+\frac{m+n\tau}{k+1}) \cdot \vartheta_{1}(\tau,z+\zeta-\frac{m+n\tau}{k+1})}{\vartheta_{1}(\tau,\zeta+\frac{m+n\tau}{k+1}) \cdot \vartheta_{1}(\tau,\zeta-\frac{m+n\tau}{k+1})},$$

previously found by [Harvey/Lee/Murthy15].

The \mathbb{C}^* -equivariant elliptic genera for ADE singularities

 $\forall \tau \in \mathbb{C} \text{ with } \operatorname{Im}(\tau) > 0, \ z, \zeta \in \mathbb{C} \colon \qquad q := e^{2\pi i \tau}, \ y := e^{2\pi i z}, \ \xi := e^{2\pi i \zeta} \colon$

$$\begin{split} \mathcal{E}(\mathbb{H}^{\mathbb{C}^2};\tau,z,\zeta) &:= & \operatorname{tr}_{\mathbb{H}^{\mathbb{C}^2}}\left((-1)^{J_0-\widetilde{J_0}}y^{J_0-1}q^{L_0^{\operatorname{top}}}\xi_{\bullet}\right) \\ &= & y^{-1}\prod_{n=1}^{\infty}\frac{\left(1-q^{n-1}\xi y\right)^2\left(1-q^n(\xi y)^{-1}\right)^2}{\left(1-q^{n-1}\xi\right)^2\left(1-q^n\xi^{-1}\right)^2} = \frac{\vartheta_1(\tau,\zeta+z)^2}{\vartheta_1(\tau,\zeta)^2}, \end{split}$$

$$\mathcal{E}(\mathbf{A}_{k};\tau,z,\zeta) = \frac{1}{k+1} \sum_{m,n=0}^{k} \frac{\vartheta_{1}(\tau,z+\zeta+\frac{m+n\tau}{k+1}) \cdot \vartheta_{1}(\tau,z+\zeta-\frac{m+n\tau}{k+1})}{\vartheta_{1}(\tau,\zeta+\frac{m+n\tau}{k+1}) \cdot \vartheta_{1}(\tau,\zeta-\frac{m+n\tau}{k+1})},$$

previously found by [Harvey/Lee/Murthy15].

By [Hou/W]:

$$\mathcal{E}(D_{k}; \tau, z, \zeta) = \frac{1}{2} \mathcal{E}(A_{2k-5}; \tau, z, \zeta) + \mathcal{E}(A_{3}; \tau, z, \zeta) - \frac{1}{2} \mathcal{E}(A_{1}; \tau, z, \zeta),$$

$$\mathcal{E}(E_{6}; \tau, z, \zeta) = \mathcal{E}(A_{5}; \tau, z, \zeta) + \frac{1}{2} \mathcal{E}(A_{3}; \tau, z, \zeta) - \frac{1}{2} \mathcal{E}(A_{1}; \tau, z, \zeta),$$

$$\mathcal{E}(E_{7}; \tau, z, \zeta) = \frac{1}{2} \mathcal{E}(A_{7}; \tau, z, \zeta) + \frac{1}{2} \mathcal{E}(A_{5}; \tau, z, \zeta) + \frac{1}{2} \mathcal{E}(A_{3}; \tau, z, \zeta) - \frac{1}{2} \mathcal{E}(A_{1}; \tau, z, \zeta),$$

$$\mathcal{E}(E_{8}; \tau, z, \zeta) = \frac{1}{2} \mathcal{E}(A_{9}; \tau, z, \zeta) + \frac{1}{2} \mathcal{E}(A_{5}; \tau, z, \zeta) + \frac{1}{2} \mathcal{E}(A_{3}; \tau, z, \zeta) - \frac{1}{2} \mathcal{E}(A_{1}; \tau, z, \zeta).$$

1. Motivation: orbifolding 2. Applying the equivariant index theorem? 3. Appreciating *q*-series 4. Regularization and folding 000 00 00 00

The \mathbb{C}^* -equivariant elliptic genera for ADE singularities

$$\mathcal{E}(\mathbf{A}_k;\tau,z,\zeta) = \frac{1}{k+1} \sum_{m,n=0}^k \frac{\vartheta_1(\tau,z+\zeta+\frac{m+n\tau}{k+1}) \cdot \vartheta_1(\tau,z+\zeta-\frac{m+n\tau}{k+1})}{\vartheta_1(\tau,\zeta+\frac{m+n\tau}{k+1}) \cdot \vartheta_1(\tau,\zeta-\frac{m+n\tau}{k+1})},$$

previously found by [Harvey/Lee/Murthy15].

By [Hou/W]:

$$\mathcal{E}(D_{k}; \tau, z, \zeta) = \frac{1}{2} \mathcal{E}(A_{2k-5}; \tau, z, \zeta) + \mathcal{E}(A_{3}; \tau, z, \zeta) - \frac{1}{2} \mathcal{E}(A_{1}; \tau, z, \zeta),$$

$$\mathcal{E}(E_{6}; \tau, z, \zeta) = \mathcal{E}(A_{5}; \tau, z, \zeta) + \frac{1}{2} \mathcal{E}(A_{3}; \tau, z, \zeta) - \frac{1}{2} \mathcal{E}(A_{1}; \tau, z, \zeta),$$

$$\mathcal{E}(E_{7}; \tau, z, \zeta) = \frac{1}{2} \mathcal{E}(A_{7}; \tau, z, \zeta) + \frac{1}{2} \mathcal{E}(A_{5}; \tau, z, \zeta) + \frac{1}{2} \mathcal{E}(A_{3}; \tau, z, \zeta) - \frac{1}{2} \mathcal{E}(A_{1}; \tau, z, \zeta),$$

$$\mathcal{E}(E_{8}; \tau, z, \zeta) = \frac{1}{2} \mathcal{E}(A_{9}; \tau, z, \zeta) + \frac{1}{2} \mathcal{E}(A_{5}; \tau, z, \zeta) + \frac{1}{2} \mathcal{E}(A_{3}; \tau, z, \zeta) - \frac{1}{2} \mathcal{E}(A_{1}; \tau, z, \zeta),$$

<u>Result</u> [Hou/W] For each of the ADE-type singularities $M = \widetilde{\mathbb{C}^2/\Gamma}$, $\Gamma \subset \mathrm{SU}(2)$, and all $\xi = e^{2\pi i \zeta}$ with $\xi^N \neq 1$ for all divisors N of $|\Gamma|$: $\mathcal{E}^{\xi}(\Gamma; \tau, z) = \mathcal{E}(\Gamma; \tau, z, \zeta)$.

Regularizing the elliptic genera of ADE singularities

Inspired by [Dixon/Harvey/Vafa/Witten85], for a Calabi-Yau *D*-fold *M* and $G \subset SU(D)$ a finite group acting on *M*, such that the Calabi-Yau structure is preserved, let $S \subset M/G$ denote the set of singular points in M/G, which we assume to be discrete; then for each $s \in S$, one can define an

ORBIFOLD EULER CHARACTERISTIC $\chi^{\text{reg}}(s) \in \mathbb{Q}$, such that

$$\chi(M/G) = \frac{1}{|G|}\chi(M) + \sum_{s\in S} \chi^{\operatorname{reg}}(s).$$

Regularizing the elliptic genera of ADE singularities

Inspired by [Dixon/Harvey/Vafa/Witten85], for a Calabi-Yau D-fold *M* and $G \subset SU(D)$ a finite group acting on *M*, such that the Calabi-Yau structure is preserved, let $S \subset M/G$ denote the set of singular points in M/G, which we assume to be discrete; then for each $s \in S$, one can define an

ORBIFOLD EULER CHARACTERISTIC $\chi^{\text{reg}}(s) \in \mathbb{Q}$, such that

$$\chi(M/G) = \frac{1}{|G|}\chi(M) + \sum_{s\in S} \chi^{\operatorname{reg}}(s).$$

Result [Hou/W]

For any finite subgroup $\Gamma \subset SU(2)$, set

 $\mathcal{E}^{\mathrm{reg}}(\Gamma;\tau,z,\zeta) := \mathcal{E}(\Gamma;\tau,z,\zeta) - \frac{1}{|\Gamma|} \mathcal{E}(\mathbb{H}^{\mathbb{C}^2};\tau,z,\zeta).$

With M a compact Calabi-Yau 2-fold and $G \subset SU(2)$ a finite group that acts on M preserving the Calabi-Yau structure, if S denotes the set of singular points in M/G, then let $\Gamma_s \subset SU(2)$ denote the type of the singularity $s \in S$. Then

$$\mathcal{E}(M/G;\tau,z) = \frac{1}{|G|} \mathcal{E}(M;\tau,z) + \sum_{s \in S} \lim_{\zeta \to 0} \mathcal{E}^{\mathrm{reg}}(\Gamma_s;\tau,z,\zeta).$$

Recall from [Hou/W] the relations of the form $\mathcal{E}(D_{k+1}; \tau, z, \zeta) = \frac{1}{2} \mathcal{E}(A_{2k-3}; \tau, z, \zeta) + \mathcal{E}(A_3; \tau, z, \zeta) - \frac{1}{2} \mathcal{E}(A_1; \tau, z, \zeta).$ In [Hou/W], we give a geometric explanation: - use [Slodowy80]: D_{k+1} \mathbb{C}^2/Γ is the resolution of $\mathbb{C}^2/\mathbb{Z}_2/(\Gamma/\mathbb{Z}_2),$ where $\mathbb{C}^2/\mathbb{Z}_2$ is A_1 ;

Recall from **[Hou/W]** the relations of the form $\mathcal{E}(D_{k+1}; \tau, z, \zeta) = \frac{1}{2}\mathcal{E}(A_{2k-3}; \tau, z, \zeta) + \mathcal{E}(A_3; \tau, z, \zeta) - \frac{1}{2}\mathcal{E}(A_1; \tau, z, \zeta).$ In **[Hou/W]**, we give a geometric explanation: - use [Slodowy80]: D_{k+1} D_{k+1} \mathbb{C}^2/Γ is the resolution of $\mathbb{C}^2/\mathbb{Z}_2/(\Gamma/\mathbb{Z}_2),$ where $\mathbb{C}^2/\mathbb{Z}_2$ is A_1 ;

Recall from [Hou/W] the relations of the form $\mathcal{E}(D_{k+1}; \tau, z, \zeta) = \frac{1}{2} \mathcal{E}(A_{2k-3}; \tau, z, \zeta) + \mathcal{E}(A_3; \tau, z, \zeta) - \frac{1}{2} \mathcal{E}(A_1; \tau, z, \zeta).$ In [Hou/W], we give a geometric explanation: - use [Slodowy80]: D_{k+1} \mathbb{C}^2/Γ is the resolution of $\mathbb{C}^2/\mathbb{Z}_2/(\Gamma/\mathbb{Z}_2)$, where $\mathbb{C}^2/\mathbb{Z}_2$ is A_1 ; E_6 $\mathcal{E}(E_6; \tau, z, \zeta)$ $= \mathcal{E}(A_5; \tau, z, \zeta) + \frac{1}{2} \mathcal{E}(A_3; \tau, z, \zeta) - \frac{1}{2} \mathcal{E}(A_1; \tau, z, \zeta)$,

Recall from [Hou/W] the relations of the form $\mathcal{E}(D_{k+1};\tau,z,\zeta) = \frac{1}{2}\mathcal{E}(A_{2k-3};\tau,z,\zeta) + \mathcal{E}(A_3;\tau,z,\zeta) - \frac{1}{2}\mathcal{E}(A_1;\tau,z,\zeta).$ In [Hou/W], we give a geometric explanation: - use [Slodowy80]: where $\mathbb{C}^2/\mathbb{Z}_2$ is A_1 ; $E_6 \qquad \mathcal{E}(E_6;\tau,z,\zeta)$ $= \mathcal{E}(A_5;\tau,z,\zeta) + \frac{1}{2}\mathcal{E}(A_3;\tau,z,\zeta) - \frac{1}{2}\mathcal{E}(A_1;\tau,z,\zeta),$ $\bullet E_7 \qquad \mathcal{E}(E_7;\tau,z,\zeta) = \frac{1}{2}\mathcal{E}(A_7;\tau,z,\zeta) + \frac{1}{2}\mathcal{E}(A_5;\tau,z,\zeta)$ $+\frac{1}{2}\mathcal{E}(\mathbf{A}_3;\tau,z,\zeta)-\frac{1}{2}\mathcal{E}(\mathbf{A}_1;\tau,z,\zeta),$

Recall from [Hou/W] the relations of the form $\mathcal{E}(D_{k+1};\tau,z,\zeta) = \frac{1}{2}\mathcal{E}(A_{2k-3};\tau,z,\zeta) + \mathcal{E}(A_3;\tau,z,\zeta) - \frac{1}{2}\mathcal{E}(A_1;\tau,z,\zeta).$ In [Hou/W], we give a geometric explanation: – use [Slodowy80]: $\underbrace{\frac{1}{2}A_{2k-3}}_{1} \underbrace{\frac{1}{2}A_3}_{1} D_{k+1} \quad \underbrace{\mathbb{C}^2/\Gamma}_{1} \text{ is the resolution of } \underbrace{\mathbb{C}^2/\mathbb{Z}_2/(\Gamma/\mathbb{Z}_2)}_{2},$ where $\mathbb{C}^2/\mathbb{Z}_2$ is A_1 ; $E_6 \quad \mathcal{E}(E_6;\tau,z,\zeta)$ $= \mathcal{E}(\mathbf{A}_5; \tau, z, \zeta) + \frac{1}{2} \mathcal{E}(\mathbf{A}_3; \tau, z, \zeta) - \frac{1}{2} \mathcal{E}(\mathbf{A}_1; \tau, z, \zeta),$ $\mathcal{E}_{7} \qquad \mathcal{E}(\mathcal{E}_{7};\tau,z,\zeta) = \frac{1}{2}\mathcal{E}(\mathcal{A}_{7};\tau,z,\zeta) + \frac{1}{2}\mathcal{E}(\mathcal{A}_{5};\tau,z,\zeta)$ $+\frac{1}{2}\mathcal{E}(\mathbf{A}_3;\tau,z,\zeta)-\frac{1}{2}\mathcal{E}(\mathbf{A}_1;\tau,z,\zeta),$ • E_8 $\mathcal{E}(E_8; \tau, z, \zeta) = \frac{1}{2}\mathcal{E}(A_9; \tau, z, \zeta) + \frac{1}{2}\mathcal{E}(A_5; \tau, z, \zeta)$ $+\frac{1}{2}\mathcal{E}(A_3;\tau,z,\zeta)-\frac{1}{2}\mathcal{E}(A_1;\tau,z,\zeta).$

The End

THANK YOU FOR YOUR ATTENTION!

The End

HAPPY BIRTHDAY, ULI!