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Abstract

In biodiversity conservation, it is often necessary to prioritize the species to conserve.
Existing approaches to prioritization, e.g. the Fair Proportion Index and the Shapley
Value, are based on phylogenetic trees and rank species according to their contribu-
tion to overall phylogenetic diversity. However, in many cases evolution is not treelike
and thus, phylogenetic networks have come to the fore as a generalization of phylogen-
etic trees, allowing for the representation of non-treelike evolutionary events, such as
horizontal gene transfer or hybridization.

In this thesis we extend the concept of phylogenetic diversity and its measures from
phylogenetic trees to phylogenetic networks, in particular to hybridization networks.
On the one hand, we consider the treelike content of a phylogenetic network, e.g. the
(multi)set of phylogenetic trees displayed by a network and the LSA tree associated
with it. On the other hand, we derive the phylogenetic diversity of subsets of taxa and
biodiversity indices directly from the internal structure of a phylogenetic network. Fur-
thermore, we introduce a small program that allows for the calculation of phylogenetic
diversity and biodiversity indices based on phylogenetic networks. We illustrate some
of the approaches using data for a group of marine mammals, the family Delphinidae,
whose evolution is suspected to have included hybridization.

In summary, our approaches are an extension of existing prioritization tools in conser-
vation biology and allow for the consideration of phylogenetic networks in prioritization
decisions.
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1. Introduction

1. Introduction

Facing a major extinction crisis and the inevitable loss of biodiversity at the same
time with limited financial means, biological conservation has to prioritize the species
to conserve. One major objective of conservation biology is to consider overall biod-
iversity and minimize its future loss. In this matter, the so-called phylogenetic diversity
(cf. Faith [11]) has come to the fore, measuring biodiversity based on the evolution-
ary history of species. Given a phylogenetic tree, phylogenetic diversity captures the
diversity within a set of species and serves as a basis for biodiversity indices used in
taxon prioritization. Two biodiversity indices frequently discussed are the Fair Propor-
tion Index and the Shapley Value, which rank species according to their contribution
to overall phylogenetic diversity (cf. Haake et al. [16], Hartmann [18], Fuchs and Jin
[15], Wicke and Fischer [37]) .

Both phylogenetic diversity, as well as the Fair Proportion Index and the Shapley
Value are based on phylogenetic trees and thus, assume the evolutionary history of
species to be treelike. However, there are several forms of non-treelike evolution, such
as horizontal gene transfer or hybridization, affecting a variety of species. Therefore
phylogenetic reticulation networks have become an important concept in evolutionary
biology, allowing for the representation of non-treelike evolution.

In this thesis we aim at combining both approaches, i.e. we aim at extending the
concept of phylogenetic diversity and its measures from phylogenetic trees to phylo-
genetic networks, in particular to hybridization networks. So far, phylogenetic diversity
and the Shapley Value have been considered for so-called split networks, which can be
used to represent conflict in data (cf. Minh et al. [27], Volkmann et al. [33]), but no
attempts have been made towards the generalization of phylogenetic diversity and its
measures to reticulation networks.

After recapitulating the concepts of phylogenetic diversity, the Fair Proportion Index
as well as the different versions of the Shapley Value and a short introduction to
phylogenetic reticulation networks, we will therefore suggest several approaches towards
the generalization of phylogenetic diversity and its measures from trees to networks,
focusing on hybridization networks.

We will introduce a variety of definitions for generalized phylogenetic diversity, fol-
lowing three main principles: the calculation of spanning arborescences in a network,
the consideration of the (multi)set of phylogenetic trees displayed by a network and
the construction of the so-called LSA tree associated with a network.
We will then turn our attention to the Fair Proportion Index and the different ver-

sions of the Shapley Value and suggest different ways of using them as taxon prioritiza-
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1. Introduction

tion tools in the context of hybridization networks. On the one hand, we will again use
the (multi)set of phylogenetic trees displayed by a network and the LSA tree associated
with a network when calculating the Fair Proportion Index and the different versions
of the Shapley Value for the taxa of a phylogenetic network. On the other hand, we
will additionally derive the Shapley Value from any measure of generalized phylogenetic
diversity and introduce a new index – the Net Fair Proportion Index – very similar to
the Fair Proportion Index, but defined for rooted phylogenetic networks.
Both for the generalized measures of phylogenetic diversity and the generalized biod-

iversity indices, we will develop approaches that are independent of hybridization prob-
abilities and approaches that explicitly incorporate these probabilities. In case of the
former, we will additionally introduce a small program, net_diversity.pl, that allows
for the computation of generalized phylogenetic diversity and generalized biodiversity
indices independent of hybridization probabilities.

We will conclude this thesis with the application of some of the discussed concepts,
in particular the Shapley Value, to a phylogenetic hybridization network for dolphins
from the family Delphinidae.

2



2. Phylogenetic diversity and biodiversity indices on trees

2. Phylogenetic diversity and biodiversity indices on

trees

Phylogenetic diversity plays an important role in conservation biology. It aims at quan-
tifying the evolutionary distinctiveness of a single species and capturing the diversity
within a set of species. Based on phylogenetic diversity, several indices have been de-
veloped in order to prioritize the species to conserve.

Before we go into more detail about phylogenetic diversity and diversity indices, we
need to introduce some notations and definitions.

2.1. Preliminaries

Primarily, we define what we recognize as a directed path throughout this thesis, before
introducing phylogenetic trees and arborescences.

Definition 1 (Directed path). Let G = (V,E) be a directed graph with node set V
and edge set E. A directed path P = (v1, . . . , vk+1) from v1 to vk+1 is a sequence of
nodes from V that are distinct (except possibly for the first and last node), such that
there exists a directed edge ei = (vi, vi+1) ∈ E for all i = 1, . . . , k.
If v1 = vk+1 we call P a directed cycle.
We sometimes call P a v1–vk+1–path to emphasize the start and end node of P .
If there is a function c : E → R that assigns a length to each edge in E, we define the
length of the path P as

length(P ) =
∑
e∈P

c(e),

where the sum runs over all edges of P .

Remark. For convenience we sometimes speak of paths instead of directed paths.

Definition 2 (Phylogenetic X-tree). Let T = (V (T ), E(T )) be a (graph-theoretical)
tree with nodes V (T ), edges E(T ) on a leaf set VL ⊆ V (T ) and no nodes of degree 2.
Let X be a set of taxa and let φ : X → VL be a bijective mapping from the set of taxa
into the set of leaves of T (X is therefore sometimes called leaf set). Then T := (T, φ)

is called a phylogenetic X-tree with treeshape/topology T .
If all internal nodes are of degree 3, we call T a binary phylogenetic X-tree. If there is
a specified root node ρ, T is called a rooted phylogenetic X-tree. Last but not least, we
call T a rooted binary phylogenetic X-tree, if T contains a specified root node ρ with
deg(ρ) = 21 and all other internal nodes have degree 3.

1For rooted binary phylogenetic X-trees, one node of degree 2 (the root) is allowed.

3



2. Phylogenetic diversity and biodiversity indices on trees

In case the edges of T have edge lengths assigned to them, we denote the length of an
edge e ∈ E(T ) as λe.

Remarks.

• For convenience we speak of phylogenetic trees instead of phylogenetic X-trees
when the set of taxa is clearly specified or can be assumed to beX = {1, 2, . . . , n}.
Moreover, when we refer to phylogenetic trees, we always mean binary phylogen-
etic trees, if not stated otherwise.

• In case of rooted phylogenetic trees we consider the edges to be directed away from
the root. Thus, formally the treeshape T is a rooted directed acyclic graph or, to
be more precise, an arborescence (cf. Definition 3) rather than a tree. However,
we omit arrowheads when drawing rooted phylogenetic trees (cf. Figure 1).

Definition 3 (Arborescence). Let G = (V,E) be a directed graph and let ρ ∈ V be a
specified root node (of indegree 0). Then G is an arborescence (rooted at ρ) if there is
exactly one directed path from ρ to u for all nodes u ∈ V \ ρ.

A B C

ρ

1 1

2
3

T1

B

A

C

1

1

5

T2

Fig. 1: Rooted binary phylogenetic X-tree T1 and unrooted binary phylogenetic X-tree
T2 with leaf set X = {A,B,C}. Note that, formally, the edges in T1 are directed
away from the root ρ, but for convenience arrowheads are omitted.

2.2. Phylogenetic diversity

Phylogenetic diversity, or PD for short, was first introduced by Faith [11] and has
become an important measure of biodiversity. It captures the diversity within a set of
species and serves as a basis for diversity indices used in taxon prioritization.

Mathematically, phylogenetic diversity is based on weighted phylogenetic trees, i.e.
trees where the edges are assigned weights, representing for example time or substitu-
tion rates.

We are now in the position to formally define phylogenetic diversity, where we dis-
tinguish between rooted and unrooted phylogenetic trees.
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Definition 4 (Phylogenetic diversity (PD)).

1. Let Tr be a rooted phylogenetic tree with leaf set X. For a subset S ⊆ X of taxa
the phylogenetic diversity (PD) of S is calculated by summing up the branch
lengths of the phylogenetic subtree of Tr containing S and the root (i.e. we con-
sider the sum of branch lengths in the smallest spanning tree containing S and
the root).2

2. Now let Tu be an unrooted phylogenetic tree with leaf set X. Then the phylogen-
etic diversity (PD) of a subset S ⊆ X of taxa is defined as the sum of branch
lengths in the smallest spanning tree in Tu connecting those taxa. The PD of a
single taxon is defined as 0.

Example 1. Consider the rooted phylogenetic tree T1 and the unrooted phylogenetic
tree T2 depicted in Figure 1. We retrieve the following values for the phylogenetic
diversity of T1 and T2, respectively:

Rooted phylogenetic tree T1:

PDT1(∅) = 0,

PDT1({A}) = 1 + 2 = 3,

PDT1({B}) = 1 + 2 = 3,

PDT1({C}) = 3,

PDT1({A,B}) = 1 + 1 + 2 = 4,

PDT1({A,C}) = 1 + 2 + 3 = 6,

PDT1({B,C}) = 1 + 2 + 3 = 6,

PDT1({A,B,C}) = 1 + 1 + 2 + 3 = 7.

Unrooted phylogenetic tree T2:

PDT2(∅) = PDT2({A}) = PDT2({B}) = PDT2({C}) = 0,

PDT2({A,B}) = 1 + 1 = 2,

PDT2({A,C}) = 1 + 5 = 6,

PDT2({B,C}) = 1 + 5 = 6,

PDT2({A,B,C}) = 1 + 2 + 5 = 7.

2Formally, we consider the smallest arborescence containing S and the root, because rooted phylo-
genetic trees are directed graphs.
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Note that T2 can be obtained from T1 by suppressing the root node ρ, i.e. by deleting
ρ and merging the two edges adjacent to ρ into one new branch, whereby adding the
lengths of the former two branches to yield the length of the new branch.

However, unrooting a rooted phylogenetic tree causes a change in the definition of
PD and thus, the values are in general not the same for the unrooted and rooted version
of a tree. Consider for example S = {A,B}. For T1 we have PDT1(S) = 4, while we
have PDT2(S) = 2 for T2. In this case, the difference between the two values can be
explained by the edge of length 2 connecting S with the root in T1, which is disregarded
in T2.

2.3. The Fair Proportion Index and the Shapley Value

The Fair Proportion Index and the Shapley Value have been frequently discussed as
prioritization tools in biodiversity conservation (Haake et al. [16], Hartmann [18], Fuchs
and Jin [15], Wicke and Fischer [37]). Both indices are based on phylogenetic trees
and quantify the importance of a taxon to overall biodiversity. Thus, they provide a
prioritization criterion to be used in conservation biology.

While the Shapley Value reflects the average biodiversity contribution of a species,
the Fair Proportion Index lacks a biological link to conservation. It is, however, sig-
nificantly easier to calculate and – under a different name (ED for Evolutionary Dis-
tinctiveness) – has been adopted to existing conservation schemes, such as the ‘EDGE
of Existence’ project, established by the Zoological Society of London in 2007 (cf. Isaac
et al. [22]). However, both indices have been shown to be highly correlated.

In the following, we will formally define the Fair Proportion Index and the Shapley
Value and give an overview of the different definitions of the latter used in the literature.

2.3.1. The Fair Proportion Index

The Fair Proportion Index, or FP for short, is only defined for rooted phylogenetic
trees. Its idea is to apportion the phylogenetic diversity of a tree among its leaves. This
is achieved by distributing the length of each edge equally among the taxa descending
from that edge.

Definition 5 (Fair Proportion Index (FP )). For a rooted phylogenetic tree T with
leaf set X the Fair Proportion Index of a taxon a is defined as

FP (a) =
∑
e

λe
De

, (2.1)
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where the sum runs over all edges e on the path from the root to a and De denotes the
number of leaves descendent from that edge.

Note that the sum of all Fair Proportion Indices for the taxa in X equals the total
branch length of the given tree, since all edge weights are distributed equally among
the descending taxa.

Example 2. For T1 in Figure 1 the Fair Proportion Indices are calculated as follows:

FP (A) =
2

2
+ 1 = 2,

FP (B) =
2

2
+ 1 = 2,

FP (C) = 3.

Summing up the Fair Proportion Indices we have FP (A) + FP (B) + FP (C) = 7,
which equals the total sum of branch lengths in T1 or, in other words, the total PD
(cf. Example 1).

2.3.2. The Shapley Value and its different versions

The original Shapley Value
The Shapley Value is used in different versions in the literature, namely the original
Shapley Value SV , the modified Shapley Value S̃V and the unrooted rooted Shapley
Value ŜV (for an overview cf. Wicke and Fischer [37]).

The original Shapley Value SV was first introduced by Haake et al. [16] for unrooted
phylogenetic trees, but can similarly be defined for rooted phylogenetic trees.

Definition 6 (Original Shapley Value (SV )). Let T be a phylogenetic tree with leaf
set X and let PD(S) denote the phylogenetic diversity of S ⊆ X. Then the original
Shapley Value of a taxon a is defined as

SV (a) =
1

n!

∑
S⊆X
a∈S

(
(|S| − 1)!(n− |S|)!(PD(S)− PD(S \ {a}))

)
, (2.2)

where n = |X| and S denotes a subset of species containing taxon a (sometimes called
a ‘coalition’ of taxa) and the sum runs over all such subsets possible.

Note that this general definition holds both for unrooted and rooted phylogenetic
trees. The only difference is the way how phylogenetic diversity of subsets of taxa is
defined (cf. Section 2.2).
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For rooted trees, however, the original Shapley Value coincides with the Fair Pro-
portion Index, which was recently shown by Fuchs and Jin [15].

In particular, the sum of the original Shapley Values for the taxa inX equals the total
branch length of the given tree, just as it was the case for the Fair Proportion Indices.
This property of the original Shapley Value is also referred to as the Efficiency Axiom.
However, the original Shapley Value fulfills three other axioms, namely Symmetry, the
Dummy Axiom and Additivity (cf. Haake et al. [16], Wicke [36] for details of the axioms
and their meaning).

We now give an example for the calculation of the original Shapley Value.

Example 3. Consider the phylogenetic trees T1 and T2 in Figure 1.

We start with T1 and calculate the original Shapley Value for taxon A. Note that we
have to consider 4 summands, as there are 4 subsets S ⊆ X containing taxon A,
namely {A}, {A,B}, {A,C} and {A,B,C}.

SVT1(A) =
1

3!

∑
S:A∈S

(
(|S| − 1)!(|X| − |S|)!(PD(S)− PD(S \ {A}))

)
=

1

3!

[
(1− 1)!(3− 1)!(3− 0)

+ (2− 1)!(3− 2)!
(
(4− 3) + (6− 3)

)
+ (3− 1)!(3− 3)!(7− 6)

]
=

1

6

[
1 · 2 · 3 + 1 · 1 · (1 + 3) + 2 · 1 · 1

]
=

1

6
· 12

= 2.

Analogously, we get SVT1(B) = 2 and SVT1(C) = 3.
Note that the calculation of the original Shapley Values is much more involved
than the calculation of the Fair Proportion Indices in Example 2, but as shown
by Fuchs and Jin [15] the two values coincide for rooted trees.

We now turn our attention to the unrooted tree T2 and again, calculate the original
Shapley Value for taxon A. The calculation is identical to the one for T1, the only
difference being that we have to use other values for the phylogenetic diversity of
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subsets of taxa (cf. Example 1). Thus, we get

SVT2(A) =
1

3!

∑
S:A∈S

(
(|S| − 1)!(|X| − |S|)!(PD(S)− PD(S \ {A}))

)
=

1

3!

[
(1− 1)!(3− 1)!(0− 0)

+ (2− 1)!(3− 2)!
(
(2− 0) + (6− 0)

)
+ (3− 1)!(3− 3)!(7− 6)

]
=

1

6

[
1 · 2 · 0 + 1 · 1 · (2 + 6) + 2 · 1 · 1

]
=

1

6
· 10

=
5

3
.

Analogously, SVT2(B) = 5
3
and SVT2(C) =

11
3
.

Note that both for T1 and T2 the sum of the original Shapley Values equals the sum
of the branch lengths of T1 and T2, respectively. As mentioned in Example 1,
T2 represents the unrooted version of T1, but due to the fact that unrooting a
rooted tree causes a change in the definition of phylogenetic diversity, the original
Shapley Values differ between T1 and T2.

The modified Shapley Value
We now turn our attention to a slightly modified version of the Shapley Value intro-
duced by Fuchs and Jin [15], namely the modified Shapley Value, which we will denote
as S̃V . While the original Shapley Value considers all subsets of taxa containing a
certain taxon, the modified Shapley Value only takes into account subsets of size at
least 2. Again, it can be generally defined for both rooted and unrooted phylogenetic
trees.

Definition 7 (Modified Shapley Value (S̃V )). Let T be a phylogenetic tree with leaf
set X and let PD(S) denote the phylogenetic diversity of a subset S ⊆ X. Then the
modified Shapley Value of a taxon a is defined as

S̃V (a) =
1

n!

∑
S:a∈S
|S|≥2

(
(|S| − 1)!(n− |S|)!(PD(S)− PD(S \ {a}))

)
, (2.3)

where n = |X| and the sum runs over all coalitions S containing taxon a and at least
one other taxon.
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Comparing the original and the modified Shapley Value, we get the following relation:

Proposition 1. Let T be a phylogenetic tree with leaf set X and let a ∈ X be a taxon
of T .

1. If T is rooted, we have

SV (a) = S̃V (a) +
PD({a})

n
. (2.4)

2. If T is unrooted, the original and the modified Shapley Value coincide, thus,
SV (a) = S̃V (a).

Proof.

1. While the original Shapley Value considers all subsets of taxa containing taxon
a, the modified Shapley Value only takes into account subsets of size at least two.
Thus, we have to consider the contribution of the singleton set {a} to SV (a). By
definition this is

1

n!

(
(1− 1)!(n− 1)!(PD({a})− PD(∅))

)
=

(n− 1)!

n!
PD({a})

=
PD({a})

n
.

As S̃V (a) lacks this contribution, it is

S̃V (a) = SV (a)− PD({a})
n

,

or, in other words,

SV (a) = S̃V (a) +
PD({a})

n

(taken from Wicke [36]).

2. The equality for the two values in the unrooted case follows from the equation
above and the fact, that the phylogenetic diversity of a set S ⊆ X is defined as
0, whenever S contains only one element (cf. Definition 4, part two), thus, in our
case PD({a}) = 0. In particular,

SV (a) = S̃V (a) +
0

n
= S̃V (a).
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Remark. Note that the modified Shapley Value does not fulfill the Efficiency Axiom
in the rooted case, i.e. the sum of the modified Shapley Values for the taxa in X does
not equal the total branch length of the given rooted phylogenetic tree. To see this let
T be a phylogenetic tree with leaf set X, where |X| = n. Then

n∑
i=1

S̃V (i) =
n∑
i=1

(
SV (i)− PD({i})

n

)
=

n∑
i=1

SV (i)−
n∑
i=1

PD({i})
n

= PD(X)−
n∑
i=1

PD({i})
n︸ ︷︷ ︸

PD({i})6=0,
because T is rooted.

6= PD(X).

Thereby
n∑
i=1

SV (i) = PD(X)

holds because of the efficiency of the original Shapley Value (taken from Wicke [36]).

Example 4. We now calculate the modified Shapley Values for the phylogenetic trees
T1 and T2 depicted in Figure 1. In contrast to the calculations in Example 3, however,
we only have to consider subsets S ⊆ X of size at least 2 now. Thus, we consider the
sets {A,B}, {A,C} and {A,B,C}.

For the rooted phylogenetic tree T1 this leads to

S̃V T1(A) =
1

3!

∑
S:A∈S
|S|≥2

(
(|S| − 1)!(|X| − |S|)!(PD(S)− PD(S \ {A}))

)

=
1

3!

[
(2− 1)!(3− 2)!

(
(4− 3) + (6− 3)

)
+ (3− 1)!(3− 3)!(7− 6)

]
=

1

6

[
1 · 1 · (1 + 3) + 2 · 1 · 1

]
=

1

6
· 6

= 1,

S̃V T1(B) = 1 and S̃V T1(C) = 2.
Recall that PD({A}) = 3, PD({B}) = 3 and PD({C}) = 3. Comparing the
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modified Shapley Values with the original Shapley Values, calculated in Example
3, we have

S̃V T1(A) = 1 = 2− 3

3
= SVT1(A)−

PD({A})
n

,

S̃V T1(B) = 1 = 2− 3

3
= SVT1(B)− PD({B})

n
,

S̃V T1(C) = 2 = 3− 3

3
= SVT1(C)−

PD({C})
n

as implied by Proposition 1.
Also note that S̃V T1(A) + S̃V T1(B) + S̃V T1(C) = 4 6= 7 = PD({ABC}) =

PD(X).

Analogously, we have for the unrooted phylogenetic tree T2

S̃V T2(A) =
1

3!

∑
S:A∈S
|S|≥2

(
(|S| − 1)!(|X| − |S|)!(PD(S)− PD(S \ {A}))

)

=
1

3!

[
(2− 1)!(3− 2)!

(
(2− 0) + (6− 0)

)
+ (3− 1)!(3− 3)!(7− 6)

]
=

1

6

[
1 · 1 · (2 + 6) + 2 · 1 · 1

]
=

1

6
· 10

=
5

3
,

S̃V T2(B) = 5
3
and S̃V T2(C) =

11
3
.

Comparing the results with those in Example 3, we see that the original and the
modified Shapley Value, in fact, coincide for unrooted phylogenetic trees.

The unrooted rooted Shapley Value
Hartmann [18] observes a strong correlation between the Fair Proportion Index and
the Shapley Value for rooted phylogenetic trees, but he does not come to the conclusion
that they are equal. Thus, Hartmann [18] cannot be using the original Shapley Value,
since this value coincides with the Fair Proportion Index as shown by Fuchs and Jin
[15].

Fuchs and Jin [15] therefore suggest that the modified Shapley Value was used in
Hartmann [18]. However, as the definition of the Shapley Value in Hartmann [18]
ranges over all subsets S ⊆ X containing a certain taxon, and not only over those of
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size at least 2, Wicke and Fischer [37] think that yet another version of the Shapley
Value, which they call the unrooted rooted Shapley Value ŜV , is used in Hartmann [18].

For a rooted phylogenetic tree Tr the unrooted rooted Shapley Value of a taxon is
defined as the original Shapley Value of this taxon on the corresponding unrooted tree,
i.e. on the tree Tu that is derived from the original tree Tr by suppressing the root node
(cf. Wicke and Fischer [37]).

Definition 8 (Unrooted rooted Shapley Value (ŜV )). Let Tr be a rooted phylogenetic
tree with leaf set X. Then we retrieve the unrooted rooted Shapley Value of a taxon
a ∈ X as

ŜV Tr(a) = SVTu(a), (2.5)

where SVTu(a) is the original Shapley Value of a in the corresponding unrooted phylo-
genetic tree Tu.

Example 5. Consider the phylogenetic trees T1 and T2 depicted in Figure 1. As ex-
plained in Example 1, the tree T2 is the unrooted version of the tree T1. In Example
3 we have already calculated the original Shapley Values for all leaves of T2. Thus, we
already know the unrooted rooted Shapley Values for the taxa in T1. To be precise, we
have ŜV T1(A) =

5
3
, ŜV T1(B) = 5

3
and ŜV T1(C) =

11
3
.

Summary
We finish this section with a short summary (taken from Wicke and Fischer [37]):
Let Tr be a rooted phylogenetic tree with leaf setX (|X| = n) and let Tu be its unrooted
version, i.e. the unrooted phylogenetic tree that is derived from Tr by suppressing the
root node. Then, we have:

• SVTr = FPTr (proven by Fuchs and Jin [15]),

• SVTr 6= S̃V Tr , but S̃V Tr(a) = SVTr(a) +
PDr({a})

n
for all a ∈ X,

• SVTu = S̃V Tu ,

• SVTr 6= ŜV Tr , but the two values are strongly correlated (cf. Hartmann [18]),

• SVTu = ŜV Tr and

• ŜV Tr 6= S̃V Tr .

Phylogenetic diversity and biodiversity indices for phylogenetic trees have been of con-
siderable interest in recent times. At the same time, the use of phylogenetic networks
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has gained popularity among evolutionary biologists, as these allow for the modeling
not only of speciation events, but also of reticulate evolution, e.g. of hybridization or
horizontal gene transfer. However, there has been no attempt to extend phylogenetic
diversity and its measures to reticulate networks, so far.

In the following we will first introduce some basic definitions and notations con-
cerning phylogenetic networks. We will then suggest some ways of how the concept of
phylogenetic diversity and diversity indices could be applied to phylogenetic networks.
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3. Phylogenetic networks

Phylogenetic networks have become an important concept in evolutionary biology. In
contrast to phylogenetic trees, they can be used to model reticulate (non-treelike)
evolutionary events, such as hybridization or horizontal gene transfer.
Hybridization plays an important role in plant biology and ‘is the process of inter-

breeding between individuals of different species (interspecific hybridization) or genet-
ically divergent individuals from the same species (intraspecific hybridization)’ (Hyb
[1]).
Horizontal gene transfer (HGT), sometimes also referred to as lateral gene transfer

(LGT), on the other hand, describes the transmission of genetic material from one
species to another. For HGT to take place, the two species have to coexist in time and
thus, HGT differs from vertical gene transfer, where genetic material is passed from a
parental organism to a child organism during reproduction. Horizontal gene transfer
plays an important role in the evolution of prokaryotes, but can also be found in euk-
aryotes and is made possible by mobile DNA elements, such as plasmids, transposons
or bacteriophages.

hybridization horizontal gene transfer

Fig. 2: Hybridization and horizontal gene transfer

Both processes, however, cannot be represented by phylogenetic trees. Therefore,
phylogenetic networks were introduced as a mathematical generalization of phylogen-
etic trees. In the following, we will introduce some basic definitions and concepts con-
cerning phylogenetic networks.

3.1. Definitions and notations

Definition 9 (Rooted binary phylogenetic network (cf. Cordue et al. [9])). Let X be a
set of taxa with |X| = n. A rooted binary phylogenetic network N on X is a connected,
rooted acyclic digraph (rooted DAG) such that:
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• the root has outdegree two (and indegree 0),

• each node with outdegree 0 has indegree 1, and the set of nodes with outdegree
0 is bijectively labeled by X,

• all other vertices either have indegree 1 and outdegree 2, or indegree 2 and out-
degree 1.

Definition 10 (Types of nodes and edges in binary phylogenetic networks). Let N be
a phylogenetic network on some taxon set X (cf. Figure 3).

• The unique node with indegree 0 is called the root ρ.

• Nodes with indegree 2 and outdegree 1 are called reticulation nodes or reticula-
tions, all other nodes are called tree nodes.

• A node with outdegree 0 is called a leaf node.

• Edges leading to a reticulation node are called reticulation edges, edges directed
into a tree node are called tree edges.

Remarks.

• Note that a rooted binary phylogenetic X-tree T is a rooted binary phylogenetic
network with no reticulation node.

• If N is a weighted DAG, we denote the length of an edge e as λe. Note, however,
that in this thesis we only allow the tree edges of N to come with edge lengths,
representing time or evolutionary change, while we consider the reticulation edges
to be unweighted. W.l.o.g. we define the edge lengths of reticulation edges to be
0, if not stated otherwise. By doing so, functions on the edge lengths of a network,
e.g. the sum of all edge lengths, are well-defined and we do not have to restrict
them to tree edges in the following.

• When we refer to phylogenetic networks on X, we always mean rooted binary
phylogenetic networks on X, if not stated otherwise.

In the following we will introduce three special cases of rooted phylogenetic networks,
namely tree-child networks, tree-sibling networks and time-consistent networks, but to
do so we need some more notations.
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A B C D E F

r1

ρ

a b

c d

e

fr2

N1

Fig. 3: Rooted binary phylogenetic network N1 on X = {A,B,C,D,E, F} with root
node ρ. There are two reticulation nodes r1 and r2, while all other nodes are
tree nodes. Thus, the dashed edges directed into r1 and r2 are reticulation edges
and all other edges are tree edges. The reticulation node r1 can be interpreted
as a hybridization event, the reticulation node r2 as a horizontal gene transfer
event. Note that, formally, all tree edges in N1 are directed away from the root
ρ, but for convenience arrowheads are omitted. Similarily, all reticulation edges
are directed into reticulation nodes, e.g. the edge (f, r2) is directed into r2.

Definition 11 (Ancestor, Descendant, Siblings (cf. Cordue et al. [9])). Let N be a
phylogenetic network on some taxon set X and let u and v be two distinct nodes of
N . If there exists a directed path from u to v, we call u an ancestor of v and v is a
descendant of u. If u and v are connected by an edge (i.e. the edge (u, v)), we say that
u is a parent of v and v is a child of u. Two nodes that have a common parent are
called siblings.

Example 6. Consider the phylogenetic network N1 with leaf set X =

{A,B,C,D,E, F} depicted in Figure 3. The root ρ is an ancestor of all other nodes
and a parent of c and d. In other words, all nodes in V (N1) \ ρ are descendants of ρ.
In particular, c and d are siblings and children of ρ. Analogously, c is an ancestor of
a, b, r1, A,B and C, but only a parent of a and b. As a and b have a common parent,
they are siblings. Easily, more examples of nodes that are ancestors or descendants of
each other or that are siblings can be found.

We now introduce the so-called tree-child property of phylogenetic networks.

Definition 12 (Tree-child property, tree-child network (cf. Huson et al. [20], p. 164)).
Let N be a rooted phylogenetic network on some taxon set X. A node v of N has
the tree-child property, if it has at least one child u that is a tree node. We call N a
tree-child network, if all internal nodes of N have the tree-child property (cf. Figure
4).
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Less restrictive than the tree-child property is the so-called tree-sibling property.

Definition 13 (Tree-sibling property, tree-sibling network (cf. Huson et al. [20], p.
166)). Let N be a phylogenetic network on X. A node v of N has the tree-sibling
property, if it has at least one sibling u that is a tree node. We call N a tree-sibling
network, if all reticulation nodes have the tree-sibling property (cf. Figure 4).

A B C D

ρ

u

v

w
x

r1 r2

N2

1

2

1 1

1 1

1 1

A B C D

ρ

u

v

w

r1

N3

1

3

1 1

1

1

1

Fig. 4: Rooted binary phylogenetic networks N2 and N3 on X = {A,B,C,D}. N2 is
a tree-sibling network, but not a tree-child network, because all children of the
internal node w are reticulation nodes and thus, w has no children that are tree
nodes. Still, all reticulation nodes in N3 have siblings that are tree nodes, and
thus N2 is tree-sibling. The network N3 is both a tree-sibling and a tree-child
network, because all internal nodes have at least one child that is a tree node.

When phylogenetic networks are used to model the evolution of some taxon set X,
including hybridization or horizontal gene transfer events, we have to consider another
topological constraint on the network: For a reticulation event to take place, and thus,
for a hybrid species to arise, the two parent species have to coexist in time. This leads
to the concept of time-consistent networks.

Definition 14 (Time-consistent network). A phylogenetic network N = (V,E) with
node set V and edge set E on some taxon set X is called time-consistent, if there exists
a time-consistent labeling of its nodes by a mapping τ : V → N such that (cf. Figure
5):

• τ(u) < τ(v) for all directed tree edges (u, v) ∈ E,

• τ(u) = τ(v) for all reticulation edges.
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Remark. The mapping τ : V → N in Definition 14 can be interpreted as a time
stamp and ‘describes a possible ordering of speciation and reticulation events, but not
necessarily actual times’ (Huson et al. [20], p. 167). The first condition implies that the
time stamp of a tree node is larger than the time stamp of its parent node, while the
second condition means that the parents of a reticulation node, and the reticulation
node itself, all have the same time stamp (cf. Huson et al. [20], p. 167).
However, when considering weighted phylogenetic networks, where edge weights expli-
citly represent time, these conditions translate to the following:

• The sum of branch lengths from the root to a tree node v is greater than the sum
of branch lengths from the root to the parent node of v.

• The sum of branch lengths from the root to a reticulation node r equals the sum
of the branch lengths from the root to each of the parent nodes of r.

Networks that are both tree-child and time-consistent are called TCTC-networks.

A B C D E F

ρ

1

2

2

2

3

3 4

N4

A B C D E F

ρ

r

p

q

N5

Fig. 5: Rooted phylogenetic networks N4 and N5 onX = {A,B,C,D,E, F}. All internal
nodes of N4 can be consistently labeled by time stamps (bold arabic numerals),
thus, N4 is a time-consistent network. For the network N5 no consistent labeling
by time stamps exists. This is due to the fact that the parent p of the reticulation
node r is also a parent of q, the other parent of r.

3.2. Networks and their embedded trees

Mathematically, phylogenetic networks are a generalization of phylogenetic trees. How-
ever, analyzing the treelike content of a network, is often a first step in understanding
the network and will be of importance in the following sections. Therefore, we now
turn our attention to phylogenetic trees that are embedded in a network.

Definition 15 (Rooted trees displayed by a rooted network). Let N be a rooted
phylogenetic network on a taxon set X and let T be a phylogenetic X-tree. We say
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3. Phylogenetic networks

that T is embedded in N , or that N displays T , if T can be obtained from N by
deleting one of the reticulation edges for each reticulation node and suppressing the
resulting nodes of indegree 1 and outdegree 1.
We use T(N ) to denote the (multi)set of all rooted phylogenetic trees on X displayed
by N .

Remarks.

• Note that if there are k reticulation nodes in a rooted binary network N on
a taxon set X, then there are at most 2k phylogenetic X-trees displayed by N .
However, this bound does not have to be sharp. In fact, it is computationally hard
(#P -complete)3 to calculate the number of trees embedded in a given network
(cf. Linz et al. [25]).
Furthermore, deciding whether a given binary phylogenetic X-tree T is displayed
by a given phylogenetic network N on X is an NP -complete problem (cf. Kanj
et al. [23]).

• There are phylogenetic networks that display a phylogenetic tree twice, i.e. there
are two distinct sets of reticulation edges in the network N that yield the same
tree when being deleted (cf. Cordue et al. [9]). Thus, T(N ) is possibly a multiset
(cf. Figure 6, Figure 7).

• When deleting one of the reticulation edges for each reticulation node in a network
N on X, we may obtain a tree T , where some internal nodes of N have become
leaves with indegree 1 and outdegree 0. In this case, however, we do not regard T
as an embedded X-tree, because the former internal nodes, which have become
leaves, do not belong to the taxon set X, on which N is defined. In particular,
the taxon set of an embedded X-tree T cannot be different from the taxon set
X of N .
We remark that an alternative approach would be to delete all leaves that do
not belong to X, together with their incident edges and regard the resulting tree
as displayed by N . However, when considering phylogenetic networks with edge
weights, this method can lead to trees in which the sum of the edge lengths, i.e.
the total phylogenetic diversity, does not equal the sum of the edge lengths in
the original phylogenetic network (cf. Figure 6). Thus, using this approach, we
would lose some of the information present in the network. We therefore suggest
to use the first approach for weighted phylogenetic networks, i.e. we suggest that
only X-trees may be regarded as displayed by the network N , while all other

3#P is a complexity class associated with counting problems.
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3. Phylogenetic networks

X ′-trees obtained when deleting one reticulation edge for each reticulation node,
with X ′ 6= X, may be discarded.
Note, however, that the problem of internal nodes becoming leaves does only
affect phylogenetic networks that are not tree-child. For an internal node v to
become a leaf in the process of deleting reticulation edges for each reticulation
node, the node v must be the parent of two reticulation nodes. In particular, v
cannot have a tree node as a child and thus, the network cannot be tree-child.
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Fig. 6: The rooted phylogenetic network N2 on X = {A,B,C,D} displays the phylogen-
etic X-trees T ′1 , T ′2 and T ′3 . When deleting exactly one reticulation edge for each
of the two reticulation nodes, we also obtain the tree T ′4 , in which the internal
node w of N has become a leaf. However, we do not regard T ′4 as a phylogenetic
X-tree displayed by N2, because w does not belong to taxon set X. Thus, in this
case we have T(N2) = {T ′1 , T ′2 , T ′3}. In particular, |T(N2)| = 3 < 4 = 22.
Alternatively, we could delete leaf w and its incident edge in T ′4 and regard the
resulting tree as displayed by N2. However, by deleting w and the edge incident
to it, we retrieve a tree, where the sum of branch lengths is 8, while the sum
of branch lengths for N2 and the trees T ′1 , T ′2 and T ′3 is 9. Thus, we lose some
information.
Note that if we omit branch lengths and only consider the treeshape of the dis-
played trees, deleting the node w and its incident edge in T ′4 yields tree T ′2 . Thus,
in this case, we would say that T ′2 was displayed twice by N2. In particular,
T(N2) = {T ′1 , T ′2 , T ′2 , T ′3} would be a multiset.
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Fig. 7: The rooted phylogenetic network N6 on X = {A,B,C,D} displays the phylo-
genetic X-trees T ′1 , . . . , T ′6 , while T ′7 and T ′8 are not displayed by N6. Thus,
|T(N6)| = 6 ≤ 8 = 23. When branch lengths are omitted and only the tree-
shapes are considered, we have T ′2 = T ′4 . Thus, we would say that this treeshape
was displayed twice by N6, because two distinct sets of reticulation edges in the
network N6 yield this treeshape when being deleted.
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3. Phylogenetic networks

3.3. The LSA tree

We now introduce one last concept, which will be used in the following, namely the
lowest stable ancestor tree, or LSA tree for short.

Recall that for a rooted phylogenetic tree T the unique lowest common ancestor
(LCA) of any two nodes u and v is defined as the lowest (i.e. deepest) node lca(u, v)
that is both an ancestor of u and v.
However, for a rooted phylogenetic network N the lowest common ancestor of two
nodes does not have to be unique (cf. Figure 8), but is defined as the set of all lowest
nodes that are ancestors of both u and v (cf. Huson et al. [20], p. 140).

In contrast to the LCA, the lowest stable ancestor (LSA) is uniquely determined. It
is defined as follows:

Definition 16 (Lowest stable ancestor (cf. Huson et al. [20], p. 142)). Let N be a
rooted phylogenetic network and let u be a node of N that is not the root. Then a
stable ancestor of v is a any ancestor of v that lies on all directed paths from the root
to v. The lowest stable ancestor (LSA) of v is defined as the last node lsa(v) that is
contained on all paths from the root to v, excluding v.

Remarks.

• Note that the lowest common ancestor is defined for any pair of nodes, while the
lowest stable ancestor is defined for a single node.

• The lowest stable ancestor of any tree node in a phylogenetic network is its parent
node.

We can now introduce the LSA tree as defined in Huson et al. [20] (p. 142).

Definition 17 (LSA tree). Let N be a rooted phylogenetic network on a taxon set
X. The LSA tree TLSA(N ) associated with N is a rooted phylogenetic X-tree that can
be computed as follows: For each reticulation node r in N , remove all edges directed
into r and add a new edge e = (lsa(r), r) from the lowest stable ancestor of r into r.
Then repeatedly remove all unlabeled leaves and nodes with in- and outdegree 1, until
no further such removal is possible (cf. Figure 9).
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Fig. 8: Rooted phylogenetic tree T3 and rooted phylogenetic network N7 on X =
{A,B,C,D,E}. The lowest common ancestor of B and C in T3 is the node
u. In N7 the leaves B and C have two lowest common ancestors, namely the
nodes v and q. However, their lowest stable ancestor is uniquely determined. The
lowest stable ancestor of B is the node r1 and the lowest stable ancestor of C is
the node r2. The node u, however, is the lowest stable ancestor of the reticulation
nodes r1 and r2 (taken from Huson et al. [20], p. 141).

Remarks.

• The LSA tree TLSA(N ) of a rooted binary phylogenetic network N is not neces-
sarily binary (cf. Figure 9).

• We remark that this concept can also be used to construct a consensus tree for
a set of rooted phylogenetic X-trees. We refer the reader to Huson et al. [20] (p.
142) for more details and just briefly comment on the idea of this method: To
obtain the LSA consensus tree, a so-called cluster network for the set of input
trees is constructed and then the LSA tree is returned. The LSA consensus tree
is, however, closely related to the Adams consensus tree (again, cf. Huson et al.
[20], p. 65, p. 143).

So far, the LSA tree associated with a phylogenetic network has only been considered
for unweighted networks, i.e. networks that do not come with branch lengths. In order
to use the LSA tree for the analysis of phylogenetic diversity, we first need to generalize
this concept to weighted networks.
In order to do so, we have to assign an edge length to each new edge e = (lsa(r), r)

between a reticulation node r and lsa(r). We suggest to set this edge length to the
average length of a path between the reticulation node r and its lowest stable ancestor
lsa(r).
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Fig. 9: Rooted phylogenetic network N7 on X = {A,B,C,D,E} and its LSA tree
TLSA(N7). The node u is the lowest stable ancestor of the reticulation nodes
r1 and r2. In order to construct the LSA tree TLSA(N7), all edges directed into
r1 and r2 are removed and two new edges e1 = (u, r1) and e2 = (u, r2) are added.
Then the nodes v, p, q, w, r1 and r2, which now have in- and outdegree 1, are
removed. Note that the X-tree TLSA(N7) is not binary, as the internal node u
has outdegree four.

Definition 18 (Weighted LSA Tree). Let N be a rooted phylogenetic network on some
taxon set X. The weighted LSA Tree TLSA(N ) associated with N can be computed
by removing all in-edges for each reticulation node r and adding a new in-edge e =

(lsa(r), r) from the LSA of r to r and then repeatedly removing all unlabeled leaves
and all nodes with both in- and out-degree one. Thereby the length of the new edge e
is set to the mean of path lengths of paths between lsa(r) and r, i.e.

length(e = (lsa(r), r)) :=
1

|Pr|
∑
P∈Pr

length(P ), (3.1)

where Pr is the set of all lsa(r)− r−paths P in N . In the removal of unlabeled leaves
and nodes with in- and out-degree one, formerly distinct edges may be melted into a
new edge, in which case, their edge lengths are added to yield the edge length of the
new edge (cf. Figure 10).

Remarks.

• If we speak of the LSA tree in the following, we will always mean the weighted
LSA Tree.

• Instead of assigning the average length of a path from a reticulation node r to
its lowest stable ancestor lsa(r) to the edge e = (lsa(r), r) in the LSA tree,
other lengths could be used (e.g. the maximum path length, the minimum path
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3. Phylogenetic networks

length etc.). However, we will not further analyze the effect of different methods
in constructing a weighted LSA tree, but use the average path length from r to
lsa(r) as edge length of the edge e = (lsa(r), r) in all cases.

• Constructing a weighted LSA tree associated with a weighted phylogenetic net-
work N as described above can have the effect that the sum of branch lengths in
the LSA tree TLSA(N ) does not equal the sum of branch lengths in N (cf. Figure
10).
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Fig. 10: Rooted binary weighted network N2 on X = {A,B,C,D} and its associated
weighted LSA tree TLSA(N2). The node v is the lowest stable ancestor of the
reticulation node r1 and we have to consider two paths when calculating the
length of the edge e = (lsa(r1), r1): P1 = ((v, u), (u, r1)) with length(P1) =
1 + 0 = 1 (recall that we have defined the lengths of reticulation edges to be
zero) and P2 = ((v, w), (w, r1)) with length length(P2) = 1 + 0 = 1. Thus,
taking the average, we set length((lsa(r1), r1)) := 1. Analogously, the node ρ
is the lowest stable ancestor of r2 and we have to consider the paths P3 =
((ρ, v)(v, w)(w, r2)) with length(P3) = 1 + 1 + 0 = 2 and P4 = ((ρ, x), (x, r2))
with length(P4) = 2 + 0 = 2. Thus, we set length((lsa(r2), r2)) := 2. However,
subsequently the edges (v, r1) and (r1, B) are merged into a new edge (v,B) of
length 1+1 = 2 and analogously, the edges (ρ, r2) and (r2, C) are replaced by a
new edge (ρ, C) of length 2+1 = 3 to finally yield the LSA tree associated with
N2.Note that the sum of branch lengths in N2 is 9, while the sum of branch
lengths in TLSA(N2) is 11. However, this effect does not only occur when using
the average path length of a path from a reticulation node r to its lowest stable
ancestor lsa(r) as edge length for the newly created edge (lsa(r), r), but also
when considering, for example, the maximum or minimum path length. In case
of N2 both the use of the minimum or the maximum path length would have
led to the same tree TLSA(N2) as our method of using the average path length.
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Remark. The concept of lowest stable ancestors and the lowest stable ancestor tree is
not only used in phylogenetics. On the contrary, it is an important concept in the theory
of flow graphs, where the LSA of a node v is called the immediate dominator of v and
the LSA tree is referred to as the dominator tree. In this context the computation of
the dominator tree has been extensively studied and fast algorithms exist (cf. Lengauer
and Tarjan [24], Cooper et al. [8]).

Lengauer and Tarjan [24] have, for example, developed an O(m log n) algorithm for
finding dominators, where n is the number of vertices of the graph and m the number
of edges.

Note, however, that computing the edge lengths of the LSA tree adds complexity to
the problem. The calculation of the average path length between a reticulation node
r and its lowest stable ancestor lsa(r) involves the computation of the lengths of all
paths between lsa(r) and r. In the worst case, the number of paths between lsa(r) and
r can be exponential in the number of reticulation nodes (cf. Figures 11, 12). Thus, the
construction of the LSA tree may be infeasible for phylogenetic networks with a high
number of reticulation nodes.

A B C D E F G H I J

ρ

r1

r2

r3

r4
r5

N ∗
1

Fig. 11: Rooted binary phylogenetic network N ∗1 on X = {A,B, . . . , J} with five reticu-
lation nodes r1, . . . , r5. The lowest stable ancestor of r5 is the root ρ and there
are 17 = 25−1 + 1 = 2r(N

∗
1 )−1 + 1 paths from ρ to r5. The example can be

extended to an arbitrary number of reticulation nodes. In all cases, it is possible
to construct a network N ′ with 2r(N

′)−1 + 1 paths between the lowest stable
ancestor lsa(r) of a fixed reticulation node and the reticulation node r. Note
that in this example the number of paths between lsa(ri) and ri, i = 1, 2, 3, 4,
equals two. Thus, r5 is the only ‘worst case reticulation node’.
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Fig. 12: Rooted binary phylogenetic network N ∗2 on X = {A,B, . . . , J} with five reticu-
lation nodes r1, . . . , r5. The root ρ is the lowest stable ancestor of r4 and r5. Both
for r4 and r5, there are 9 = 2r(N

∗
2 )−2+1 paths from ρ to r4 and r5, respectively.

For r1, r2 and r2, the number of paths between lsa(ri) and ri, i = 1, 2, 3, equals
two. Again, the example can be extended to an arbitrary number of reticulation
nodes.
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3.4. Hybridization probabilities

So far, we have considered the transmission of genetic material during hybridization to
be equally likely for both parental species.
However, this assumption may not be justified at all times and for all organisms.
We therefore now introduce hybridization probabilities for phylogenetic networks.

Definition 19 (Hybridization probability). Let N be a rooted binary phylogenetic
network on a taxon set X. Let r be a reticulation node, i.e. a hybrid species, with
parents p1 and p2. Then we use αr ∈ (0, 1) to denote the probability that the hybrid
species inherits its genetic material (e.g. a nucleotide or a gene) from parent p1 and we
use βr = 1 − αr to denote the probability that the genetic material is inherited from
parent p2 (or vice versa). We call αr and βr hybridization probabilities and associate αr
with the reticulation edge (p1, r) and analogously, we associate βr with the reticulation
edge (p2, r) (or vice versa) (cf. Figure 13).

Remark. If no hybridization probabilities are given for a phylogenetic network with
k reticulation nodes, we assume αri = βri =

1
2
for all reticulation nodes ri, i = 1, . . . , k

(cf. Figure 15).
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Fig. 13: Rooted binary phylogenetic network N8 on X = {A,B,C,D} with hybridiza-
tion probabilities αr1 = 3

4 and αr2 = 1
3 . Thus, r1 inherits its genetic material

with probability 3
4 from its parent w and with probability 1

4 from its parent x.
Analogously, r2 inherits its genetic material with probability 1

3 from its parent
u and with probability 2

3 from its parent v.

We now shortly define the probability of an edge in a network, which is clearly evident,
but will be needed in the following.
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Definition 20 (Probability of an edge in a network). Let N be a rooted phylogenetic
network on a taxon set X. For each edge e (either reticulation edge or tree edge) in N
we use P(e) ∈ (0, 1) to denote the probability of the edge e, where

P(e) =



1, if e is a tree edge of N ;
1
2
, if e is a reticulation edge of N , but does not have a

hybridization probability assigned to it;
γe, if e is a reticulation edge of N and γe ∈ (0, 1) is the

hybridization probability assigned to e.

We can now define the probability of an embedded tree and introduce the so-called
hybrid LSA tree and the Maximum Likelihood LSA tree.

3.4.1. Probability of an embedded tree

Definition 21 (Probability of an embedded tree). Let N be a rooted binary phylogen-
etic network on a taxon set X with k reticulation nodes and let T(N ) be the (multi)set
of phylogenetic X-trees displayed by N . For each tree T ∈ T(N ) we re-establish the
nodes of in- and outdegree 1 that were removed during its construction.4 Then we can
calculate the probability of an embedded tree P(T ) in the following way:

1. For all T ∈ T(N ) calculate the unscaled probability

Punscaled(T ) =
∏

e: e is contained in T
P(e),

where P(e) denotes the probability of an edge e.

2. Set p :=
∑

T ∈T(N )

Punscaled(T ) (scaling factor).

3. Calculate the probability

P(T ) = 1

p
· Punscaled(T ).

4The re-establishment of nodes of in- and outdegree 1 is necessary to trace back the edges of N
present in T ∈ T(N ). In practice, it suffices to know, which of the reticulation edges of N were
kept in the construction of T , as they determine the probability of T (cf. Figures 14, 15).
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Remark. The scaling factor p =
∑

T ∈T(N )

Punscaled(T ) in Definition 21 ensures that the

probabilities of all embedded trees sum up to 1, because

∑
T ∈T(N )

P(T ) =
∑
T ∈T(N )

(1
p
· Punscaled(T )

)
=

1

p

∑
T ∈T(N )

Punscaled(T )

=
1∑

T ∈T(N )

Punscaled(T )
∑
T ∈T(N )

Punscaled(T )

= 1.

This is of importance if |T(N ) | < 2k, i.e. if removing one reticulation edge for each
reticulation node and suppressing nodes of both indegree 1 and outdegree 1 results in
one or several trees, which are not phylogenetic X-trees (cf. Figure 15).
On the other hand, if |T(N ) | = 2k, we have

∑
T ∈T(N )

P(T ) = 1 and thus, the scaling

factor p equals 1. In this case the probability of an embedded tree T ∈ T(N ) can
directly be calculated as

P(T ) =
∏

e: e is contained in T
P(e),

thus, in this case we can calculate the probability of an embedded tree T ∈ T(N ) by
multiplying the probabilities of its edges (cf. Figure 14).

Definition 22 (Most likely embedded tree). Let N be a rooted phylogenetic network
on a taxon set X and let T(N ) be the (multi)set of all rooted phylogenetic X-trees
displayed by N . For all T ∈ T(N ) let P(T ) denote the probability of T . Then we call

T ∗ = argmax
T ∈T(N )

P(T )

the most likely embedded tree (cf. Figure 14). If the argmax is not unique, we arbitrarily
choose one of the embedded trees with maximum probability.
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Fig. 14: The rooted binary phylogenetic network N8 on X = {A,B,C,D} with two
reticulation nodes displays 4 = 22 phylogenetic X-trees. Applying Definition 21
we retrieve the following probabilities of the embedded trees: P(T ′1 ) = 2

3 · 14 = 1
6 ,

P(T ′2 ) = 2
3 · 34 = 1

2 , P(T ′3 ) = 1
3 · 34 = 1

4 and P(T ′4 ) = 1
3 · 14 = 1

12 . Note, that
the probabilities of the embedded trees sum up to 1, because

∑
T ∈T(N8)

P(T ) =
P(T ′1 ) + P(T ′2 ) + P(T ′3 ) + P(T ′4 ) = 1

6 + 1
2 + 1

4 + 1
12 = 1.

T ′2 is the most likely embedded tree.

33



3. Phylogenetic networks

w

A B C D

ρN2

1

2

1 1

1 1

1 1

1

2

11

1 3

A B C D

ρT ′
1

1

2 2

1 1

2

A B C D

ρT ′
2

1

3

2

11

1

A B C D

ρT ′
3

displayed by N2

1

11

1

1 1

1

2

A B C D

w

ρT ′
4

Fig. 15: The rooted binary phylogenetic network N8 on X = {A,B,C,D} with two re-
ticulation nodes displays 3 < 4 = 22 phylogenetic X-trees, thus, we have to
scale the probabilities of the embedded trees. As N2 has no hybridization prob-
abilities assigned to its reticulation edges, we assume γe = 1

2 for all reticulation
edges e ∈ E(N2) (cf. Remark after Definition 19). We have Punscaled(T ′i ) =
1
2 · 12 = 1

4 , i ∈ {1, 2, 3}, and the scaling factor p calculates as p := 1
4 +

1
4 +

1
4 = 3

4 .
Thus, the probabilities of the embedded trees are P(T ′i ) = 1

p · 14 = 4
3 · 14 = 1

3 ,
i ∈ {1, 2, 3}. Note, that the probabilities of the embedded trees sum up to 1,
because

∑
T ∈T(N2)

P(T ) = P(T ′1 ) + P(T ′2 ) + P(T ′3 ) = 1
3 + 1

3 + 1
3 = 1.

34



3. Phylogenetic networks

Remark. Under certain topological constraints on the network N , to be precise if
N is a tree-child network (cf. Definition 12), we can directly compute a most likely
embedded tree T ′ ∈ T(N ) (not necessarily unique), without having to consider the
probabilities of all embedded trees.

Recall that the probability of an embedded tree T ∈ T(N ) was calculated by mul-
tiplying the probabilities of its edges and scaling the resulting probability, if necessary
(cf. Definition 21). Essentially, it suffices to calculate the product of probabilities of the
reticulation edges kept in the construction of T , because the probability of any tree
edge equals 1 and thus, the tree edges do not determine the probability of an embedded
tree.

Thus, a greedy approach may be used to construct a most likely embedded tree
T ′ ∈ T(N ), where for each reticulation node r the reticulation edge with the highest
associated hybridization probability is kept, while the other edge is discarded (if both
reticulation edges directed into r have the same probability, we arbitrarily choose one
to keep). As a result, the product of the probabilities of the reticulation edges will be
maximal, and thus, T ′ will be a most likely embedded tree.
Note that this approach only works, if the network under consideration is a tree-child

network. IfN is not a tree-child network, the greedy approach of keeping the most likely
reticulation edge for each reticulation node r and discarding the other edge, may result
in a tree that is not a phylogenetic X-tree, and thus, not displayed by N (cf. Figure
16).

However, if N is a tree-child network, this problem does not occur (cf. Remark on
page 20).

Example 7. Consider the tree-child network N8 on X = {A,B,C,D} and its em-
bedded trees depicted in Figure 14. We have P(T ′1 ) = 1

6
, P(T ′2 ) = 1

2
, P(T ′3 ) = 1

4
and

P(T ′4 ) = 1
12
. Thus, T ′2 is the most likely embedded tree. Note that T ′2 contains the most

likely reticulation edges for each of the two reticulation nodes, thus, we could have
directly constructed T ′2 following the greedy approach suggested above.
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Fig. 16: Rooted phylogenetic network N ′2 on X = {A,B,C,D} (not tree-child) and
its embedded trees T ′1 , T ′2 and T ′3 . We retrieve the unscaled probabilities
Punscaled(T ′1 ) = 1

12 , Punscaled(T ′2 ) = 1
6 and Punscaled(T ′3 ) = 1

4 and thus, the
scaled probabilities P(T ′1 ) = 1

6 , P(T ′2 ) = 1
3 and P(T ′3 ) = 1

2 . Thus, T ′3 is the most
likely embedded tree.
Following a greedy approach (cf. page 35) to construct a most likely embedded
tree, and thus, keeping the most likely reticulation edge for each reticulation
node (depicted as dashed bold lines), however, results in the tree T ′4 that is not
a phylogenetic X-tree.
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3. Phylogenetic networks

3.4.2. Hybrid LSA tree and Maximum Likelihood LSA tree

Recall that the LSA tree associated with a network N was constructed by removing all
in-edges for each reticulation node r and adding a new in-edge e = (lsa(r), r) from the
LSA of r to r and then repeatedly removing all unlabeled leaves and all nodes with
both in- and out-degree one (cf. Definition 17).

Furthermore, the edge length of a new edge e = (lsa(r), r) between a reticulation
node r and its lowest stable ancestor lsa(r) was defined as the average length of a
path from lsa(r) to r (cf. Equation (3.1)). Thus, we have used the unweighted mean of
lengths of paths between lsa(r) and r to define the length of the new edge e = (lsa(r), r)

in the LSA tree.
Given hybridization probabilities for a network N , we now suggest two alternative

approaches towards assigning a length to the new edge e = (lsa(r), r). On the one hand,
we suggest to use the weighted mean of path lengths between lsa(r) and r, where each
lsa(r) − r−path P is weighted according to its probability. On the other hand, we
suggest to use the most likely path length between a reticulation node and its lowest
stable ancestor, i.e. the length of the most likely path between them. Therefore, we
now define the probability of a path in N .

Definition 23 (Probability of a path in a network). Let N be a rooted phylogenetic
network on a taxon set X. Now let u and v be two nodes in N , where u is a ancestor of
v (i.e. there exists at least one directed path from u to v). Then we define the probability
of a u− v−path Puv in N as

P(Puv) =
∏
e:

e is edge on Puv

P(e), (3.2)

thus, we retrieve the probability of a path by multiplying the probabilities of its edges
(cf. Figure 17).

Definition 24 (Hybrid LSA tree). Let N be a rooted phylogenetic network on a taxon
set X. The hybrid LSA tree T hybLSA(N ) can be computed by removing all in-edges for
each reticulation node r and adding a new in-edge e = (lsa(r), r) from the LSA of r
to r and then repeatedly removing all unlabeled leaves and all nodes with both in- and
out-degree one. Thereby the length of the new edge e is set to the weighted mean of
path lengths of paths between lsa(r) and r, i.e.

length(e = (lsa(r), r)) :=
∑
P∈Pr

P(P ) · length(P ), (3.3)

where Pr is the set of all lsa(r) − r−paths and P(P ) is the probability of any such
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3. Phylogenetic networks

path. In the removal of unlabeled leaves and nodes with in- and out-degree one, formerly
distinct edges may be melted into a new edge, in which case, their edge lengths are
added to yield the edge length of the new edge (cf. Figures 17, 18).

N8
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w x

r1

r2

2

1 1

1

1

1

1

1

1
3

2
3

3
4

1
4

T hyb
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A B C D

ρ

3

3 3
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Fig. 17: Rooted binary network N8 on X = {A,B,C,D} and its associated hybrid LSA
tree T hybLSA(N8). The root ρ is the lowest stable ancestor of the reticulation node
r1 and we have to consider three paths when calculating the length of the new
edge e = (ρ, r1): P1 =

(
(ρ, u), (u, r2), (r2, w), (w, r1)

)
with length(P1) = 2 and

probability P(P1) = 1 · 13 · 1 · 34 = 1
4 , P2 =

(
(ρ, v), (v, r2), (r2, w), (w, r1)

)
with

length length(P2) = 2 and probability P(P2) = 1 · 23 · 1 · 34 = 1
2 and P3 =(

(ρ, v), (v, x), (x, r1)
)
with length(P3) = 2 and probability P(P3) = 1 · 1 · 14 = 1

4 .
Thus, we have length(e = (ρ, r1)) =

3
4 ·2+ 1

2 ·2+ 1
4 ·2 = 2. Analogously, ρ is the

lowest stable ancestor of the reticulation node r2 and similar calculations yield
length(f = (ρ, r2)) = 1. Removing all unlabeled leaves and nodes with in- and
out-degree one and adding edge lengths of merged edges, yields the hybrid LSA
tree T hybLSA(N8).
Note that for N8 the LSA tree TLSA(N8) and the hybrid LSA tree T hybLSA(N8)
coincide, even though, the paths between a reticulation node and its lowest
stable ancestor have different probabilities. However, as all paths between ρ
and r1 have length 2, the length of the edge e′ = (ρ, r1) in the ordinary LSA
tree would be calculated as length(e′) = 1

3(2 + 2 + 2) = 2 and analogously,
the length of f ′ = (ρ, r2) in the ordinary LSA tree would be calculated as
length(f ′) = 1

2(1 + 1) = 1. Thus, the tree TLSA(N8) coincides with T hybLSA(N8).
For the same reasons, the Maximum Likelihood LSA tree coincides with the
ordinary LSA tree and the hybrid LSA tree.
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Fig. 18: Rooted binary network N ′8 on X = {A,B,C,D} and its associated hybrid LSA
tree T hybLSA(N ′8) and LSA tree TLSA(N ′8).
Note that N ′8 is very similar to N8 (cf. Figure 17), the only difference being the
length of the edge (ρ, v), which is now 2 as opposed to 1 in N8. Again, ρ is the
lowest stable ancestor of r1 and we have to consider the three paths P1, P2 and
P3 (cf. Figure 17) when calculating the length of the new edge e = (ρ, r1). Thus,

length(e) =
1

4
· 2︸︷︷︸
P1

+
1

2
· 3︸︷︷︸
P2

+
1

4
· 3︸︷︷︸
P3

= 11
4 .

For the edge f = (ρ, r2) we have length(f) = 5
3 . Removing all unlabeled leaves

and nodes with in- and out-degree one and adding edge lengths of merged edges,
yields the hybrid LSA tree T hybLSA(N ′8).
For N ′8 the hybrid LSA tree and the ordinary LSA tree do not coincide. When
computing the ordinary LSA tree, we have length(e′ = (ρ, r1)) =

1
3(2+3+3) = 8

3
and length(f ′ = (ρ, r2)) =

1
2(1+2) = 3

2 . Thus, the resulting edge lengths in the
ordinary LSA tree TLSA(N ′8) are different from the edge lengths in the hybrid
LSA tree T hybLSA(N ′8).
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3. Phylogenetic networks

Definition 25 (Maximum Likelihood LSA tree). Let N be a rooted phylogenetic
network on a taxon set X. The Maximum Likelihood LSA tree T ML

LSA(N ) can be com-
puted by removing all in-edges for each reticulation node r and adding a new in-edge
e = (lsa(r), r) from the LSA of r to r and then repeatedly removing all unlabeled
leaves and all nodes with both in- and out-degree one. Thereby the length of the new
edge e is set to the to the length of the most likely path P ∗ between lsa(r) and r, i.e.

length(e) = length(P ∗), (3.4)

with
P ∗ = argmax

P∈Pr
P(P ),

where Pr is the set of all lsa(r) − r−paths and P(P ) is the probability of any such
path. If the argmax is not unique, we choose one of the most likely lsa(r)− r−paths in
Pr with minimum weight.5 In the removal of unlabeled leaves and nodes with in- and
out-degree one, formerly distinct edges may be melted into a new edge, in which case,
their edge lengths are added to yield the edge length of the new edge (cf. Figure 19).

5Alternatively, we could arbitrarily choose one of the most likely lsa(r)−r−paths. However, choosing
the path with minimum weight makes the results reproducible.
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Fig. 19: Rooted binary network N ′8 on X = {A,B,C,D} and its associated Maximum
Likelihood LSA tree T hybLSA(N ′8) and LSA tree TML(N ′8).
As in Figure 17 and in Figure 18, we have to consider the three paths P1, P2

and P3 when calculating the length of the new edge e = (ρ, r1). P1 has length
2 and probability P(P1) = 1

4 , P2 has length 3 and probability P(P2) = 1
2 and

P3 has length 3 and probability P(P3) =
1
4 (cf. Figure 17). Thus, P2 is the most

likely path between ρ and r1 and we set length(e = (ρ, r1)) = 3. Analogously,
we retrieve length(f = (ρ, r2)) = 2. Removing all unlabeled leaves and nodes
with in- and out-degree one and adding edge lengths of merged edges, yields the
Maximum Likelihood LSA tree T ML

LSA(N ′8).

4. Generalization of phylogenetic diversity to

hybridization networks

We are now in the position to propose different ways of generalizing the concept of
phylogenetic diversity from trees to networks.

In a first step we directly apply the definition of phylogenetic diversity to networks
by calculating minimum cost arborescences. Secondly, we consider the set of embedded
trees to define the phylogenetic diversity present in a network, before using the LSA tree
induced by a network to quantify its diversity. In all cases we consider both networks
without hybridization probabilities and networks with hybridization probabilities. In
case of the latter we suggest a fourth approach towards the generalization of phylo-
genetic diversity from trees to networks, namely the so-called inherited phylogenetic
diversity.

4.1. Phylogenetic net diversity

Recall that for a rooted phylogenetic X-tree T , the phylogenetic diversity of a subset
S ⊆ X of leaves was defined as the sum of branch lengths in the smallest spanning
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4. Generalization of phylogenetic diversity to hybridization networks

tree, or, to be more precise, in the smallest arborescence (cf. Definition 3) connecting
those leaves and the root.

In this case, the term smallest arborescence means that the arborescence does not
contain any additional nodes or edges than those connecting the set S and the root.
Note, however, that a rooted phylogeneticX-tree T itself is an arborescence and thus,

any arborescence connecting a subset S ⊆ X and the root is uniquely determined. It
is the sub-arborescence of T containing the taxa in S and the root.

This implies that the smallest arborescence connecting S and the root will automatic-
ally be a minimum cost arborescence in the graph-theoretical sense, i.e. an arborescence
whose weight (the sum of its branch lengths) is no larger than the weight of any other
arborescence connecting S and the root.

However, in case of a rooted phylogenetic network N on a taxon set X, there may
be more than one arborescence connecting the leaves of some set S ⊆ X and the root.
We therefore suggest to alter the definition of phylogenetic diversity for networks by

replacing the term smallest arborescence by minimum cost arborescence.

Definition 26 (Phylogenetic net diversity (PND)). Let N be a rooted phylogenetic
network on some taxon setX. For a subset S ⊆ X of taxa we define the phylogenetic net
diversity PND(S) of S as the sum of branch lengths in the minimum cost arborescence
containing S and the root.6

Example 8. Consider the rooted phylogenetic network N2 depicted in Figure 20.
Exemplarily, we set S = {A,B} and retrieve the following value for the phylogenetic
net diversity of S:

PNDN2({A,B}) = 4.

Note that PNDN2({A,B,C,D} = 8, while the sum of branch lengths in N2 equals 9.
Thus, the phylogenetic net diversity of all taxa in X does not equal the sum of branch
lengths in N2, which may be regarded counterintuitive.

Remark. Determining the minimum cost arborescence containing a set S ⊆ X of taxa
and the root is formally an instance of the so-called directed Steiner tree problem7:

Definition 27 (Directed Steiner tree problem). Given a directed weighted graph G =

(V,E), a specified root node ρ and a subset of nodes U ⊆ V (called terminals), the
objective of the directed Steiner tree problem is to find the minimum cost arborescence
rooted at ρ and spanning all the nodes in U .

6A similar approach has also been suggested in cooperative game theory, where the minimum cost
arborescence is used to define the cost of a coalition in a directed acyclic graph game (cf. Sziklai
et al. [31]).

7Also referred to as the Steiner arborescence problem.
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Fig. 20: Rooted phylogenetic network N2 on X = {A,B,C,D} and arborescences A1

and A2 containing S = {A,B} and the root. The arborescence A1 has weight
1+ 1+2 = 4, while the arborescence A2 has weight 2+ 1+1+1 = 5. Thus, A1

is the minimum cost arborescence containing S = {A,B} and the root ρ.

In general, the computation of a minimum Steiner arborescence is an NP -hard prob-
lem (Floudas and Pardalos [13], p. 3731) and thus, the calculation of phylogenetic net
diversity may be infeasible. Note, however, that the calculation of the phylogenetic
diversity of a subset S ⊆ X of taxa for a phylogenetic tree T also involves the compu-
tation of a minimum Steiner arborescence. However, as indicated above, in this case the
minimum Steiner arborescence is simply a sub-arborescence of T containing the taxa
in S and the root. Thus, for phylogenetic trees the problem of computing a minimum
Steiner arborescence spanning a set S ⊆ X of taxa and the root reduces to the problem
of computing a sub-arborescence containing S and the root, which can be achieved in
linear time (cf. Hwang et al. [21]).

Hybrid phylogenetic net diversity
Given hybridization probabilities, we will now define the probability of an arborescence
and then introduce the hybrid phylogenetic net diversity, which considers the average
weight of arborescences spanning the taxa in S and the root instead of the weight of
the minimum cost arborescence.

Definition 28 (Probability of an arborescence in a network). Let N be a rooted
phylogenetic network on a taxon set X. Let S ⊆ X be a subset of taxa and let A be an
arborescence containing S and the root (not necessarily a minimum cost arborescence).
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4. Generalization of phylogenetic diversity to hybridization networks

Then we define the probability of the arborescence A in N as

P(A) =
∏

e: e is contained in A

P(e), (4.1)

where P(e) is the probability of the edge e. Thus, we retrieve the probability of an
arborescence by multiplying the probabilities of its edges (cf. Figure 21).

Definition 29 (Hybrid phylogenetic net diversity (PNDhyb)). Let N be a rooted
phylogenetic network on a taxon set X. Let S ⊆ X be a subset of taxa and let AS
be the set of all smallest arborescences spanning the taxa in S and the root, i.e. all
arborescences (not necessarily of minimum cost) that span S and the root, but do not
contain any additional nodes or edges than those necessary to connect the taxa in S
and the root. Then we define the hybrid phylogenetic net diversity PNDhyb(S) of a
subset S ⊆ X of taxa as the weighted mean of weights of the arborescences in AS , i.e.

PNDhyb(S) =
∑
A∈AS

P(A) · weight(A), (4.2)

where P(A) is the probability of the arborescence A and weight(A) is the sum of its
branch lengths.

Example 9. Consider the phylogenetic network N8 depicted in Figure 21. We set
S = {A,C} and calculate the hybrid phylogenetic net diversity PNDhyb

N8
(S). There

are three arborescences containing S and the root: A1 with weight 5 and probability
P(A1) = 1

4
, A2 with weight 6 and probability P(A2) = 1

2
and A3 with weight 6 and

probability P(A3) =
1
4
(cf. Figure 21). Thus, we have

PNDhyb
N8

(S) =
1

4
· 5 + 1

2
· 6 + 1

4
· 6

=
23

4
.

Analogously, the hybrid phylogenetic net diversity can be calculated for all other subsets
S ⊆ X of taxa. Table 1 summarizes the results.

Remark. Note that the calculation of the hybrid phylogenetic net diversity involves
the enumeration of all smallest arborescences spanning a subset S ⊆ X of taxa and
the root. In the worst case the number of such arborescences may be exponential in
the number of reticulation nodes of the network. Consider, for example, the network
N ∗1 depicted in Figure 11 and fix the subset S = {A,E} ⊆ X of taxa. Then there are
2r(N

∗
1 )−1 + 1 = 17 smallest arborescences spanning S and the root (i.e. arborescences
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Fig. 21: Rooted phylogenetic network N8 on X = {A,B,C,D} and smallest arbores-
cences A1, A2 and A3 containing S = {A,C} and the root. A1 has probability
P(A1) =

1
3 · 34 · 1 · 1 · 1 · 1 = 1

4 , A2 has probability P(A2) =
2
3 · 34 · 1 · 1 · 1 · 1 = 1

2
and A3 has probability P(A3) =

1
4 · 1 · 1 · 1 = 1

4 .
Thus, A2 is the most likely arborescence spanning S and the root.
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4. Generalization of phylogenetic diversity to hybridization networks

that do not contain any additional edges than those required to connect S and the
root).

A maximum likelihood approach
We now suggest a third approach, which considers the most likely arborescence con-
taining the taxa in S and the root, and introduce the so-called Maximum Likelihood
phylogenetic net diversity.

Definition 30 (Maximum Likelihood phylogenetic net diversity (PNDML)). Let N
be a rooted phylogenetic network on a taxon set X. Let S ⊆ X be a subset of taxa and
let AS be the set of all smallest arborescences spanning the taxa in S and the root,
i.e. all arborescences (not necessarily of minimum cost) that span S and the root, but
do not contain any additional nodes or edges than those necessary to connect the taxa
in S and the root. Then we define the Maximum Likelihood phylogenetic net diversity
PNDML(S) of S as the sum of branch lengths in the most likely arborescence A∗

containing S and the root, i.e.

A∗ = argmax
A∈AS

P(A),

where P(A) is the probability of A. If the argmax is not unique, we choose the arbor-
escence with minimum weight.8

Example 10. Consider the phylogenetic network N8 depicted in Figure 21. We
set S = {A,C} and calculate the Maximum Likelihood phylogenetic net diversity
PNDML

N8
(S). There are three arborescences containing S and the root: A1 with weight

5 and probability P(A1) = 1
4
, A2 with weight 6 and probability P(A2) = 1

2
and A3

with weight 6 and probability P(A3) =
1
4
(cf. Figure 21). Thus, A2 is the most likely

arborescence and we have

PNDML
N8

(S) = weight(A2) = 6.

Remark. Similar to the calculation of the hybrid phylogenetic net diversity the calcula-
tion of the Maximum Likelihood phylogenetic net diversity involves the enumeration of
all smallest arborescences spanning a subset S ⊆ X of taxa and the root, which, in the
worst case, may be exponentially many (cf. Remark on page 44). It might be possible,
though, to develop a greedy strategy for finding a smallest arborescence with maximum
probability by choosing to include the reticulation edge with the highest probability

8Alternatively, we could arbitrarily choose one of the most likely arborescences. However, choosing
the arborescence with minimum weight makes the results reproducible.
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4. Generalization of phylogenetic diversity to hybridization networks

for each reticulation node that is encountered. However, we have not thought this idea
through effectively, so we stick to the enumeration of all arborescences for the time
being.

In a second approach, we now consider the set of phylogenetic X-trees displayed by
a network N on X and define the phylogenetic diversity based on this set.

4.2. Embedded phylogenetic diversity

Phylogenetic networks are, mathematically, a generalization of phylogenetic trees,
which can model reticulate evolution such as hybridization, i.e. evolution that is non-
treelike.

Biologically, the genome of a hybrid species contains parts of the genome of both its
ancestors. However, evolution at the nucleotide level rather than the genome level is
still treelike, because a single nucleotide can always be traced back to one parent.

Therefore, we suggest to consider the set of embedded trees in a network (cf. Chapter
3.2) as an alternative approach to the generalization of phylogenetic diversity from trees
to networks.

Definition 31 (Embedded phylogenetic diversity). Let N be a rooted phylogenetic
network on a taxon set X and let T(N ) be the (multi)set of all rooted phylogenetic
X-trees displayed by N . Then we use PD∗T(N )(S) to denote the embedded phylogen-
etic diversity of a subset S ⊆ X of taxa, where ∗ is one of the following functions
min,max,

∑
,∅ and define

PDmin
T(N )(S) := min

T ∈T(N )
{PDT (S)}, (4.3)

PDmax
T(N )(S) := max

T ∈T(N )
{PDT (S)}, (4.4)

PD
∑
T(N )(S) :=

∑
T ∈T(N )

PDT (S) and (4.5)

PD∅
T(N )(S) :=

1

|T(N ) |
∑
T ∈T(N )

PDT (S), (4.6)

where |T(N ) | is the number of phylogenetic X-trees displayed by N . If hybridization
probabilities are given for N , we also consider

PD
∅hyb
T(N )(S) :=

∑
T ∈T(N )

P(T ) · PDT (S) and (4.7)

PDML
T(N )(S) := PDT ∗(S) with T ∗ = argmax

T ∈T(N )

P(T ), (4.8)
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where P(T ) is the probability of T and T ∗ is the most likely embedded tree. If the
argmax is not unique, we arbitrarily choose one of the embedded trees with maximum
probability (cf. Definition 22).

Remarks.

• Note that ∗ can be replaced by other functions on the phylogenetic diversity of
the trees in T(N ), but we will only consider min,max,

∑
,∅ and ∅hyb as defined

above.

• Furthermore, note that we will only consider phylogenetic X-trees as elements of
T(N ) and discard all other trees that may occur when decomposing the network
into a set of trees (cf. Remark on page 20).

• As in the Remark on page 30 we assume αri = βri = 1
2
for all reticulation

nodes ri, i = 1, . . . , k, if no explicit hybridization probabilities are given for a
phylogenetic network with k reticulation nodes. In this case, all embedded trees
have equal probability, namely P(T ) = 1

|T(N ) | for all T ∈ T(N ), and the values
of PD∅

T(N )(S) and PD
∅hyb
T(N )(S) coincide for all subsets S ⊆ X of taxa, because

PD
∅hyb
T(N )(S) =

∑
T ∈T(N )

P(T ) · PDT (S)

=
∑
T ∈T(N )

1

|T(N ) | · PDT (S)

=
1

|T(N ) | ·
∑
T ∈T(N )

PDT (S)

= PD∅
T(N )(S).

• Note that shifting from PD∅
T(N )(S) to PD

∅hyb
T(N )(S) for phylogenetic networks with

given hybridization probabilities means that the weighted mean instead of the un-
weighted mean of the embedded phylogenetic diversity of a subset of taxa S ⊆ X

is considered. However, there is no sufficient way to incorporate hybridization
probabilities into the concepts of PDmin

T(N )(S), PD
max
T(N )(S) and PD

∑
T(N )(S), be-

cause assigning probabilities to the trees in T(N ) does not alter the minimum,
maximum or sum of PD in those trees. For example,

PDmin
T(N )(S) = min

T ∈T(N )
PDT (S)

is uniquely determined, regardless of whether the corresponding tree (not neces-
sarily unique) that yields this value, has a high or low probability. The same holds
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4. Generalization of phylogenetic diversity to hybridization networks

for the maximum. For PD
∑
T(N )(S) the values of PD(S) for each tree are added,

again, regardless of the trees’ probabilities.

Example 11. Consider the rooted binary phylogenetic network N8 and its embed-
ded trees T ′1 , . . . , T ′4 depicted in Figure 14. Note that we have P(T ′1 ) = 1

6
, P(T ′2 ) =

1
2
, P(T ′3 ) = 1

4
and P(T ′4 ) = 1

12
. Thus, T ′2 is the most likely embedded tree.

Exemplarily, we set S = {A,B} and calculate all versions of the embedded phylogenetic
diversity for S.

PDmin
T(N8)

(S) = min
T ∈T(N8)

PDT (S)

= min{PDT ′1 (S), PDT ′2 (S), PDT ′3 (S), PDT ′4 (S)}
= min{6, 6, 5, 5}
= 5,

PDmax
T(N8)

(S) = max
T ∈T(N8)

PDT (S)

= max{PDT ′1 (S), PDT ′2 (S), PDT ′3 (S), PDT ′4 (S)}
= max{6, 6, 5, 5}
= 6,

PD
∑
T(N8)

(S) =
∑

T ∈T(N8)

PDT (S)

=
∑
{PDT ′1 (S), PDT ′2 (S), PDT ′3 (S), PDT ′4 (S)}

= 6 + 6 + 5 + 5

= 22,

PD∅
T(N8)

(S) =
1

|T(N8)|
∑

T ∈T(N8)

PDT (S)

=
1

4

(
PDT ′1 (S) + PDT ′2 (S) + PDT ′3 (S) + PDT ′4 (A)

)
=

1

4

(
6 + 6 + 5 + 5

)
=

11

2
,
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4. Generalization of phylogenetic diversity to hybridization networks

PD
∅hyb
T(N8)

(S) =
∑

T ∈T(N8)

P(T ) · PDT (S)

= P(T ′1 ) · PDT ′1 (S) + P(T ′2 ) · PDT ′2 (S) + P(T ′3 ) · PDT ′3 (S) + P(T ′4 ) · PDT ′4 (S)

=
1

6
· 6 + 1

2
· 6 + 1

4
· 5 + 1

12
· 5

=
17

3
,

and

PDML
T(N8)

(S) = PDT ′2 (S)

= 6.

Analogously, the embedded phylogenetic diversity can be calculated for all other subsets
S ⊆ X of taxa. Table 1 summarizes the results.
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4. Generalization of phylogenetic diversity to hybridization networks

Relationship between the phylogenetic net diversity and the embedded phylo-
genetic diversity
Comparing the phylogenetic net diversity PND and the minimum embedded phylo-
genetic diversity PDmin

T(N ) for a subset S ⊆ X of taxa, we see that they use a similar
principle. While PND(S) is defined as the weight of a minimum-cost arborescence
spanning S and the root in a network N , PDmin

T(N )(S) is defined as the weight of a
minimum-cost arborescence spanning S and the root in the (multi)set T(N ) of phylo-
genetic X-trees displayed by N . Thus, the two measures are related, but in general
they are not identical.

Consider, for example, the rooted phylogenetic network N2 depicted in Figure 6 and
set S = {A,B,C,D}. Then, we have

PDmin
T(N2)

(S) = 9,

while
PNDN2(S) = 8.

However, we have the following relationship between PND and PDmin
T(N ):

Proposition 2. Let N be a binary rooted phylogenetic network on a taxon set X with
k reticulation nodes and let T(N ) be the set of phylogenetic X-trees displayed by N .

1. It is
PND(S) ≤ PDmin

T(N )(S) (4.9)

for all subsets S ⊆ X of taxa.

2. If |T(N ) | = 2k, i.e. if all combinations of removing one reticulation edge for
each reticulation node and suppressing nodes of both indegree 1 and outdegree 1
result in a phylogenetic X-tree, we have

PND(S) = PDmin
T(N )(S). (4.10)

Proof. Let N be a binary rooted phylogenetic network with root ρ, taxon set X
and k reticulation nodes. Let T(N ) be the set of embedded trees and let R(N ) =

{r | r is a reticulation node of N} be the set of reticulation nodes of N .

1. We show PDmin
T(N )(S) ≥ PND(S).

For every T ∈ T(N ) the phylogenetic diversity of a subset S ⊆ X of taxa is
defined as the sum of branch lengths in the smallest arborescence spanning the
taxa in S and the root. Clearly, the weight of any such arborescence cannot be
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4. Generalization of phylogenetic diversity to hybridization networks

smaller than the weight of a minimum cost arborescence spanning S and the
root in N (all T ∈ T(N ) are ‘subgraphs’ of N , thus, any smallest arborescence
spanning S and the root in a displayed tree T ∈ T(N ), can also be found in N ).9

In particular, we have

min
T ∈T(N )

{PDT (S)} = PDmin
T(N )(S) ≥ PND(S).

2. Now, suppose that |T(N ) | = 2k. We want to show that PND(S) = PDmin
T(N )(S).

As we have PND(S) ≤ PDmin
T(N )(S) (Equation (4.9)), it suffices to show

PND(S) ≥ PDmin
T(N )(S).

Let AS be the minimum cost arborescence spanning S and the root in N . By
definition of an arborescence there is exactly one directed path from the root ρ
to any other vertex v ∈ V (AS). This implies that AS contains at most one re-
ticulation edge for each reticulation node r ∈ R(N ), but never both reticulation
edges directed into r ∈ R(N ). If we now suppress nodes of both indegree 1 and
outdegree 1 in AS and add the weights of the edges which are merged into one
edge by doing so, we retrieve a directed acyclic graph A′S, which contains the
taxa in S and whose weight equals the weight of AS. By the construction of A′S,
however, A′S must be a sub-arborescence of some embedded tree TAS ∈ T(N ),
where the set of embedded trees is obtained by deleting one of the reticulation
edges for each reticulation node and suppressing the resulting nodes of indegree
1 and outdegree 1, and every combination of doing so results in a phylogenetic
X-tree (because we have assumed |T(N ) | = 2k). Thus, by definition of PD for
trees, the weight of AS equals PDTAS (S) and as TAS is embedded in N we have

PND(S) = PDTAS (S) ≥ min
T ∈T(N )

{PDT (S)} = PDmin
T(N )(S).

Combining the above, we have PND(S) = PDmin
T(N )(S) as claimed.

Remarks.

• Part 2 of Proposition 2 does not hold for general networks, because the arbores-
cence A′S (see Proof of part 2) does not necessarily have to be a sub-arborescence
of an embedded tree, which is crucial for the proof of Equation (4.10). Consider,

9Formally, we have to re-establish the nodes of in- and outdegree 1 that were removed during the
construction of T ∈ T(N ) to make T a subgraph of N . However, this does not affect the weight of
any arborescence spanning S and the root in T , but it becomes obvious that any such arborescence
can then be found in N as well.
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4. Generalization of phylogenetic diversity to hybridization networks

for example, the rooted phylogenetic network N2 depicted in Figure 6. We have
already seen that PNDN2({A,B,C,D}) = 8. In this case the minimum cost ar-
borescence spanning all taxa and the root is a ‘subgraph’ of T ′4 (cf. Figure 6),
but T ′4 is not a phylogenetic X-tree and thus, not displayed by N2.
However, if all combinations of removing one reticulation edge for each retic-
ulation node and suppressing nodes of both indegree 1 and outdegree 1 result
in a phylogenetic X-tree, the arborescence A′S has to be a sub-arborescence of
some embedded tree, and thus, PND(S) and PDmin

T(N )(S) coincide for all subsets
S ⊆ X of taxa.

• Note, however, that the phylogenetic net diversity PND(S) of a subset S ⊆ X

of taxa can still be calculated by decomposing the network into phylogenetic
trees in the case |T(N ) | ≤ 2k, if we do not only consider the set of embedded
phylogenetic X-trees, but also the set of phylogenetic X ′-trees with X 6= X ′,
that may occur (e.g. phylogenetic trees, where internal nodes of N have become
leaves). Let T(N ) be this extended (multi)set of phylogenetic trees obtained from
N . Then we have

PND(S) = PDmin
T(N )

(S)

for all S ⊆ X, because any minimum cost arborescence A′S will be a sub-
arborescence of some tree T ′ ∈ T(N ) and we can apply part 2 of the above
proof and thus, of Proposition 2.

Relationship between the hybrid phylogenetic diversity and the embedded phylo-
genetic diversity
If we now compare the hybrid phylogenetic net diversity PNDhyb(S) and the hybrid
average embedded phylogenetic diversity PD

∅hyb
T(N )(S) of a subset S ⊆ X of taxa, we

see that these values, again, follow a related principle. While PNDhyb(S) considers all
smallest arborescences spanning S and the root in N , PD∅hyb

T(N )(S) considers the smal-
lest arborescence spanning S and the root in each of the phylogenetic trees displayed
by N . Thus, again, the two values are related, but do not coincide in general.
Consider, for example, the rooted phylogenetic network N ′2 depicted in Figure 16

and set S = {A,B,C,D}. There are three embedded trees in T(N ′2), but four smallest
arborescences spanning S and the root in N ′2 (the first three arborescences coincide
with T ′1 , T ′2 and T ′3 , while the fourth arborescence is a subgraph of T ′4 (after suppressing
nodes of in- and outdegree 1 in the arborescences)). Thus,

PD∅hyb
T(N ′2)

(S) =
1

6
· 9 + 1

3
· 9 + 1

2
· 9 = 9,
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4. Generalization of phylogenetic diversity to hybridization networks

while
PNDhyb

N ′2
(S) =

1

12
· 9 + 1

6
· 9 + 1

4
· 9 + 1

2
· 8 =

17

2
.

Considering not only the set of embedded phylogenetic X-trees T(N ′2), but the ex-
tended set of embedded trees T(N ′2) = {T ′1 , T ′2 , T ′3 , T ′4} (cf. Remark on page 54), we
have

PDhyb

T(N ′2)
(S) =

1

12
· 9 + 1

6
· 9 + 1

4
· 9 + 1

2
· 8 =

17

2

= PNDhyb
N ′2

(S),

thus, in this case the values coincide.

Proposition 3. Let N be a binary rooted phylogenetic network on a taxon set X with
k reticulation nodes and let T(N ) be the set of phylogenetic X-trees displayed by N .

1. If |T(N ) | ≤ 2k, we have

PNDhyb(S) = PD∅hyb
T(N )

(S), (4.11)

where T(N ) is the (multi)set of all trees (not necessarily phylogenetic X-trees)
that can be obtained from N by removing one of the reticulation edges for each
reticulation node and suppressing the resulting nodes of indegree 1 and outdegree
1.

2. If |T(N ) | = 2k, i.e. if all combinations of removing one reticulation edge for
each reticulation node and suppressing nodes of both indegree 1 and outdegree 1
result in a phylogenetic X-tree, we have:

PNDhyb(S) = PD∅hyb
T(N )(S). (4.12)

Remark. If |T(N ) | = 2k in case 2 of Proposition 3, obviously, T(N ) = T(N ). Thus,
case 2 is a special case of case 1.

Idea of Proof. The reasoning in this proof is similar to the proof of Proposition 2, so
we only give the idea.
Let N be a binary rooted phylogenetic network on X and let S ⊆ X be a subset of
taxa.

1. The hybrid phylogenetic net diversity of a subset S of taxa is defined as the
weighted average of weights of smallest arborescences spanning S and the root,
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4. Generalization of phylogenetic diversity to hybridization networks

i.e.
PNDhyb(S) =

∑
A∈AS

PN (A) · weight(A),

where PN (A) is the probability of A in N and AS = {A1, . . . , Al} is the set of
smallest arborescences spanning S and the root in N .
The average embedded hybrid phylogenetic diversity of S, on the other, hand is
defined as

PD∅hyb
T(N )

(S) =
∑
T ∈T(N )

P(T ) · PDT (S).

Now we can break down this sum in the following way:

PD∅hyb
T(N )

(S) =
∑
T ∈T(N )

P(T ) · PDT (S)

=
∑

T ∈T(N ):
T contains A1

P(T ) · PDT (S) + . . .+
∑

T ∈T(N ):
T contains Al

P(T ) · PDT (S)

=
∑

T ∈T(N ):
T contains A1

P(T ) · weight(A1) + . . .+
∑

T ∈T(N ):
T contains Al

P(T ) · weight(Al)

=
∑
A∈AS

PT(N )(A) · weight(A),

with
PT(N )(A) :=

∑
T ∈T(N ):
T contains A

P(T ),

i.e. PT(N )(A) denotes the probability of the arborescence A in the extended set
of embedded trees.10

It remains to show that we have PT(N )(A) = PN (A) for all arborescences A ∈ AS.
The probability PN (A) of an arborescence in A in N is calculated as the product
of the probabilities of its reticulation edges.
When calculating PT(N )(A) we have to consider all trees in T(N ) and sum up their
probabilities. If a tree T in T(N ) contains the arborescence A, it has to contain
the reticulation edges present in A, but it might contain additional reticulation

10Formally, we have to re-establish the nodes of in- and outdegree 1 that were removed during the
construction of T ∈ T(N ) for all T ∈ T(N ). Then we can say that a tree T ‘contains’ an arbores-
cence A ∈ AS or a certain reticulation edge. Thus, for the rest of the proof we assume all embedded
trees T ∈ T(N ) to have regained the nodes of in- and outdegree 1 that were removed during their
construction. Note however, that this does not influence the weight of any arborescence in a tree
T ∈ T(N ).
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4. Generalization of phylogenetic diversity to hybridization networks

edges. However,

PT(N )(A) =
∑

T ∈T(N ):
T contains A

P(T )

=
∑

T ∈T(N ):
T contains A

∏
e∈T

P(e)

=
∑

T ∈T(N ):
T contains A

∏
e∈A

P(e)︸ ︷︷ ︸
reticulation
edges in A

∏
e∈T \A

P(e)

︸ ︷︷ ︸
additional

reticulation edges

=
∏
e∈A

P(e)︸ ︷︷ ︸
=PN (A)

∑
T ∈T(N ):
T contains A

∏
e∈T \A

P(e)

︸ ︷︷ ︸
=1

= PN (A).

Thereby ∑
T ∈T(N ):
T contains A

∏
e∈T \A

P(e) = 1,

because the sum runs over all trees T in T(N ) that contain A and considers
the portion of their probability that does not arise from the reticulation edges in
A, but from additional reticulation edges. However, as T(N ) contains all trees
constructed by all possible combinations of removing one reticulation edge for
each reticulation node and deleting nodes of indegree 1 and outdegree 1, the
sum over these portions must equal 1, because the additional reticulation edges
complement each other (cf. Figure 22).
Summarizing the above, we have

PNDhyb(S) = PD∅hyb
T(N )

(S)

as claimed.

2. Special case of 1. with T(N ) = T(N ).
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Fig. 22: The probability of the arborescence A spanning S = {A,C,D} and the root in
N ′2 (bold lines) has probability PN ′2(A) = 2

3 .
When considering T(N ′2), we see that A is contained in T ′2 and T ′4 . We have
P(T ′2 ) = 1

4 · 23 = 1
6 and P(T ′4 ) = 3

4 · 23 = 1
2 . Thus, P

T(N ′2)(A) = 1
6+

1
2 = 2

3 = PN ′2(A).
Note that T ′2 and T ′4 contain the former reticulation edge (v, r2) present in N ′2,
but both T ′2 and T ′4 contain an additional former reticulation edge, respectively
(in T ′2 the edge (w, r1) was kept and in T ′4 the edge (u, r1)). The probabilities
of these edges, however, complement each other, because they are directed into
the same reticulation node.
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4. Generalization of phylogenetic diversity to hybridization networks

Remark. If |T(N ) | < 2k for a phylogenetic network N on X = {A,B,C,D} with
k reticulation nodes and we are not considering the extended (multi)set T(N ) of em-
bedded trees, but the set of T(N ) of phylogenetic X-trees displayed by N , we can-
not predict the relationship of PNDhyb(S) and PD

∅hyb
T(N )(S). We might either have

PNDhyb(S) ≤ PD
∅hyb
T(N )(S), PND

hyb(S) = PD
∅hyb
T(N )(S) or PNDhyb(S) ≥ PD

∅hyb
T(N )(S).

Consider, for example, the rooted phylogenetic network N ′2 with two reticulation nodes
depicted in Figure 16.

• For S = {A,B} we have

PD
∅hyb
T(N ′2)

(S) =
1

6
· 5 + 1

3
· 5 + 1

2
· 4

=
9

2
,

but

PNDhyb(S) =
3

4
· 4 + 1

4
· 5

=
17

4
,

thus, PNDhyb(S) ≤ PD
∅hyb
T(N ′2)

(S).

• For S = {A,C} we have

PD
∅hyb
T(N ′2)

(S) =
1

6
· 5 + 1

3
· 6 + 1

2
· 5

=
16

3
,

but

PNDhyb(S) =
1

3
· 5 + 2

3
· 6

=
17

3
,

thus, PNDhyb(S) ≥ PD
∅hyb
T(N ′2)

(S).

• For S = {A,D} we have

PD
∅hyb
T(N ′2)

(S) =
1

6
· 6 + 1

3
· 6 + 1

2
· 6

= 6,
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4. Generalization of phylogenetic diversity to hybridization networks

and

PNDhyb(S) = 1 · 6 = 6,

thus, PNDhyb(S) = PD
∅hyb
T(N ′2)

(S).

Remark. Summarizing the above, we see that the phylogenetic net diversity PND

and the embedded phylogenetic diversity PD∗T(N ) to some extent follow similar ideas.
Recall, however, that the calculation of the phylogenetic net diversity PND was an
instance of the directed Steiner tree problem and thus, an NP -hard problem. If we
recapitulate on how PD∗T(N )(S) is calculated for a subset S ⊆ X of taxa, we see that
several steps are involved:

1. Determination of the set of displayed trees T(N ).

2. Calculation of PDT (S) for all T ∈ T(N ).

3. Calculation of PD∗T(N )(S).

Steps 2 and 3 can be achieved in linear time, step 1, however, makes the approach
NP -hard as well (cf. Linz et al. [25]).
Thus, the calculation may be infeasible, especially for a growing number of reticula-

tion nodes in N .

Therefore, we now suggest a third way of generalizing the concept of phylogenetic
diversity from trees to networks, which makes use of the LSA tree introduced in Chapter
3.3.

4.3. LSA associated phylogenetic diversity

The lowest stable ancestor tree introduced in Chapter 3.3 can be seen as a way to
summarize the treelike content of a phylogenetic network, on which all its embedded
trees agree, without explicitly having to consider these trees. We therefore suggest to
use the LSA tree associated with a phylogenetic network as a third approach towards
the generalization of phylogenetic diversity from trees to networks.

Definition 32 (LSA associated phylogenetic diversity). Let N be a rooted phylogen-
etic network on some taxon set X. Let S ⊆ X be a subset of taxa. Then we define

PDLSA(S) := PDTLSA(N )(S), (4.13)
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4. Generalization of phylogenetic diversity to hybridization networks

where PDTLSA(N )(S) is the phylogenetic diversity of S in the LSA tree TLSA(N ) asso-
ciated with N . If hybridization probabilities are given for N , we also consider

PDLSAhyb(S) := PDT hybLSA(N )(S) and (4.14)

PDLSAML(S) := PDTML
LSA(N )(S), (4.15)

where PDT hybLSA(N )(S) is the phylogenetic diversity of S in the hybrid LSA tree T hybLSA(N )

associated withN and PDTML
LSA(N )(S) is the phylogenetic diversity of S in theMaximum

Likelihood LSA tree T ML
LSA(N ) associated with N .

We will call all three versions LSA associated phylogenetic diversity and use the super-
script to indicate which version of the LSA tree was used.

Remark. Note that the LSA associated phylogenetic diversity PDLSA
N (S) and the

hybrid LSA associated phylogenetic diversity PDLSAhyb
N (S) coincide for all subsets S ⊆

X of taxa, if no hybridization probabilities are given. In this case, we assume all paths
P ∈ Pr between a reticulation node r and its lowest stable ancestor lsa(r) to be equally
likely, thus, P(P ) = 1

|Pr| , where Pr is the set of all lsa(r)− r−paths in N . The length
of the edge e = (lsa(r), r) is then calculated as

length(e = (lsa(r), r)) =
∑
P∈Pr

P(P ) · length(P )

=
∑
P∈Pr

1

|Pr|
· length(P )

=
1

|Pr|
∑
P∈Pr

length(P ),

and thus, the hybrid LSA tree T hybLSA(N ) and the LSA tree TLSA coincide (cf. Equation
(3.1)). Subsequently, the LSA associated phylogenetic diversity PDLSA

N (S) and the hy-
brid LSA associated phylogenetic diversity PDLSAhyb

N (S) coincide for all subsets S ⊆ X

of taxa.

Example 12. Consider the rooted phylogenetic network N8 on X = {A,B,C,D}
depicted in Figure 17. Exemplarily, we set S = {A,B} and calculate all versions of the
LSA associated phylogenetic diversity for S. Note that for N8 the LSA tree, the hybrid
LSA tree and the Maximum Likelihood LSA tree coincide, thus,

PDLSA
N8

(S) := PDTLSA(N8)(S) = 6,

PD
LSAhyb
N8

(S) := PDT hybLSA(N8)
(S) = 6,

PDLSAML
N8

(S) := PDTML
LSA(N8)(S) = 6.
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4. Generalization of phylogenetic diversity to hybridization networks

Analogously, the different versions of the LSA associated phylogenetic diversity can be
calculated for all subset S ⊆ X of taxa. Table 1 summarizes the results.

Example 13. Now, consider the rooted phylogenetic network N ′8 on X = {A,B,C,D}
and its associated LSA tree TLSA(N ′8), hybrid LSA tree T hybLSA(N ′8) and Maximum Like-
lihood LSA tree T ML

LSA(N ′8) depicted in Figures 18 and 19. Again, we set S = {A,B}
and calculate all version of the LSA associated phylogenetic diversity for S.

PDLSA
N ′8 (S) := PDTLSA(N ′8)(S) = 3 +

7

2
=

13

2
,

PD
LSAhyb
N ′8

(S) := PDT hybLSA(N ′8)
(S) = 3 +

11

3
=

20

3
,

PDLSAML

N ′8
(S) := PDTML

LSA(N ′8)(S) = 3 + 4 = 7.

Thus, in general, the different version of the LSA associated phylogenetic diversity do
not coincide.

Remark. Above examples suggest that the calculation of any version of the LSA
associated phylogenetic diversity is easy to accomplish. In order to calculate the LSA
associated phylogenetic diversity of a subset S ⊆ X of taxa, we simply have to calculate
the weight of the sub-arborescence of the (ordinary/hybrid/Maximum Likelihood) LSA
tree spanning S and the root, which can be achieved in linear time (cf. Hwang et al.
[21]).

Recall, however, that the construction of the (ordinary/hybrid/Maximum Likelihood)
LSA tree prior to the calculation of the LSA associated phylogenetic diversity itself may
be a limiting factor in practice, because it involves the enumeration of all paths between
the reticulation nodes of the network and their lowest stable ancestors, respectively (cf.
Remark on page 28).
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4. Generalization of phylogenetic diversity to hybridization networks

4.4. Inherited Phylogenetic Diversity

Given hybridization probabilities for a phylogenetic network N on X, we will now
propose one last approach of generalizing phylogenetic diversity from trees to networks.
In this approach we try to infer the phylogenetic diversity of a subset S ⊆ X of taxa
directly from the network by considering the probability of an edge e contributing to
the diversity of the set S, i.e. we consider the probability that the diversity represented
by the edge e is preserved or inherited in S.

Definition 33 (Inherited phylogenetic diversity). Let N be a rooted phylogenetic
network on some taxon set X and let ET (N ) be the set of tree edges of N . Now let
S ⊆ X be a subset of taxa. For each tree edge e ∈ ET (N ), we use λe to denote the
length of e and pSe to denote the probability of the diversity represented by e being
preserved in S, i.e. pSe is the probability of e being included in a smallest arborescence
(i.e. an arborescence that does not contain any additional nodes or edges than those
required to connect S and the root) spanning S and the root. Then the inherited
phylogenetic diversity of S is defined as

IPD(S) =
∑

e∈ET (N )

pSe · λe. (4.16)

Remark. Note that an edge e ∈ ET (N ) can only be included in a smallest arborescence
spanning S and the root, if e is contained in at least one path between the root and a
taxon in S. Thus, if e is not contained in any such path, the probability pSe will be 0.
However, we have not found an efficient way or algorithm to directly calculate the

probability pSe of an edge e yet.
One way could be to fix an edge e and then consider the set AeS of all smallest arbor-

escences spanning S and the root that contain this edge. Then the sum of probabilities
of these arborescences yields the probability of e contributing diversity to S, i.e.

pSe =
∑
A∈AeS

P(A). (4.17)

Example 14. Consider the rooted phylogenetic network N ′8 on X = {A,B,C,D}
depicted in Figure 13. Exemplarily, we calculate the inherited phylogenetic diversity of
different subsets S ⊆ X.

• S = {A}:
For S = {A}, the only tree edges that add diversity to A are e1 := (ρ, u) and
e2 := (u,A). Both for e1 and e2 there is only one arborescence spanning A and
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the root, that contains e1 and e2, respectively. These arborescences both have
probability 1. Thus, pSe1 = 1 and pSe2 = 1 and

IPD({A}) = 1 · 1︸︷︷︸
(ρ,u)

+ 1 · 2︸︷︷︸
(u,A)

= 3.

• S = {B}:
For S = {B}, there are four tree edges that B may inherit diversity from: e1 :=
(ρ, u), e2 := (ρ, v), e3 := (r2, w) and e4 := (w,B). For e1 there is one arborescence
that contains e1 and spans B and the root, which has probability 1

3
, thus, pSe1 =

1
3
.

Similarly, we have pSe2 =
2
3
, pSe3 = 1 and pSe4 = 1. Thus,

IPD({B}) = 1

3
· 1︸︷︷︸

(ρ,u)

+
2

3
· 2︸︷︷︸

(ρ,v)

+ 1 · 1︸︷︷︸
(r2,w)

+ 1 · 1︸︷︷︸
(w,B)

=
11

3
.

• S = {A,B} :
For S = {A,B} we have to consider the tree edges e1 := (ρ, u), e2 := (ρ, v), e3 :=

(r2, w), e4 := (w,B) and e5 := (u,A). There are two smallest arborescences span-
ning S and the root that contain e1. One has probability 1

3
, the other 2

3
, thus,

pSe1 = 1
3
+ 2

3
= 1. Analogously, we have pSe2 = 2

3
, pSe3 = 1, pSe4 = 1 and pSe5 = 1.

Thus,

IPD({A,B}) = 1 · 1︸︷︷︸
(ρ,u)

+
2

3
· 2︸︷︷︸

(ρ,v)

+ 1 · 1︸︷︷︸
(r2,w)

+ 1 · 1︸︷︷︸
(w,B)

+ 1 · 2︸︷︷︸
(u,A)

=
19

3
.

Analogously, the inherited phylogenetic diversity can be calculated for all other subsets
S ⊆ X of taxa.
Note that we have PNDhyb({A}) = 3, PNDhyb({B}) = 11

3
and PNDhyb({A,B}) =

1
3
· 5 + 2

3
· 7 = 19

3
, thus, PND and IPD coincide for the subsets S ⊆ X considered.

Remark. The calculation of the probability pSe of an edge e contributing diversity to a
subset S ⊆ X of taxa via Equation (4.17) and thus, via the set of smallest arborescences
spanning S and the root, suggests that the hybrid phylogenetic net diversity PNDhyb(S)

and the inherited phylogenetic diversity IPD(S) coincide for all S ⊆ X.

Proposition 4. Let N be a rooted phylogenetic network on some taxon set X and let
S ⊆ X be a subset of taxa. Then we have

PNDhyb(S) = IPD(S) (4.18)

for all S ⊆ X.
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4. Generalization of phylogenetic diversity to hybridization networks

Proof. Let N be a rooted phylogenetic network on X and let S ⊆ X be a subset of
taxa. Let AS = {A1, . . . , As} be the set of all smallest arborescences spanning S and
the root in N and let ET = {e1, . . . , et} be the set of tree edges of N . For all e ∈ ET
let pSe denote the probability of the edge e contributing diversity to the set S and let
λe denote its length. Then we have

IPD(S) =
∑
e∈ET

pSe · λe

4.17
=
∑
e∈ET

∑
A∈AeS

P(A) · λe

=
t∑

j=1

∑
A∈AejS

P(A) · λej

=
∑
A∈Ae1S

P(A) · λe1 + . . .+
∑
A∈AetS

P(A) · λet .

We now factor out A1, . . . , As, respectively, and rearrange the sum in the following
way:∑

A∈Ae1S

P(A) · λe1 + . . .+
∑
A∈AetS

P(A) · λet = P(A1)(1
A1
e1
λe1 + 1

A1
e2
λe2 + . . .1A1

et ) + . . .

. . .+ P(As)(1Ase1 λe1 + 1
As
e2
λe2 + . . .1Aset )

=
s∑
i=1

P(Ai)
( t∑
j=1

1
Ai
ej
λej

)
,

where

1
Ai
ej

=

1, if Ai contains the edge ej;

0, else.

However,
t∑

j=1

1
Ai
ej
λej = weight(Ai)

for all arborescences Ai, i = 1, . . . , s, and thus,

s∑
i=1

P(Ai)
( t∑
j=1

1
Ai
ej
λej

)
=

s∑
i=1

P(Ai) · weight(Ai)

=
∑
A∈AS

P(A) · weight(A)

= PNDhyb(S).
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In total we have
IPD(S) = PNDhyb(S),

as claimed.

4.5. Conclusion

In order to extend the concept of phylogenetic diversity from trees to networks, we
have developed several approaches, following three main principles: the calculation of
spanning arborescences in a phylogenetic network, the computation of the (multi)set
of phylogenetic trees displayed by a network and the construction of the LSA tree as-
sociated with it. For all approaches we have both considered measures that incorporate
hybridization probabilities (if given) and measures that are independent of hybridiza-
tion probabilities.

• Measures of phylogenetic diversity based on smallest arborescences:

– phylogenetic net diversity PND,

– hybrid phylogenetic net diversity PNDhyb,

– Maximum Likelihood phylogenetic net diversity PNDML,

– inherited phylogenetic diversity IPD.

• Measures of phylogenetic diversity based on the (multi)set of embedded trees:

embedded phylogenetic diversity PD∗T(N ) with

∗ ∈ {min,max,
∑

,∅∅hyb,ML}.

• Measures of phylogenetic diversity based on the LSA tree:

LSA associated phylogenetic diversity PDLSA, PDLSAhyb , PDLSAML .

The calculation of the phylogenetic net diversity PND(S) involves the computa-
tion of a minimum cost arborescence spanning S and the root, which is an instance
of the NP -hard directed Steiner tree problem (Floudas and Pardalos [13], p. 3731).
The computation of PND(S) for all subsets S ⊆ X of taxa may therefore be infeas-
ible in practice. In case of the hybrid phylogenetic net diversity PNDhyb(S) and the
Maximum Likelihood phylogenetic net diversity PNDML(S), we do not consider the
minimum cost arborescence spanning S and the root, but all smallest arborescences
(i.e. arborescences that do not contain any additional edges than those required to
span S and the root). This requires the enumeration of all such arborescences, whose
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4. Generalization of phylogenetic diversity to hybridization networks

number may be exponential in the number of reticulation nodes. Thus, the calculation
of PNDhyb(S) and PNDML(S) may be infeasible for phylogenetic networks with a
high number of reticulation nodes.
The same problem arises for any measure of the LSA associated phylogenetic diversity,
which involves the construction of the (weighted/hybrid/Maximum Likelihood) LSA
tree associated with the network and thus, the enumeration of all paths between all re-
ticulation nodes of the network and their lowest stable ancestors, respectively. Again,
this number may be exponential in the number of reticulation nodes. However, the
structure of the network, for which we can observe an exponential number of paths
between a reticulation node and its lowest stable ancestor (cf. Figure 11) is very ‘arti-
ficial’ and may not appear in biological hybridization networks. Thus, in practice, the
construction of the LSA tree may still be feasible, which is also supported by tests on
random phylogenetic networks (cf. Chapter 6.3).
Last, but not least, all measures of embedded phylogenetic diversity depend on the
(multi)set of phylogenetic X-trees displayed by a network N on X, whose determina-
tion is, again, an NP -hard problem (cf. Linz et al. [25]). Thus, the calculation of the
embedded phylogenetic diversity for all subsets S ⊆ X of taxa may be infeasible in
practice.

Under computational aspects it may therefore be necessary to develop approxima-
tions for the different measures of generalized phylogenetic diversity.

Under biologically aspects, on the other hand, it may also be necessary to question the
biological plausibility of all measures. Intuitively, we consider the approaches PD∅

T(N )

for networks without hybridization probabilities and PD
∅hyb
T(N ) and PNDhyb = IPD

for networks with given hybridization probabilities to be the most promising, because
they take into account most of the information about the evolutionary relationships
between the taxa. Considering the fact that evolution at the nucleotide level is still
treelike, motivates in particular the consideration of the (multi)set T(N ) of trees
displayed by a network. Even though all measures of embedded phylogenetic diversity
consider the (multi)set T(N ), only PD∅

T(N ) and PD
∅hyb
T(N ) use all the information of

T(N ), while PD∗T(N ) with ∗ ∈ {min,max,ML} only uses parts of it and discards all
other information.
Similarly, all measures of phylogenetic diversity based on the LSA tree discard
information present in the network, because the LSA tree reduces the network to
its most basic treelike content. However, in practice the calculation of the LSA tree
and thus, the computation of the LSA associated phylogenetic diversity seems to be
much more feasible than the calculation of the (multi)set T(N ) and, subsequently,
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the computation of the embedded phylogenetic diversity (cf. Chapter 6.3). Thus, the
consideration of as much information as possible seems to be at the expense of loss of
feasibility (in terms of computation times), and vice versa fast computation times and
thus, a high practicability, seem to be at the expense of loss of evolutionary information.

Note, however, that the information about the phylogenetic diversity of a subset
S ⊆ X of taxa in itself is not very useful to taxon prioritization decisions. Thus, we
will now turn our attention to generalized biodiversity indices, which, however, to some
extent build up on the concept of generalized phylogenetic diversity.
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5. Generalization of phylogenetic diversity indices to hybridization networks

5. Generalization of phylogenetic diversity indices to

hybridization networks

After proposing different ways of generalizing the concept of phylogenetic diversity from
trees to networks, we will now turn our attention to biodiversity indices and show how
to use them in the context of hybridization networks.

We will focus on the Fair Proportion Index and the different versions of the Shapley
Value introduced in Chapter 2.3, all of which have been suggested as taxon prioritiza-
tion tools in biodiversity conservation.

Even though all indices are closely related, they differ significantly in their definition
and computation. While the calculation of the Fair Proportion Index is directly based
on a given rooted phylogenetic tree (cf. Definition 5), the definition of the Shapley
Value is based on the phylogenetic diversity of all possible subsets of taxa, and thus,
only indirectly on a given (un)rooted phylogenetic tree (cf. Definitions 6, 7, 8). To be
precise, the calculation of the different versions of the Shapley Value involves two steps:

1. Calculation of the phylogenetic diversity for all subsets of taxa based on a given
phylogenetic tree.

2. Calculation of the Shapley Value for all taxa based on the phylogenetic diversity
calculated in step 1.

This implies that we have two possibilities when extending the Shapley Value from trees
to networks: We can either use any generalized definition of phylogenetic diversity (e.g.
the phylogenetic net diversity, the embedded phylogenetic diversity, the LSA associated
phylogenetic diversity, etc.) introduced in Chapter 4 and calculate the Shapley Value
based on this measure, or we can reduce the network to its treelike content (e.g. via the
(multi)set of embedded trees or the LSA tree) and calculate the Shapley Value based
on these trees. In the following, we will analyze and compare both approaches.

We will, however, start with the Fair Proportion Index, for which we will also use the
second approach, i.e. the reduction to the treelike content of a network, before we try
to directly adapt the definition of the Fair Proportion Index by considering all paths
between the root and a taxon.

5.1. The Fair Proportion Index

Recall that the Fair Proportion Index of a taxon a ∈ X, where X is the leaf set of a
rooted phylogenetic X-tree, was defined as a weighted sum of edge lengths of edges on
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the path from the root to the leaf, where each edge is weighted according to its number
of descendent leaves (cf. Definition 5).

In order to use the Fair Proportion Index as a prioritization criterion for the taxa of
a rooted phylogenetic network N on X, we consider two approaches that reduce N to
its treelike content, namely the (multi)set of embedded trees (cf. Chapter 3.2) and the
LSA tree associated with N (cf. Chapter 3.3).
We then try to adapt the definition of the Fair Proportion Index to networks by

considering all paths between the root and a taxon.

5.1.1. Embedded Fair Proportion Index

Similar to the different versions of the embedded phylogenetic diversity, we now intro-
duce the embedded Fair Proportion Index for hybridization networks.

Definition 34 (Embedded Fair Proportion Index). Let N be a rooted phylogenetic
network on some taxon set X and let T(N ) be the (multi)set of all rooted phylogen-
etic X-trees displayed by N . Then we use FP ∗T(N )(a) to denote the embedded Fair
Proportion Index of a taxon a ∈ X, where ∗ stands for min,max,

∑
,∅ and define

FPmin
T(N )(a) := min

T ∈T(N )
{FPT (a)}, (5.1)

FPmax
T(N )(a) := max

T ∈T(N )
{FPT (a)}, (5.2)

FP
∑
T(N )(a) :=

∑
T ∈T(N )

FPT (a) and (5.3)

FP∅
T(N )(a) :=

1

|T(N ) |
∑
T ∈T(N )

FPT (a), (5.4)

(5.5)

where |T(N ) | is the number of phylogenetic X-trees displayed by N .
If hybridization probabilities are given for N , we also consider

FP
∅hyb
T(N )(a) :=

∑
T ∈T(N )

P(T ) · FPT (a) and (5.6)

FPML
T(N )(a) := FPT ∗(a) with T ∗ = argmax

T ∈T(N )

P(T ), (5.7)

where P(T ) is the probability of T and T ∗ is the most likely embedded tree. If the
argmax is not unique, we arbitrarily choose one of the embedded trees with maximum
probability (cf. Definition 22).
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Example 15. Consider the rooted phylogenetic network N8 on X = {A,B,C,D} and
the Fair Proportion Indices for its embedded trees depicted in Figure 23. Note that
we have P(T ′1 ) = 1

6
, P(T ′2 ) = 1

2
, P(T ′3 ) = 1

4
and P(T ′4 ) = 1

12
. Thus, T ′2 is the most likely

embedded tree.
Exemplarily, we now calculate all versions of the embedded Fair Proportion Index for
the taxon A ∈ X.

FPmin
T(N8)

(A) = min
T ∈T(N8)

FPT (A)

= min{FPT ′1 (A), FPT ′2 (A), FPT ′3 (A), FPT ′4 (A)}

= min
{
3, 3,

7

3
,
5

2

}
=

7

3
,

FPmax
T(N8)

(A) = max
T ∈T(N8)

FPT (A)

= max{FPT ′1 (A), FPT ′2 (A), FPT ′3 (A), FPT ′4 (A)}

= max
{
3, 3,

7

3
,
5

2

}
= 3,

FP∅
T(N8)

(A) =
1

|T(N8)|
∑

T ∈T(N8)

FPT (A)

=
1

4

(
FPT ′1 (A) + FPT ′2 (A) + FPT ′3 (A) + FPT ′4 (A)

)
=

1

4

(
3 + 3 +

7

3
+

5

2

)
=

65

24
,

FP
∑
T(N8)

(A) =
∑

T ∈T(N8)

FPT (A)

= FPT ′1 (A) + FPT ′2 (A) + FPT ′3 (A) + FPT ′4 (A)

= 3 + 3 +
7

3
+

5

2

=
65

6
,
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FP
∅hyb
T(N8)

(A) =
∑

T ∈T(N8)

P(T ) · FPT (A)

= P(T ′1 ) · FPT ′1 (A) + P(T ′2 ) · FPT ′2 (A) + P(T ′3 ) · FPT ′3 (A) + P(T ′4 ) · FPT ′4 (A)

=
1

6
· 3 + 1

2
· 3 + 1

4
· 7
3
+

1

12
· 5
2

=
67

24
,

and

FPML
T(N8)

(A) = FPT ′2 (A)

= 3.

Analogously, the embedded Fair Proportion Indices can be calculated for all other taxa
in X. Table 2 summarizes the results.

Table 2: Embedded Fair Proportion Indices for the rooted phylogenetic network N8

a ∈ X FPmin
T(N8)

(a) FPmax
T(N8)

(a) FP
∑
T(N8)

(a) FP∅
T(N8)

(a) FP
∅hyb

T(N8)
(a) FPML

T(N8)
(a)

A 7
3 3 65

6
65
24

67
24 3

B 11
6

5
2

17
2

17
8

71
36

11
6

C 11
6 2 15

2
15
8

133
72

11
6

D 11
6 3 55

6
55
24

43
18

7
3∑

47
6

21
2 36 9 9 9
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N8
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Fig. 23: Rooted phylogenetic network N8 on X = {A,B,C,D} with the Fair Proportion
Indices and original Shapley Values for its embedded trees.
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Remarks.

• If all embedded trees T ∈ T(N ) are equally likely, FP∅
T(N )(a) and FP

∅hyb
T(N )(a)

coincide for all taxa a ∈ X.

• Note that FPmin
T(N ) and FP

max
T(N ) are not efficient (cf. page 8), i.e.

∑
a∈X

FP
min(max)
T(N ) (a) 6= length(N ),

where length(N ) is the sum of branch lengths in N .
For FP

∑
T(N ) we have

∑
a∈X

FP
∑
T(N )(a) = |T(N ) | · length(N ).

• Even though the computation of the Fair Proportion Index for a phylogenetic tree
is easy to accomplish, the computation of the embedded Fair Proportion Index is
not. This is due to the fact, that the computation of the embedded Fair Proportion
Index requires the (multi)set of embedded trees T(N ), whose determination is
an NP -hard problem (cf. Linz et al. [25]).

5.1.2. LSA associated Fair Proportion Index

We will now use the LSA tree, the hybrid LSA tree and the Maximum Likelihood LSA
tree (cf. Definition 18) associated with a phylogenetic network N in order to compute
the Fair Proportion Index for the taxa of N .

Definition 35 (LSA associated Fair Proportion Index). Let N be a rooted phylogen-
etic network on some taxon set X. Let a ∈ X be a taxon in X. Then we define

FPLSA(a) := FPTLSA(N )(a), (5.8)

where FPTLSA(N )(a) is the Fair Proportion Index of a in the LSA tree TLSA(N ) asso-
ciated with N . If hybridization probabilities are given for N , we also consider

FPLSAhyb(a) := FPT hybLSA(N )(a) and (5.9)

FPLSAML(a) := FPTML
LSA(N )(a), (5.10)

where FPT hybLSA(N )(a) is the Fair Proportion Index of a in the hybrid LSA tree T hybLSA(N )

associated with N and FPTML
LSA(N )(a) is the Fair Proportion Index of a in the Maximum
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Likelihood LSA tree T ML
LSA(N ) associated with N .

We will call all three versions LSA associated Fair Proportion Index and use the su-
perscript to indicate which version of the LSA tree was used.

Example 16. Consider the rooted phylogenetic network N8 on X = {A,B,C,D} and
its hybrid LSA tree depicted in Figure 17. For N8 all versions of the LSA tree coincide,
i.e.

TLSA(N8) = T hybLSA(N8) = T ML
LSA(N ).

Thus, we have

FP ∗(A) = 3,

FP ∗(B) = 3,

FP ∗(C) = 3,

FP ∗(D) = 3,

where ∗ ∈ {LSA,LSAhyb, LSAML}.
Note that the treeshape of any LSA tree associated with a network N reduces the
networks to its most fundamental treelike content. In case of N8 this results in a ‘rooted
startree’, which only carries the information that all taxa descend from the root, but
does not contain any information about the evolutionary relationships among the taxa.
In particular, all taxa receive identical LSA associated Fair Proportion Indices, which
hinders taxon prioritization decisions.

5.1.3. The Net Fair Proportion Index

After reducing a network N on X to its treelike content in order to calculate the Fair
Proportion Index for its taxa, we now try to directly adapt the definition of the Fair
Proportion Index to networks by considering all paths between the root and a taxon.
W.l.o.g. we assume the network N to come with hybridization probabilities (if no

hybridization probabilities are given for N , we set the probability γe = 1
2
for all retic-

ulation edges).
The idea is now to define the Net Fair Proportion Index of a taxon a ∈ X by con-

sidering all paths from the root to a and calculating a value for each path individually.
Similar to the original Fair Proportion Index, we calculate this value as a weighted sum
of branch lengths, where each branch length is weighted according to the number of
its descendants. However, we additionally weight the possible descendants of an edge
e by their probability of actually being a descendant of this edge. We then use the
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5. Generalization of phylogenetic diversity indices to hybridization networks

weighted mean of these values for all paths, where a path is weighted according to its
probability, and call the resulting value the Net Fair Proportion Index.

Definition 36 (Net Fair Proportion Index). Let N be a rooted phylogenetic network
on some taxon set X. Let λe denote the length of an edge e in N and let De denote
the set of leaves that are descendants of e.
For each leaf d ∈ De we use Pedesc(d) to denote the probability of d being descendent
from e and calculate Pedesc(d) as

Pedesc(d) =
∑
P∈Pe,d

P(P ), (5.11)

where Pe,d is the set of paths from the endpoint of e to the leaf d in N and P(P ) is the
probability of any such path (cf. Definition 23 for the probability of a path).
Now let a ∈ X be a taxon of N and let Pρa be the set of all paths from ρ to a in N .
Then we define the Net Fair Proportion Index of a as

NFP (a) =
∑
P∈Pρa

P(P ) ·
(∑
e∈P

λe∑
d∈De

Pedesc(d)

)
. (5.12)

Example 17. Consider the rooted phylogenetic network N8 on X = {A,B,C,D}
depicted in Figure 13. We now calculate the Net Fair Proportion Index for taxon
B ∈ X:
There are two paths from the root ρ to B in N , namely

P1 =
(
(ρ, u), (u, r2), (r2, w), (w,B)

)
with probability P(P1) =

1

3
and

P2 =
(
(ρ, v), (v, r2), (r2, w), (w,B)

)
with probability P(P2) =

2

3
.

Consider, for example, the edge e = (ρ, u). The set of possible descendants from e

consists of the taxa A,B and C, thus, De = {A,B,C}. The probabilities of these taxa
descending from e calculate as

Pedesc(A) = 1,

Pedesc(B) =
1

3
· 1 · 1 =

1

3
and

Pedesc(C) =
1

3
· 1 · 3

4
· 1 =

1

4
.

Analogously, these probabilities can be calculated for all other edges on P1 and P2.
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5. Generalization of phylogenetic diversity indices to hybridization networks

Omitting edges of length 0 (i.e. hybridization edges) in the sum, we have

NFP (B) =
1

3

( 1

1︸︷︷︸
(w,B)

+
1

1︸︷︷︸
B

+
3

4︸︷︷︸
C︸ ︷︷ ︸

(r2,w)

+
1

1︸︷︷︸
A

+
1

3︸︷︷︸
B

+
1

4︸︷︷︸
C︸ ︷︷ ︸

(ρ,u)

)

+
2

3

( 1

1︸︷︷︸
(w,B)

+
1

1︸︷︷︸
B

+
3

4︸︷︷︸
C︸ ︷︷ ︸

(r2,w)

+
1

1︸︷︷︸
D

+
2

3︸︷︷︸
B

+
1

4
+

2

3
· 3
4︸ ︷︷ ︸

C︸ ︷︷ ︸
(ρ,v)

)

=
1

3
· 293
133

+
2

3
· 403
203

=
23811

11571

≈ 2.06.

Similar calculations yield

NFP (A) =
50

19
≈ 2.63,

NFP (C) =
40437

19285
≈ 2.10 and

NFP (D) =
321

145
≈ 2.21.

Note that ∑
a∈X

NFP (a) =
50

19
+

23811

11571
+

40437

19285
+

321

145

= 9,

thus, the sum of the Net Fair Proportion Indices equals the sum of edge lengths in N8.

Remarks.

• By definition of the Net Fair Proportion Index, this measure is efficient, i.e.∑
a∈X

NFP (a) = length(N )

for a rooted phylogenetic network N on X.

• Example 17 shows that the calculation of the Net Fair Proportion Index on a
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phylogenetic network is much more involved than the calculation of the Fair
Proportion Index on a phylogenetic tree.

• In order to calculate the NFP for all taxa, we have to consider all possible paths
between the root and any of the leaves. In the worst case, the number of paths
between the root and a leaf may be exponential in the number of reticulation
nodes. Consider, for example, the rooted phylogenetic network N ∗1 depicted in
Figure 11 and fix taxon E. As E is a direct descendant of the reticulation node
r5, whose lowest stable ancestor is the root ρ, there are also 2r(N

∗
1 )−1 + 1 = 17

paths from ρ to E.

5.2. The Shapley Value

We now turn our attention to the different versions of the Shapley Value and show how
to calculate these indices in the context of hybridization networks.

Recall that the calculation of any version of the Shapley Value was based on the
phylogenetic diversity of subsets of taxa (cf. Definitions 6, 7, 8), and thus, only indirectly
on a given phylogenetic tree.

We will therefore consider two main approaches when generalizing the Shapley Value
from trees to networks: In a first approach we will reduce the network to its treelike
content and introduce the embedded Shapley Value and the LSA associated Shapley
Value. Secondly, we will use the different definitions of generalized phylogenetic diversity
introduced in Chapter 4 and calculate a value based on these measures, which we will
call the generalized Shapley Value.

5.2.1. Embedded Shapley Value

Similar to the embedded Fair Proportion Index, we now introduce the embedded Shapley
Value.

Definition 37 (Embedded Shapley Value). Let N be a rooted phylogenetic network
on some taxon set X and let T(N ) be the (multi)set of all rooted phylogenetic X-trees
displayed by N . Then we use SV ∗T(N )(a) to denote the embedded original Shapley Value
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of a taxon a ∈ X, where ∗ stands for min,max,∅,
∑

and define

SV min
T(N )(a) := min

T ∈T(N )
{SVT (a)}, (5.13)

SV max
T(N )(a) := max

T ∈T(N )
{SVT (a)}, (5.14)

SV ∅
T(N )(a) :=

1

|T(N ) |
∑
T ∈T(N )

SVT (a) and (5.15)

SV
∑
T(N )(a) :=

∑
T ∈T(N )

SVT (a), (5.16)

where |T(N ) | is the number of phylogenetic X-trees displayed by N .
If hybridization probabilities are given for N , we also consider

SV
∅hyb
T(N )(a) :=

∑
T ∈T(N )

P(T ) · SVT (a) and (5.17)

SV ML
T(N )(a) := SVT ∗(a) with T ∗ = argmax

T ∈T(N )

P(T ), (5.18)

where P(T ) is the probability of T and T ∗ is the most likely embedded tree. If the
argmax is not unique, we arbitrarily choose one of the embedded trees with maximum
probability (cf. Definition 22).
Analogously, we define the embedded modified Shapley Value S̃V

∗
T(N ) and the embedded

unrooted rooted Shapley Value ŜV
∗
T(N ) with ∗ ∈ {min,max,∅,

∑
,∅hyb,ML}.

Example 18. Consider the rooted phylogenetic network N8 on X = {A,B,C,D} and
its embedded phylogenetic X-trees depicted in Figure 23. Table 3 contains the different
versions of the Shapley Value for all taxa and all embedded trees.
Similar to the calculation of the embedded Fair Proportion Index (cf. Example 15),

we now calculate the different versions of the embedded Shapley Value for taxon A ∈ X:

• Original Shapley Value:

SV min
T(N8)

(A) =
7

3

SV max
T(N8)

(A) = 3

SV ∅
T(N8)

(A) =
65

24

SV
∑
T(N8)

(A) =
65

6

SV
∅hyb
T(N8)

(A) =
67

24

SV ML
T(N8)

(A) = 3.
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Table 3: Different versions of the Shapley Value for the set of embedded trees in N8

T ∈ T(N8) T ′
1 T ′

2 T ′
3 T ′

4

P(T ) 1
6

1
2

1
4

1
12

original SV

SVT ′
1
(A) = 3 SVT ′

2
(A) = 3 SVT ′

3
(A) = 7

3 SVT ′
4
(A) = 5

2

SVT ′
1
(B) = 7

3 SVT ′
2
(B) = 11

6 SVT ′
3
(B) = 11

6 SVT ′
4
(B) = 5

2

SVT ′
1
(C) = 11

6 SVT ′
2
(C) = 11

6 SVT ′
3
(C) = 11

6 SVT ′
4
(C) = 2

SVT ′
1
(D) = 11

6 SVT ′
2
(D) = 7

3 SVT ′
3
(D) = 3 SVT ′

4
(D) = 2

modified SV

S̃V T ′
1
(A) = 9

4 S̃V T ′
2
(A) = 9

4 S̃V T ′
3
(A) = 19

12 S̃V T ′
4
(A) = 7

4

S̃V T ′
1
(B) = 19

12 S̃V T ′
2
(B) = 13

12 S̃V T ′
3
(B) = 13

12 S̃V T ′
4
(B) = 7

4

S̃V T ′
1
(C) = 13

12 S̃V T ′
2
(C) = 13

12 S̃V T ′
3
(C) = 13

12 S̃V T ′
4
(C) = 5

4

S̃V T ′
1
(D) = 13

12 S̃V T ′
2
(D) = 19

12 S̃V T ′
3
(D) = 9

4 S̃V T ′
4
(D) = 5

4

unrooted rooted SV

ŜV T ′
1
(A) = 43

12 ŜV T ′
2
(A) = 43

12 ŜV T ′
3
(A) = 9

4 ŜV T ′
4
(A) = 31

12

ŜV T ′
1
(B) = 9

4 ŜV T ′
2
(B) = 19

12 ŜV T ′
3
(B) = 19

12 ŜV T ′
4
(B) = 31

12

ŜV T ′
1
(C) = 19

12 ŜV T ′
2
(C) = 19

12 ŜV T ′
3
(C) = 19

12 ŜV T ′
4
(C) = 23

12

ŜV T ′
1
(D) = 19

12 ŜV T ′
2
(D) = 9

4 ŜV T ′
3
(D) = 43

12 ŜV T ′
4
(D) = 23

12

• Modified Shapley Value:

S̃V
min

T(N8)
(A) =

19

12

S̃V
max

T(N8)
(A) =

9

4

S̃V
∅
T(N8)

(A) =
47

24

S̃V
∑
T(N8)

(A) =
47

6

S̃V
∅hyb
T(N8)

(A) =
49

24

S̃V
ML

T(N8)
(A) =

9

4
.
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• Unrooted rooted Shapley Value:

ŜV
min

T(N8)
(A) =

9

4

ŜV
max

T(N8)
(A) =

43

12

ŜV
∅
T(N8)

(A) = 3

ŜV
∑
T(N8)

(A) = 12

ŜV
∅hyb
T(N8)

(A) =
19

6

ŜV
ML

T(N8)
(A) =

43

12
.

Analogously, the different version of the embedded Shapley Value can be calculated for
all other taxa in X. Tables 4 – 6 summarize the results.

Table 4: Embedded original Shapley Values for the rooted phylogenetic network N8

a ∈ X SV min
T(N8)

(a) SV max
T(N8)

(a) SV
∑
T(N8)

(a) SV ∅
T(N8)

(a) SV
∅hyb

T(N8)
(a) SVML

T(N8)
(a)

A 7
3 3 65

6
65
24

67
24 3

B 11
6

5
2

17
2

17
8

71
36

11
6

C 11
6 2 15

2
15
8

133
72

11
6

D 11
6 3 55

6
55
24

43
18

7
3∑

47
6

21
2 36 9 9 9

Table 5: Embedded modified Shapley Values for the rooted phylogenetic network N8

a ∈ X S̃V
min

T(N8)(a) S̃V
max

T(N8)(a) S̃V

∑
T(N8)(a) S̃V

∅
T(N8)(a) S̃V

∅hyb

T(N8)(a) S̃V
ML

T(N8)(a)

A 19
12

9
4

47
6

47
24

49
24

9
4

B 13
12

7
4

11
2

11
8

11
9

13
12

C 13
12

5
4

9
2

9
8

79
72

13
12

D 13
12

9
4

37
6

37
24

59
36

19
12∑

29
6

15
2 24 6 6 6
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Table 6: Embedded unrooted rooted Shapley Values for the rooted phylogenetic network
N8

a ∈ X ŜV
min

T(N8)(a) ŜV
max

T(N8)(a) ŜV

∑
T(N8)(a) ŜV

∅
T(N8)(a) ŜV

∅hyb

T(N8)(a) ŜV
ML

T(N8)(a)

A 9
4

43
12 12 3 19

6
43
12

B 19
12

31
12 8 2 16

9
19
12

C 19
12

23
12

20
3

5
3

29
18

19
12

D 19
12

43
12

28
3

7
3

22
9

9
4∑

7 35
3 36 9 9 9

Remarks.

• If all embedded trees T ∈ T(N ) are equally likely, SV ∅
T(N )(a) and SV

∅hyb
T(N )(a)

coincide for all taxa a ∈ X. The same holds for S̃V
∅
T(N )(a) and S̃V

∅hyb
T(N )(a) as well

as for ŜV
∅
T(N )(a) and ŜV

∅hyb
T(N )(a).

• Due to the fact that the modified Shapley Value is not efficient (cf. Remark on
page 11), neither version of the embedded modified Shapley Value is efficient.

• In case of the embedded original Shapley Value, SV min
T(N ) and SV

max
T(N ) are not effi-

cient, while SV ∅
T(N ), SV

∅hyb
T(N ) and SV

ML
T(N ) are. For SV

∑
T(N ) we have

∑
a∈X

SV
∑
T(N )(a) = |T(N ) | · length(N ).

The same properties hold for the embedded unrooted rooted Shapley Value.

• The embedded Fair Proportion Indices and embedded Shapley Values of a rooted
phylogenetic network are closely related, which follows from their relatedness on
phylogenetic trees.

Proposition 5. Let N be a rooted phylogenetic network on some taxon set X with
|X| = n and let T(N ) be the (multi)set of all rooted phylogenetic X-trees displayed by
N . Let a ∈ X be a taxon in X. Then we have

1. FP ∗T(N )(a) = SV ∗T(N )(a) with ∗ ∈ {min,max,
∑
,∅,∅hyb,ML}.

2. S̃V
∗
T(N )(a) = SV ∗T(N )(a)− PD({a})

n
with ∗ ∈ {min,max,∅,∅hyb,ML}.

3. S̃V
∑
T(N )(a) = SV

∑
T(N )(a)− |T(N ) | · PD({a})

n
.
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(In case of FPML
T(N ), SV

ML
T(N ) and S̃V

ML

T(N ), we assume the most likely embedded tree to be
fixed, if the argmax is not unique. Otherwise, i.e. if different most likely embedded trees
are considered when calculating the Fair Proportion Index or the different versions of
the Shapley Value, we cannot assess their relationship).

Proof. The first two properties follow directly from the corresponding properties of the
Fair Proportion Index, the Shapley Value and the modified Shapley Value on phylogen-
etic trees (cf. Summary on page 13). To be precise, we have

• FPT (a) = SVT (a) and

• S̃V T (a) = SVT (a)− PD({a})
n

for all embedded trees T ∈ T(N ). Thus, FP ∗T(N )(a) = SV ∗T(N )(a) with ∗ ∈
{min,max,

∑
,∅,∅hyb,ML}, because all functions ∗ have the same input for FP and

SV .
With the exception of ∗ =∑, the same reasoning yields

S̃V
∗
T(N )(a) = SV ∗T(N )(a)−

PD({a})
n

,

because the corresponding relationship between S̃V (a) and SV (a) on all embedded
trees T ∈ T(N ) is preserved by ∗ ∈ {min,max,∅,∅hyb,ML}.
In case of S̃V

∑
T(N )(a) and SV

∑
T(N )(a), however, the original Shapley Values SV (a) and

modified Shapley Values S̃V (a) are added for all embedded trees T ∈ T(N ), respect-
ively. Thus,

S̃V
∑
T(N )(a) =

∑
T ∈T(N )

S̃V T (a)

=
∑
T ∈T(N )

(
SVT (a)−

PD({a})
n

)
= −|T(N ) | · PD({a})

n
+

∑
T ∈T(N )

SVT (a)

= −|T(N ) | · PD({a})
n

+ SV
∑
T(N )(a)

= SV
∑
T(N )(a)− |T(N ) | · PD({a})

n
.

Similar to the results for phylogenetic trees, Proposition 5 suggests that the infeasible
calculation of the embedded original Shapley Value can be replaced by the simpler
calculation of the embedded Fair Proportion Index. Accordingly, the embedded modified
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Shapley Value can be derived from the embedded Fair Proportion Index. The embedded
unrooted rooted Shapley Value, on the other hand, cannot be derived from any of the
other indices. It can be computed according to its definition or via so-called splits
induced by the edges of the tree (cf. page 110), which is less complex.

However, both the embedded Fair Proportion Index and all versions of the embedded
Shapley Value are based on the set T(N ) of phylogenetic X-trees displayed by N .
As the determination of T(N ) is an NP -hard problem, so is the computation of any
embedded biodiversity index.

5.2.2. LSA associated Shapley Value

Similar to Chapter 5.1.2 we will now introduce the LSA associated Shapley Value for
a phylogenetic network N on X.

Definition 38 (LSA associated Shapley Value). Let N be a rooted phylogenetic net-
work on some taxon set X. Let a ∈ X be a taxon in X. Then we define

SV LSA(a) := SVTLSA(N )(a), (5.19)

S̃V
LSA

(a) := S̃V TLSA(N )(a) and (5.20)

ŜV
LSA

(a) := ŜV TLSA(N )(a), (5.21)

where SVTLSA(N )(a) is the original Shapley Value of a, S̃V TLSA(N )(a) is the modified
Shapley Value of a and ŜV TLSA(N )(a) is the unrooted rooted Shapley Value of a in the
LSA tree TLSA(N ) associated with N . If hybridization probabilities are given for N ,
we also consider

SV LSAhyb(a) := SVT hybLSA(N )(a), (5.22)

SV LSAML(a) := SVTML
LSA(N )(a), (5.23)

S̃V
LSAhyb

(a) := S̃V T hybLSA(N )(a), (5.24)

S̃V
LSAML

(a) := S̃V TML
LSA(N )(a), (5.25)

ŜV
LSAhyb

(a) := ŜV T hybLSA(N )(a), (5.26)

ŜV
LSAML

(a) := ŜV TML
LSA(N )(a), (5.27)

where the original Shapley Value, the modified Shapley Value and the unrooted rooted
Shapley Value of a are calculated for the hybrid LSA tree and the Maximum Likelihood
LSA tree, respectively. We will call all SV ∗ with ∗ ∈ {LSA,LSAhyb, LSAML} the LSA
associated original Shapley Value, S̃V

∗
the LSA associated modified Shapley Value and
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ŜV
∗
the LSA associated unrooted rooted Shapley Value and use the superscript to

indicate which version of the LSA tree was used.

Example 19. Consider the rooted phylogenetic network N8 on X = {A,B,C,D} and
its hybrid LSA tree depicted in Figure 17. For N8 all versions of the LSA tree coincide,
i.e.

TLSA(N8) = T hybLSA(N8) = T ML
LSA(N ).

Let ∗ ∈ {LSA,LSAhyb, LSAML}. Then we retrieve the following LSA associated Shap-
ley Values :

• LSA associated original Shapley Value:

SV ∗(A) = 3

ŜV
∗
(A) = 3

SV ∗(B) = 3

SV ∗(C) = 3

SV ∗(D) = 3.

• LSA associated modified Shapley Value:

S̃V
∗
(A) =

9

4

S̃V
∗
(B) =

9

4

S̃V
∗
(C) =

9

4

S̃V
∗
(D) =

9

4
.

• LSA associated unrooted rooted Shapley Value:

ŜV
∗
(A) = 3

ŜV
∗
(B) = 3

ŜV
∗
(C) = 3

ŜV
∗
(D) = 3.

By chance the LSA associated original Shapley Value and the LSA associated unrooted
rooted Shapley Value coincide in this example. In general, however, the two indices
differ.
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As the LSA associated Fair Proportion Index and the different versions of the LSA
associated Shapley Value are calculated by considering the LSA tree associated with a
network, we have the following corollary:

Corollary 1. Let N be a phylogenetic network on X with |X| = n and let a ∈ X be a
taxon of N . Then we have

1. FP ∗(a) = SV ∗(a);

2. S̃V
∗
(a) = SV ∗(a)− PD({a})

n
,

with ∗ ∈ {LSA,LSAhyb, LSAML}.

Proof. Both claims follow directly from the corresponding properties of the Fair Propor-
tion Index, the original Shapley Value and the modified Shapley Value on phylogenetic
trees.

5.2.3. Generalized Shapley Value

After reducing a rooted phylogenetic network N to its treelike content in order to cal-
culate the different versions of the Shapley Value for its taxa, we now directly calculate
the indices according to their definition (cf. Definitions 6, 7) by using the different
measures of generalized phylogenetic diversity introduced in Chapter 4.

However, as we have only defined phylogenetic diversity for rooted phylogenetic net-
works, we will not consider the unrooted rooted Shapley Value in the following, but only
the original Shapley Value and the modified Shapley Value.

Definition 39 (Generalized Shapley Value). Let N be a rooted phylogenetic network
on some taxon set X and let T(N ) be the (multi)set of all rooted phylogenetic
X-trees displayed by N . Let a ∈ X be a taxon in X and let PD(S) denote any gen-
eralized measure of phylogenetic diversity of a subset S ⊆ X of taxa in N , i.e. PD(S) ∈
{PND(S), PNDhyb(S), PNDML(S), PDmin

T(N )(S), PD
max
T(N )(S), PD

∑
T(N )(S), PD

∅
T(N )(S),

PD
∅hyb
T(N )(S), PD

ML
T(N )(S), PD

LSA(S), PDLSAhyb(S), PDLSAML(S)}.
Then we define the generalized original Shapley Value of a as

SVPD(a) =
1

n!

∑
S⊆X
a∈S

(
(|S| − 1)!(n− |S|)!(PD(S)− PD(S \ {a}))

)
, (5.28)

where n = |X| and S denotes a subset of species containing taxon a and the sum runs
over all such subsets possible.
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Analogously, we define the generalized modified Shapley Value of a as

S̃V PD(a) =
1

n!

∑
S:a∈S
|S|≥2

(
(|S| − 1)!(n− |S|)!(PD(S)− PD(S \ {a}))

)
, (5.29)

where the sum runs over all coalitions S containing taxon a and at least one other
taxon.

Remark. Obviously, we have

S̃V PD(a) = SVPD(a)−
PD(a)
n

,

for all a ∈ X (cf. Proposition 1).

Example 20. Consider the rooted phylogenetic network N8 on X = {A,B,C,D}
depicted in Figure 23. We now calculate the generalized original Shapley Value of taxon
A ∈ X and choose the phylogenetic net diversity as the measure of phylogenetic diversity
(cf. Table 7 for the values of PND). We have to consider the following subsets S ⊆ X:
{A}, {A,B}, {A,C}, {A,D}, {A,B,C}, {A,B,D}, {A,C,D} and {A,B,C,D}. Thus,

SVPND(A) =
1

4!

∑
S:A∈S

(
(|S| − 1)!(|X| − |S|)!(PND(S)− PND(S \ {A}))

)
=

1

4!

[
(1− 1)!(4− 1)!(3− 0)

+ (2− 1)!(4− 2)!
(
(5− 3) + (5− 3) + (6− 3)

)
+ (3− 1)!(4− 3)!

(
(6− 4) + (8− 5) + (7− 4)

)
+ (4− 1)!(4− 4)!(9− 6)

]
=

1

24

[
1 · 6 · 3 + 1 · 2 · (2 + 2 + 3) + 2 · 1 · (2 + 3 + 3) + 6 · 1 · 3

]
=

1

24
· 66

=
11

4
.
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For the generalized modified Shapley Value we have

S̃V PND(A) =
1

4!

∑
S:a∈S
|S|≥2

(
(|S| − 1)!(n− |S|)!(PND(S)− PND(S \ {a}))

)

=
1

4!

[
(2− 1)!(4− 2)!

(
(5− 3) + (5− 3) + (6− 3)

)
+ (3− 1)!(4− 3)!

(
(6− 4) + (8− 5) + (7− 4)

)
+ (4− 1)!(4− 4)!(9− 6)

]
=

1

24

[
1 · 2 · (2 + 2 + 3) + 2 · 1 · (2 + 3 + 3) + 6 · 1 · 3

]
=

1

24
· 48

= 2.

Analogously, the generalized original Shapley Value can be calculated for all other taxa
in X and all other generalized measures of phylogenetic diversity. Table 7 summarizes
the results.
Note that for all subsets S ⊆ X in N8 we have:

• PND(S) = PDmin
T(N8)

(S);

• PNDhyb(S) = PD
∅hyb
T(N8)

(S);

• PNDML(S) = PDML
T(N8)

(S).

Thus, the corresponding generalized (modified) Shapley Values coincide for these meas-
ures, respectively. However, in general, they differ. To see this consider, for example,
the rooted phylogenetic network N ′2 depicted Figure 16 and some of its generalized
Shapley Values listed in Table 8.
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5. Generalization of phylogenetic diversity indices to hybridization networks

Table 8: Generalized phylogenetic diversity and generalized Shapley Values for the rooted
phylogenetic network N ′2 (extract)

S PDmin
T(N ′

2)
PD

∅hyb

T(N ′
2)

PDML
T(N ′

2)
PND PNDhyb PNDML

∅ 0 0 0 0 0 0

{A} 3 3 3 3 3 3

{B} 3 3 3 3 3 3

{C} 3 3 3 3 3 3

{D} 3 3 3 3 3 3

{A,B} 4 9
2 4 4 17

4 4

{A,C} 5 16
3 5 5 17

3 6

{A,D} 6 6 6 6 6 6

{B,C} 4 31
6 5 4 67

12 6

{B,D} 6 6 6 6 6 6

{C,D} 4 16
3 6 4 14

3 4

{A,B,C} 6 20
3 6 6 41

6 7

{A,B,D} 7 15
2 7 7 29

4 7

{A,C,D} 7 23
3 8 7 22

3 7

{B,C,D} 7 15
2 8 7 29

4 7

{A,B,C,D} 9 9 9 8 17
2 8

SVPD(A) 9
4

77
36

11
6 2 149

72 2

SVPD(B) 25
12

37
18

11
6

11
6

73
36 2

SVPD(C) 23
12

77
36

7
3

5
3

149
72 2

SVPD(D) 11
4

8
3 3 5

2
7
3 2
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5. Generalization of phylogenetic diversity indices to hybridization networks

Relationship between the generalized Shapley Value and the embedded Shapley
Value
We now shortly compare the generalized original Shapley Value and the embedded
original Shapley Value of a phylogenetic network N on some taxon set X.

The first observation to make is that, in general,

• SVPDmin
T(N )

(a) 6= SV min
T(N )(a) and

• SVPDmax
T(N )

(a) 6= SV max
T(N )(a)

for a ∈ X. Consider for example the rooted phylogenetic network N8 depicted in Figure
23. Here we have SV min

T(N8)
(A) = 7

3
(cf. Table 4), but SVPDmin

T(N8)
(A) = 11

4
(cf. Table 7).

Similarly, we have SV max
T(N8)

(A) = 3 (cf. Table 4), but SVPDmax
T(N8)

(A) = 5
2
(cf. Table 7).

Analogous results hold for the generalized modified Shapley Value and the embedded
modified Shapley Value, i.e. in general

• S̃V PDmin
T(N )

(a) 6= S̃V
min

T(N )(a) and

• S̃V PDmax
T(N )

(a) 6= S̃V
max

T(N )(a).

The second observation to make is

• SVPDML
T(N )

(a) = SV ML
T(N )(a) and

• S̃V PDML
T(N )

(a) = S̃V
ML

T(N )(a)

if the most likely tree T ∗ ∈ T(N ) = argmax
T ∈T(N )

P(T ) is fixed, because:

SV ML
T(N )(a) = SVT ∗ with T ∗ = argmax

T ∈T(N )

P(T )

=
1

n!

∑
S⊆X
a∈S

(
(|S| − 1)!(n− |S|)!(PDT ∗(S)− PDT ∗(S \ {a}))

)
= SVPDML

T(N )
(a).

Analogously, the equality follows for the modified Shapley Values.
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5. Generalization of phylogenetic diversity indices to hybridization networks

Lastly, we have the following relationship:

Proposition 6. Let N be a rooted phylogenetic network on some taxon set X with
|X| = n and let T(N ) be the (multi)set of all rooted phylogenetic X-trees displayed by
N . Let a ∈ X be a taxon in X. Then

1. SV
PD

∑
T(N )

(a) = SV
∑
T(N )(a),

2. SVPD∅
T(N )

(a) = SV ∅
T(N )(a),

3. SV
PD

∅hyb
T(N )

(a) = SV
∅hyb
T(N )(a).

Analogously, the corresponding embedded and generalized modified Shapley Values co-
incide.

Proof. We only show 1., but 2. and 3. follow analogously.
Recall that PD

∑
T(N )(S) =

∑
T ∈T(N )

PDT (S). Thus,

SV
PD

∑
T(N )

(a) =
1

n!

∑
S⊆X
a∈S

(
(|S| − 1)!(n− |S|)!(PD

∑
T(N )(S)− PD

∑
T(N )(S \ {a}))

)

=
1

n!

∑
S⊆X
a∈S

(
(|S| − 1)!(n− |S|)!

( ∑
T ∈T(N )

PDT (S)−
∑
T ∈T(N )

PDT (S \ {a})
))

=
1

n!

∑
S⊆X
a∈S

(
(|S| − 1)!(n− |S|)!

( ∑
T ∈T(N )

(PDT (S)− PDT (S \ {a}))
))
.

On the other hand we have

SV
∑
T(N )(a) =

∑
T ∈T(N )

SVT (a)

=
∑
T ∈T(N )

( 1

n!

∑
S⊆X
a∈S

(
(|S| − 1)!(n− |S|)!(PDT (S)− PDT (S \ {a}))

))

=
1

n!

∑
T ∈T(N )

∑
S⊆X
a∈S

(
(|S| − 1)!(n− |S|)!(PDT (S)− PDT (S \ {a}))

)

=
1

n!

∑
S⊆X
a∈S

∑
T ∈T(N )

(
(|S| − 1)!(n− |S|)!(PDT (S)− PDT (S \ {a}))

)

=
1

n!

∑
S⊆X
a∈S

(
(|S| − 1)!(n− |S|)!

( ∑
T ∈T(N )

(PDT (S)− PDT (S \ {a}))
))
.
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Thus,
SV

PD
∑
T(N )

(a) = SV
∑
T(N )(a).

Remark. Above equalities together with Proposition 5 suggest to derive SV
PD

∑
T(N )

,

SVPD∅
T(N )

, SV
PD

∅hyb
T(N )

and SVPDML
T(N )

(and analogously S̃V
PD

∑
T(N )

, etc.) from the corres-

ponding versions of the embedded Fair Proportion Index. For SVPND, SVPDmin
T(N )

and

SVPDmin
T(N )

(and analogously S̃V PND, etc.), however, this is not possible. Thus, these
versions of the generalized original Shapley Value have to be calculated according to
their definition.

Relationship between the generalized Shapley Value and the LSA associated
Shapley Value
Both the calculation of the LSA associated Shapley Value SV LSA and the generalized
Shapley Value SVPDLSA , that uses the LSA associated phylogenetic diversity, are based
upon the same LSA tree associated with a phylogenetic network N on X. Analogously,
this holds for the hybrid LSA tree and the Maximum Likelihood LSA Tree. Thus, we
have the following relationship for a taxon a ∈ X.

• SVLSA(a) = SVPDLSA(a) with SV ∈ {SV, S̃V };

• SVLSAhyb(a) = SV
PD

LSAhyb (a) with SV ∈ {SV, S̃V };

• SVLSAML(a) = SVPDLSAML (a) with SV ∈ {SV, S̃V }.

Moreover, SVLSA, SVLSAhyb and SVLSAML with SV ∈ {SV, S̃V } can be derived from
the corresponding versions of the LSA associated Fair Proportion Index due to Corol-
lary 1.

5.3. Conclusion

In order to generalize the Fair Proportion Index and the different versions of the Shapley
Value from phylogenetic trees to phylogenetic networks, we have considered different
approaches.
For the Fair Proportion Index, we have on the one hand considered the treelike

content of a phylogenetic network via the (multi)set T(N ) of embedded trees and the
LSA tree associated with the network, and on the other hand, we have developed a
measure (the Net Fair Proportion Index ) very similar to the Fair Proportion Index
for phylogenetic trees, but directly based on the phylogenetic network. All of these
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approaches have their specific advantages and drawbacks. While the Fair Proportion
Index is easy to calculate for a single phylogenetic tree, the task of calculating any
version of the embedded Fair Proportion Index based on the (multi)set T(N ) may be
difficult to accomplish in practice, because the determination of the (multi)set T(N ) is
anNP -hard problem (cf. Linz et al. [25]). Still, in particular the FP∅

T(N ) and the FP∅hyb
T(N )

seem to be the most sensible versions of the generalized Fair Proportion Index to be
used, because they take into account the most information provided by the network.

The LSA associated Fair Proportion Index on the other hand, reduces the phylo-
genetic network to its most basic treelike content and thus, discards a lot of the evol-
utionary information present. It may therefore be questionable if the LSA associated
Fair Proportion Index is an appropriate measure to be used in taxon prioritization.
On the other hand, this measure seems to be more easy to calculate in practice than
the embedded Fair Proportion Index (cf. Chapter 6.3), even though it is possible to
construct examples where the construction of the LSA tree prior to the calculation of
the LSA associated Fair Proportion Index faces problems, because of an exponential
number of paths between a reticulation node and its lowest stable ancestor (cf. Remark
on page 28).

The problem of an exponential number of paths between a reticulation node and its
lowest stable ancestor may also affect the calculation of the Net Fair Proportion Index
NFP , because the calculation of this measures requires the enumeration of all paths
between the root and each of the leaves (cf. Remarks on page 77). Moreover, the Net
Fair Proportion Index is a relatively arbitrary measure and lacks a link to biological
conservation. Its idea is to divide all branch lengths equally among the taxa of the
network. Thus, it directly resembles the Fair Proportion Index for phylogenetic trees,
which has also been criticized of lacking a biological motivation, but in the meantime
has been justified by its equality with the original Shapley Value. It may therefore
be worth investigating the relationship of the Net Fair Proportion Index with any
version of the Shapley Value for phylogenetic networks or any other biodiversity index
for phylogenetic networks in order to assess the suitability of the NFP as a taxon
prioritization criterion.

Before analyzing the relationship between the Net Fair Proportion Index and the
Shapley Value for phylogenetic networks, it is, however, necessary to assess the concept
of the Shapley Value for phylogenetic networks itself. In order to generalize the concept
of the different versions of the Shapley Value from phylogenetic trees to networks, we
have, again, considered different approaches.
On the one hand, we have reduced the phylogenetic network to its treelike content via
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the (multi)set T(N ) of embedded trees and the LSA tree associated with the network
and have defined the different versions of the Shapley Value based on these trees. Com-
pletely in accordance with the embedded Fair Proportion Index and the LSA associated
Fair Proportion Index, both the embedded Shapley Value and the different versions of
he LSA associated Shapley Value have their specific advantages and drawbacks. While
in particular SV∅

T(N ) and SV
∅hyb
T(N ) with SV ∈ {SV, S̃V , ŜV } seem sensible to use, the

different versions of the LSA associated Shapley Value are questionable. In all cases,
however, we suggest to derive the different versions of the embedded (original/modi-
fied) Shapley Value and the LSA associated (original/modified) Shapley Value from the
corresponding versions of the embedded Fair Proportion Index and the LSA associated
Fair Proportion Index.
However, as the different versions of the Shapley Value are based on the phylogenetic

diversity of subsets of taxa and thus do not directly depend on the structure of a
phylogenetic tree or network, we have introduced the generalized (original/modified)
Shapley Value as an alternative approach. This index uses any measure of generalized
phylogenetic diversity to calculate the (original/modified) Shapley Value directly from
its definition. However, this has the drawback that the chosen measure of generalized
phylogenetic diversity has to be calculated for all 2|X| subsets S ⊆ X. Thus, not
only may the calculation of the chosen measure of generalized phylogenetic diversity
in itself be a limiting factor in practice, but also the high number of subsets to be
considered. However, some of versions of the (original/modified) Shapley Value can be
derived from the embedded Fair Proportion Index, which eases its calculation to some
extent, even tough we remark again, that the calculation of any embedded biodiversity
index is anNP -hard problem due to the required determination of the (multi)set T(N ).

All in all, we have considered a variety of approaches towards the generalization
of the Fair Proportion Index and the different versions of the Shapley Value from
phylogenetic trees to networks. All of these approaches have their specific advantages
and drawbacks. In particular, computational feasibility may be a problem in practice
for some of the indices. On the other hand, biological plausibility and suitability for
taxon prioritization remain to be assessed for all indices. It may therefore be worth
analyzing the relationship between the individual indices and evaluating their biological
meaning. Once promising indices have been identified, it may then be necessary to
develop approximations for these indices, in order to use them in practical applications.
In the following, we will, however, introduce the software tool net_diversity.pl

that allows for the calculation of some of the generalized biodiversity indices introduced
in this chapter.
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6. Software

6.1. Extended Newick Format

In order to represent phylogenetic networks in a standardized and computer-readable
format, the extended Newick format was introduced as a generalization of the Newick
tree format. Before we go into more detail about the former, we shortly recapitulate
the latter.

The Newick tree format (cf. Felsenstein et al. [12]) describes a phylogenetic tree as a
string using nested parentheses and commas, where closely related species are grouped
closely together.

Leaves are represented by their names and each pair of matched parentheses repres-
ents an internal node, which may additionally have a name assigned to it.

Branch lengths can optionally be included in the representation by putting a colon
followed by a real number after a node.

Every tree ends with a semicolon.
When the Newick tree format is used to represent an unrooted phylogenetic tree, an

arbitrary inner node is chosen as its root, because the Newick tree format is fashioned
to represent rooted trees and requires a root node represented by the outmost pair
of parentheses. In case of binary phylogenetic trees it is, however, still possible to
distinguish between rooted and unrooted trees. Whereas a rooted binary tree has two
entries at each parentheses level, an unrooted binary tree has two entries at each
parentheses level, except for the uppermost level, where it has three entries.

A B C

ρ

1 1

2
3

T1

B

A

C

1

1

5

T2

Fig. 24: Onw possible Newick tree representation for the rooted binary phylogentic X-
tree T1 is ((A : 1, B : 1) : 2, C : 3); and for the unrooted binary phylogenetic
X-tree T2 one possible representation is (A : 1, B : 1, C : 5);.
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Remark. Note that the Newick format of a given phylogenetic tree is not necessarily
unique. Consider for example the rooted binary phylogenetic X-tree T1 depicted in
Figure 24. We have the following Newick representations for T1:

• ((A : 1, B : 1) : 2, C : 3);

• ((B : 1, A : 1) : 2, C : 3);

• (C : 3, (A : 1, B : 1) : 2);

• (C : 3, (B : 1, A : 1) : 2);

In order to extend the Newick format to phylogenetic networks, two proposals were
made: one represents a network as a single Newick string by splitting each reticulation
node once for each parent, while the other represents it as a set of Newick strings by
decomposing the network into a series of trees (cf. Cardona et al. [6]).

Both approaches have been referred to as the extended Newick format. We will shortly
describe the two methods, although the focus will be on the first proposal.

First proposal
The main idea of the first approach is to modify the network so that it becomes a
phylogenetic tree and then use the Newick tree format to describe this tree.

Formally, Algorithm 1 can be used to determine the Newick representation of a
phylogenetic network (cf. Cardona et al. [6], Figure 25).

Remark. When reticulation nodes represent horizontal gene transfer events, we have
to distinguish the HGT edge from the other edge directed into the reticulation node.
‘This can easily be achieved by taking the target of the other edge as first replicate (the
one that will carry the children of the [reticulation] node in the phylogenetic network)
and the target of the reticulation edge as second replicate (the one that will become
a terminal node) when splitting the [reticulation] node’ (Cardona et al. [6]; cf. Figure
26).
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A B C D E F

a b

c

ρ

d

e f

r1 r2

N9

A B C D E F

a b

c

ρ

d

e f

r1 r1 r2 r2

#H1 #H2

Fig. 25: The rooted phylogenetic network N9 with two reticulation nodes representing
hybridization events can be transformed into a phylogenetic tree with two rep-
licated nodes (r1 and r2). This leads to the extended Newick representation of
N9 as

(((A, (B)r1#H1)a, (r1#H1,C)b)c, ((D, (E)r2#H2)e, (r2#H2,F)f)d)ρ;
or, for short,

(((A, (B)#H1), (#H1,C)), ((D, (E)#H2), (#H2,F)));.
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Algorithm 1 Extendend Newick format (Phylogenetic network N with k reticulation
nodes r1, . . . , rk) (cf. Cardona et al. [6])
1: Split each reticulation node ri with m parents u1, u2, . . . , um and children
v1, v2, . . . , v in m different nodes, the first such copy with parent u1 and children
v1, v2, . . . , v, and the remaining m − 1 copies with a single parent u2, . . . , uk, re-
spectively, and no children.

2: Label each tree node with

[label][:edge_length].

3: For all reticulation nodes ri label the copies with

[label]#[type]i[:edge_length],

where label is an optional string providing a labeling of the node and type is
an optional string indicating if the reticulation node represents a recombination
(indicated by R), a hybridization (indicated by H) or a horizontal gene transfer
(indicated by LGT) event. The obligatory integer i identifies the reticulation node
ri and edge_length is an optional number representing the edge length of the edge
from the parent to the copy of ri under consideration.

A B C

ρ

a

b r

N10

A B C

ρ

a

b rr

#LGT1

Fig. 26: The rooted phylogenetic network N10 with one reticulation node r representing
a HGT (LGT) event can be transformed into a phylogenetic tree, where r is
replicated. The target of the edge (ρ, r) is used as the first replicate (carrying
the child C), while the target of the reticulation edge (b, r) is used as the second
replicate, making the second copy of r become a leaf. This leads to the extended
Newick representation of N10 as

((A, (B, r#LGT1)b)a, (C)r#LGT1)ρ;
or, for short,

((A, (B,#LGT1)), (C)#LGT1);
(Figure taken from Cardona et al. [6] (slightly altered)).

99



6. Software

Second proposal
The idea of the second approach is to ‘break the network into a set of trees, and then
represent the network as a collection of Newick representations of those trees’ (Than
et al. [32]). To be precise, a phylogenetic network with k hybrid nodes is represented
as a forest of k+1 multi-labeled11 phylogenetic trees. This is achieved by the following
procedure (cf. Phy [2]):

1. Split each reticulation node ri with m parents u1, u2, . . . , um and children
v1, v2, . . . , vl in m+ 1 different nodes.

2. Let each of the first m copies be a child of one of the nodes u1, . . . , um (one for
each) and have no children.

3. Let the last copy (the m + 1th copy) of the reticulation node ri have no parents
and let it have the nodes v1, . . . , vl as its children.

The result is a forest, where each connected component is a multi-labeled phylogenetic
tree, either rooted at the root of the network or at a copy of a reticulation node (Step
3).
The extended Newick representation of the network then consists of a string
n(t1);n(t2); . . . n(tk+1), where n(ti) is the Newick representation of the tree ti (cf. Figure
27).

Remark. A drawback of this approach is the fact that information about horizontal
gene transfer events is lost, because the reticulation edge and the other edge coming
into a reticulation node cannot be distinguished. Therefore Than et al. [32] suggest to
include an explicit list of the horizontal gene transfer arrows in the representation of a
HGT network (cf. Figure 28).

11Leaf labels may occur more than once (cf. Figure 28).
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A B C D E F

a b

c

ρ

d

e f

r1 r2

N9

A B C D E F

a b

c

ρ

d

e f

r1 r1 r1 r2 r2 r2

Fig. 27: The rooted phylogenetic network N9 with two reticulation nodes representing
hybridization events can be decomposed into a series of three phylogenetic trees,
namely (B)r1;, (E)r2; and (((A, r1)a, (r1, C)b)c, ((D, r2)e, (r2, F )f)d)ρ;.
Note that the latter is formally a multi-labeled phylogenetic tree, because there
are two leaves labeled with r1 and two leaves labeled with r2, thus, the leaf
labels r1 and r2 occur more than once.
The extended Newick representation of N9 is

(B)r1; (E)r2; (((A, r1)a, (r1,C)b)c, ((D, r2)e, (r2,F)f)d)ρ;
or, for short,

(B); (E); (((A, r1), (r1,C)), ((D, r2), (r2,F)));.
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A B C

ρ

a

b r

N10

A B C

ρ

a

b r r r

Fig. 28: The rooted phylogenetic network N10 with one reticulation node r representing
a HGT (LGT) event can be decomposed into the phylogenetic tree (C)r; and
the multi-labeled phylogenetic tree ((A, (B, r)b)a, r)ρ;. To include information
about the horizontal gene transfer event, the representation can be complemen-
ted by a list of the horizontal gene transfer arrows, i.e, b→ r. Thus, we retrieve
the following representation of N10:

(C)r; ((A, (B, r)b)a, r)ρ; b→ r
If the extended Newick representation is given without the horizontal gene trans-
fer arrow b→ r, we cannot distinguish between the horizontal gene transfer edge
and the other edge directed into r (Figure in dependence on Cardona et al. [6]).

Hybridization probabilities Note that neither version of the extended Newick format
for phylogenetic networks allows for the inclusion of hybridization probabilities.

However, there have been (unpublished) suggestions for a so-called Rich Newick
Format, which is based on the extended Newick Format and enables the inclusion
of hybridization probabilities and support values (cf. Ric [3]). This is achieved by
extending the information associated with a node (either tree node or reticulation
node) in the network by additional labeling:

• Tree node:
[label][:edge_length][:support][:probability]

• Reticulation node:

[label]#[type]i[:edge_length][:support][:probability]

The Rich Newick Format is apparently associated with the software package PhyloNet
(Than et al. [32]) and seems like a promising approach towards the representation of
phylogenetic networks.

However, it does not seem to be in widespread use elsewhere. In particular, the
BioPerl toolkit (Stajich [30]), on which the implementation is based in this thesis, uses
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the extended Newick format rather than the Rich Newick format for the representation
of phylogenetic networks.

6.2. Computation of generalized phylogenetic diversity and

biodiversity indices

The implementation in this thesis is based on the BioPerl toolkit (Stajich [30]), in
particular on the Perl module Bio::PhyloNetwork (Cardona et al. [7]), which requires
the extended Newick format representation of a phylogenetic network.12 However, the
extended Newick format has the drawback that hybridization probabilities cannot be
included in the representation of a phylogenetic network (cf. page 102).

Therefore we are not able to implement all measures of generalized phylogenetic
diversity and all generalized biodiversity indices introduced in previous chapters, but
will focus on the approaches independent of hybridization probabilities.

In the following we show how to compute and implement the following measures of
generalized phylogenetic diversity

• PND,

• PD∗T(N ) with ∗ ∈ {min,max,
∑
,∅},

• PDLSA

and the following generalized biodiversity indices

• FP ∗T(N ), SV
∗
T(N ), S̃V

∗
T(N ) and ŜV

∗
T(N ) with ∗ ∈ {min,max,

∑
,∅},

• FPLSA, SV LSA, S̃V
LSA

and ŜV
LSA

,

• SVPD and S̃V PD with PD ∈ {PND,PDmin
T(N ), PD

max
T(N ), PD

∑
T(N ), PD

∅
T(N ), PD

LSA}.

Before going into the details of the computation of each individual measure or index,
we will describe some general methods needed for their computation.

12The Perl module can take both versions (i.e. proposal 1 and proposal 2) of the extended Newick
format as input, but uses the first version internally. In this thesis we also use the first proposal of
the extended Newick format.
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6.2.1. Basic principles

Computation of the set of embedded trees In order to calculate the (multi)set
T(N ) of phylogenetic X-trees displayed by a phylogenetic network N on X, we use
the method explode provided by the Perl module Bio::PhyloNetwork (Cardona et al.
[7]). However, this method does not return the (multi)set T(N ) of phylogenetic X-
trees, but the extended (multi)set T(N ) of all trees displayed by N . In a second step,
we therefore discard all trees that are not phylogenetic X-trees (cf. Algorithm 2) .

Algorithm 2 Set of embedded phylogenetic X-trees
Input: phylogenetic network N on taxon set X
Output: set of phylogenetic X-trees displayed by N
1: T(N ) := ∅; . (Multi)set of embedded phylogenetic X-trees.
2: T(N ) := N → explode(); . (Multi)set of all embedded trees.
3: for all T ∈ T(N ) do
4: X ′ := leaf set of T ;
5: if X ′ = X, i.e. if T and N have the same leaf set then
6: T(N ) := T(N )∪{T }, i.e. add T to T(N );
7: end if
8: end for
9: return T(N );

Computation of the LSA tree associated with a phylogenetic network The
computation of the LSA tree associated with a phylogenetic network N requires three
major steps:

• Finding the lowest stable ancestor for all reticulation nodes.

• Calculating the path lengths of all paths between the lowest stable ancestor lsa(r)
of a reticulation node r and r.

• Constructing the topology of the LSA tree and assigning branch lengths to it.

In order to compute the lowest stable ancestor for all reticulation nodes (or, to be
precise, for all nodes), e.g. the Lengauer Tarjan Algorithm (Lengauer and Tarjan [24])
can be used. However, we have not implemented this algorithm, but use a more intuitive
(although more time-complex) approach.
We first compute the set SA(v) of all stable ancestors for all nodes v inN (cf. Definition
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16) by the following equations

SA(ρ) = {ρ}, (6.1)

SA(v) =
( ⋂

w:w is
ancestor of v

SA(w)
)
∪ {v}, (6.2)

where ρ is the root of N . We then consider the subset of reticulation nodes of N and
set the lowest stable ancestor of a reticulation node r as the node lsa(r) ∈ SA(r) \ r
that is furthest away from the root ρ. In order to find the node lsa(r) ∈ SA(r) \ r that
is furthest away from the root ρ, we sort the nodes of the network topologically, i.e. we
produce a linear ordering of the nodes such that for every directed edge e = (u, v), the
node u comes before the node v in the ordering.
(If a graph contains cycles, no linear ordering of the nodes is possible. Phylogenetic
networks, however, are directed acyclic graphs and thus, it is always possible to find a
linear ordering of its nodes, but this ordering is not necessarily unique (cf. Figure 29).
A (not necessarily unique) topological ordering of the nodes in V (N ) can for example
be found by repeating the following steps until the graph is empty:

1. Choose any node v ∈ V (N ) with indegree 0.

2. Add v to the topological ordering.

3. Delete v and its incident edges from N .)

Let Otop be a linear ordering of the nodes of N . Then the lowest stable ancestor
lsa(r) ∈ SA(r) \ r of a reticulation node r is the last node in the topological ordering
Otop � SA(r) \ r restricted to the nodes in SA(r) \ r (cf. Figure 29).
Note that we have to compute the sets SA(v) for all nodes v in N in order to retrieve

the set SA(r) of stable ancestors of a reticulation node r and subsequently, its lowest
stable ancestor lsa(r).
For the calculation of all paths between the lowest stable ancestor of a reticulation

node and the reticulation node we use a recursive search, where we successively build
up the paths. However, in order to avoid unnecessary calculations (e.g. ‘dead ends’),
we reverse the direction of all edges in N and successively calculate all paths between
the reticulation node and its lowest stable ancestor. This assures that no unnecessary
paths are calculated, because by definition the lowest stable ancestor of a node r lies
on all paths from r to the root, in particular it lies on all paths starting from r (if the
direction of all edges is reversed).
We then construct the topology of the LSA tree according to its definition (cf. Defin-

ition 17), i.e. for each reticulation node r in N , we remove all edges directed into r and
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add a new edge e = (lsa(r), r) from the lowest stable ancestor of r into r. We thereby
assign the average length of a path between lsa(r) and r to the new edge e = (lsa(r), r).
All other edges (i.e. the tree edges of N ) keep their branch lengths, respectively. We
then repeatedly remove all unlabeled leaves and nodes with in- and outdegree 1, until
no further such removal is possible. Thereby formerly distinct edges may be melted
into one edge, in which case their edge lengths are added to yield the edge length of
the new edge (cf. Algorithm 3).

A B C D

ρ

u

v w

r

N11

Fig. 29: Rooted binary phylogenetic network N11 on X = {A,B,C,D}. A topological
ordering of the nodes of N11 is, for example, Otop1 = ρ, D, u, v, A, w, C, r, B
(The topological ordering of N11 is not unique. O

top
2 = ρ, u, D, v, A, w, C, r, B

is also a valid linear ordering and there are many more.)
For the reticulation node r, we have SA(r) \ r = {ρ, u}. In order to find the
node lsa(r) ∈ SA(r) \ r that is furthest away from the root ρ, we consider
a topological ordering of N11 (e.g. Otop1 ) restricted to the nodes in SA(r) \ r.
We have Otop1 � SA(r) \ r = ρ, u and thus u is the lowest stable ancestor of r,
because it occupies the last position in the restricted linear ordering.
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Algorithm 3 LSA Tree associated with a phylogenetic network
Input: phylogenetic network N on taxon set X
Output: LSA tree associated with N
1: Compute the lowest stable ancestors for all reticulation nodes
2: V := nodes of N sorted topologically; . We have a linear ordering of the nodes of
N .

3: SA(ρ) := {ρ}; . Initialize the set of stable ancestors of the root.
4: for all v ∈ V \ ρ do
5: if v is a tree node then
6: SA(v) := SA(p) ∪ {v}, where p is the parent of v; . If v is a tree node, it

has only one predecessor, its parent, p.
7: else
8: SA(v) :=

( ⋂
w:w is ancestor of v

SA(w)
)
∪ {v}; . Compute the set of stable

ancestors for a reticulation node.
9: lsa(v) := u, where u is in SA(v) \ {v} and is furthest away from the root ρ;
10: end if
11: end for
12:
13: Calculate the average path length between a reticulation node and its

lowest stable ancestor
14: N ′ := N>; . Reverse the direction of all edges.
15: for all reticulation nodes r of N do
16: Calculate the set Pr of all paths between r and lsa(r) in N ′;
17: Calculate the average path length as λr := 1

|Pr|
∑
P∈Pr

length(P );

18: end for
19:
20: Construct the LSA tree introduction to algorithms
21: TLSA(N ) := N ; . Initialize the LSA tree as N .
22: for all reticulation nodes r of N do
23: Remove all edges directed into r from TLSA(N );
24: Add a new edge e = (lsa(r), r) to TLSA(N ) and use λr as its edge length;
25: end for
26: Remove all unlabeled leaves from TLSA(N );
27: Remove all nodes with in- and outdegree 1 from TLSA(N );
28:
29: return TLSA(N );
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Computation of the phylogenetic diversity of a subset of taxa In order to cal-
culate the phylogenetic diversity of a subset S ⊆ X of taxa of a rooted phylogenetic
X-tree T ,13 we compute the (unique) path from the root ρ of T to a taxon a ∈ S for
all taxa. The phylogenetic diversity of S then calculates as the sum of edge lengths of
these paths, where each edge is only taken into account once (even though it may be
part of several paths) (cf. Algorithm 4).

Algorithm 4 Phylogenetic diversity
Input: rooted phylogenetic X-tree T , subset S ⊆ X of taxa
Output: phylogenetic diversity PD(S)

1: ES := ∅; . Set to store the edges of T connecting the taxa in S and the root.
2: for all a ∈ S do
3: Compute the path Pa from the root ρ to a;
4: Ea := edges of Pa; . Edges on the path Pa from the root to taxon a.
5: ES := ES ∪ Ea; . Add the edges of Pa to the set ES; as ES is a set (not a

multiset), each edge is only taken into account once.
6: end for
7: PD(S) :=

∑
e∈ES

length(e); . Add the edge lengths of all edges in ES to obtain

PD(S).
8: return PD(S);

Computation of the Fair Proportion Index and the different versions of the
Shapley Value The computation of the different biodiversity indices is based on the
algorithms presented in Wicke [36], and for the implementation of the indices we partly
use source code from FairShapley, a software tool introduced by Wicke and Fischer
[37]. However, for the sake of completeness, we shortly describe the relevant algorithms.

The Fair Proportion Index The Fair Proportion Index for the taxa of a rooted
phylogenetic X-tree T can be computed easily according to its definition (cf. Definition
5). We first loop over the edges of T and calculate the contribution c(e) of an edge e
to the Fair Proportion Index by dividing the edge length λe of e by the number of its
descendent leaves De, respectively. In a second step we loop over the leaves of T and
calculate the Fair Proportion Index for each leaf by summing up the contributions c(e)
for all edges e on the path from the root to the leaf (cf. Algorithm 5).

13We only consider rooted phylogenetic X-trees here, because the phylogenetic diversity of unrooted
phylogenetic X-trees is not needed for further calculations.
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Algorithm 5 Fair Proportion Index
Input: rooted phylogenetic X-tree T
Output: Fair Proportion Indices for all taxa a ∈ X
1: for all edges e of T do
2: λe := length(e);
3: De := number of descendent leaves of e ;
4: c(e) := λe

De
; . Contribution of an edge e to the Fair Proportion Index.

5: end for
6: for all taxa a ∈ X of T do
7: FP (a) :=

∑
e

c(e), where the sum runs over all edges e on the path from the

root to a;
8: end for
9: return FP (a) for all a ∈ X;

The original and the modified Shapley Value For rooted phylogenetic X-trees
the Fair Proportion Index and the original Shapley Value coincide for all taxa a ∈ X
(cf. Fuchs and Jin [15]). Thus, we use Algorithm 5 for the calculation of the original
Shapley Value (cf. Algorithm 6).

Algorithm 6 Original Shapley Value
Input: rooted phylogenetic X-tree T
Output: original Shapley Values for all taxa a ∈ X
1: for all taxa a ∈ X of T do
2: Use Algorithm 5 to calculate FP (a);
3: Set SV (a) := FP (a);
4: end for
5: return SV (a) for all a ∈ X;

The modified Shapley Value of a taxon a ∈ X, on the other hand, can be derived
from the Fair Proportion Index of a as

S̃V (a) = SV (a)− PD({a})
n

= FP (a)− PD({a})
n

,

where PD({a}) is the phylogenetic diversity of {a} and n = |X| is the number of taxa
of T (cf. Proposition 1).
Thus, in order to compute the modified Shapley Value for a taxon a of a rooted

phylogenetic X-tree, we first calculate the Fair Proportion Index of a and then subtract
the term PD({a})

n
(cf. Algorithm 7).
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Algorithm 7 Modified Shapley Value
Input: rooted phylogenetic X-tree T
Output: modified Shapley Values for all taxa a ∈ X
1: n := |X|;
2: for all taxa a ∈ X of T do
3: Use Algorithm 5 to calculate FP (a);
4: Use Algorithm 4 to calculate PD({a});
5: S̃V (a) := FP (a)− PD({a})

n
;

6: end for
7: return S̃V (a) for all a ∈ X;

In some cases (e.g. for certain versions of the generalized Shapley Value), it is neces-
sary to calculate the Shapley Value according to its definition. In this case we require
the phylogenetic diversity of all subsets S ⊆ X of taxa, but not the phylogenetic X-tree
or the phylogenetic network on X, respectively (cf. Algorithm 8, Algorithm 9).

Algorithm 8 Original Shapley Value from PD
Input: all subsets S ⊆ X of taxa and their phylogenetic diversity PD(S)
Output: original Shapley Values for all taxa a ∈ X
1: n := |X|;
2: for all taxa a ∈ X do
3:

SV (a) =
1

n!

∑
S⊆X
a∈S

(
(|S| − 1)!(n− |S|)!(PD(S)− PD(S \ {a}))

)
;

. Sum runs over all subsets S ⊆ X containing a.
4: end for
5: return SV (a) for all a ∈ X;
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Algorithm 9 Modified Shapley Value from PD
Input: all subsets S ⊆ X of taxa and their phylogenetic diversity PD(S)
Output: modified Shapley Values for all taxa a ∈ X
1: n := |X|;
2: for all taxa a ∈ X do
3:

S̃V (a) =
1

n!

∑
S⊆X:a∈S
|S|≥2

(
(|S| − 1)!(n− |S|)!(PD(S)− PD(S \ {a}))

)
;

. Sum runs over all subsets S ⊆ X containing a and at least one other taxon.
4: end for
5: return S̃V (a) for all a ∈ X;

The unrooted rooted Shapley Value The original Shapley Value of unrooted
phylogenetic X-trees and thus, the unrooted rooted Shapley Value of rooted phylogen-
etic X-trees can be calculated by considering so-called X-splits induced by the edges
of the trees (cf. Haake et al. [16], Wicke [36]), which we will define in the following.
This approach is less complex than the calculation according to the definition of the
Shapley Value and therefore requires less computation time.

Definition 40 (X-Split; induced X-Split).

1. An X-split σ = A|B is a bipartition of a set X into two, non-empty, disjoint sets
A and B, i.e. X = A ∪B, A ∩B = ∅ and A,B 6= ∅.

2. Let T be a phylogenetic X-tree and let e be an edge of T . Then T \ e consists
of two connected components (subtrees) T1 and T2. Let Xi ⊆ X be the subset of
taxa belonging to Ti (i = 1, 2). Then σe := X1|X2 is called the X-split induced by
e.

Idea (cf. Haake et al. [16]). Let Tu be an unrooted phylogenetic X-tree. Let E denote
the set of edges of Tu. For a ∈ X and e ∈ E, the removal of the edge e splits Tu into
two subtrees. Let C(a, e) denote the set of leaves in the subtree that contains a and let
F (a, e) denote the set of leaves in the other subtree, that is ‘far’ from a.
Then the original Shapley Value for a taxon a ∈ X can be calculated as

SV (a) =
1

n!

∑
S⊆X
a∈S

(
(|S| − 1)!(n− |S|)!(PD(S)− PD(S \ {a}))

)

=
∑
e∈E

λe
|F (a, e)|
n|C(a, e)| , (6.3)
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where the sum runs over all edges of Tu with edge lengths λe and n = |X| is the total
number of taxa. The idea of Equation (6.3) is to count the number of times the weight
λe of a given edge e is in the marginal contribution PD(S) − PD(S \ {a}) of a for
coalitions of size |S|. This is the case, if the other |S| − 1 members of the coalition are
in the subtree that is far from a (if the edge e is removed). For details of the proof, see
Haake et al. [16].

Example 21. Consider the unrooted phylogenetic X-tree T2 depicted in Figure 1. We
can calculate the original Shapley Value of A as

SVT2(A) = 1 · 2

3 · 1 + 1
1

3 · 2 + 5 · 1

3 · 2
=

2

3
+

1

6
+

5

6

=
5

3
.

Note that this calculation is less complex than the calculation of SVT2(A) according to
its definition (cf. Example 3).

In order to compute the unrooted rooted Shapley Value for the taxa of a rooted
phylogenetic X-tree T , we unroot T by suppressing the root node ρ. We then loop over
all edges e of T and consider the X-split induced by e, i.e. we consider the bipartition
of the taxon set X into two subsets X1(e) and X2(e) and then use Equation (6.3) to
calculate the original Shapley Value of a taxon a ∈ X (cf. Algorithm 10). Note that

|F (a, e)| =

|X1(e)| if a ∈ X2(e)

|X2(e)| if a ∈ X1(e)
and |C(a, e)| =

|X1(e)| if a ∈ X1(e)

|X2(e)| if a ∈ X2(e)
.

Based on these general methods we can now describe how the individual measures of
generalized phylogenetic diversity and generalized biodiversity indices are computed.
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Algorithm 10 Unrooted rooted Shapley Value
Input: rooted phylogenetic X-tree Tr
Output: unrooted rooted Shapley Values for all taxa a ∈ X
1: Unroot Tr to retrieve an unrooted X-tree Tu;
2: n := |X|;
3: for all edges e in Tu do
4: Calculate σe = X1(e)|X2(e); . Split of the taxon set X induced by the removal

of edge e.
5: end for
6: for all taxa a ∈ X do
7: ŜV (a) := 0; . Initialize ŜV (a).
8: for all edges e in Tu do
9: if a ∈ X1(e) then
10: |F (a, e)| := |X2(e)| and |C(a, e)| := |X1(e)|;
11: else
12: |F (a, e)| := |X1(e)| and |C(a, e)| := |X2(e)|;
13: end if
14: ŜV (a) := ŜV (a) + λe

|F (a,e)|
n·|C(l,e)| , where λe is the length of edge e;

15: end for
16: end for
17: return ŜV (a) for all taxa a ∈ X;

6.2.2. Generalized phylogenetic diversity

Phylogenetic net diversity In order to calculate the phylogenetic net diversity of a
subset S ⊆ X of taxa of a phylogenetic network N on X, we consider the (multi)set
T(N ) of all trees (not necessarily phylogenetic X-trees) displayed by N and use the
relationship (cf. second remark on page 53 ff.)

PND(S) = PDmin
T(N )

(S)

for the computation (cf. Algorithm 11).

Algorithm 11 Phylogenetic net diversity
Input: rooted phylogenetic network N on some taxon set X, subset S ⊆ X of taxa
Output: phylogenetic net diversity PND(S)

1: T(N ) := N → explode(); . (Multi)set of all embedded trees.
2: for all trees T in T(N ) do
3: Use Algorithm 4 to calculate the phylogenetic diversity PDT (S) of S;
4: end for
5: PND(S) := min

T ∈T(N )
PDT (S);

6: return PND(S);
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Embedded phylogenetic diversity The computation of the embedded phylogenetic
diversity is similar to the computation of the phylogenetic net diversity, but we now
consider the (multi)set T(N ) of phylogeneticX-trees displayed byN . We then calculate
the phylogenetic diversity of S ⊆ X for all embedded phylogenetic X-trees and derive
the embedded phylogenetic diversity as the minimum, maximum, sum or average thereof
(cf. Algorithm 12).

Algorithm 12 Emebdded phylogenetic diversity
Input: rooted phylogenetic network N on some taxon set X, subset S ⊆ X of taxa
Output: embedded phylogenetic diversity PD∗T(N )(S) with ∗ ∈ {min,max,

∑
,∅}

1: Use Algorithm 2 to retrieve the (multi)set T(N ) of phylogenetic X-trees displayed
by N ;

2: for all trees T in T(N ) do
3: Use Algorithm 4 to calculate the phylogenetic diversity PDT (S) of S;
4: end for
5: PDmin

T(N )(S) := min
T ∈T(N )

PDT (S);

6: PDmax
T(N )(S) := max

T ∈T(N )
PDT (S);

7: PD
∑
T(N )(S) :=

∑
T ∈T(N )

PDT (S);

8: PD∅
T(N )(S) :=

1
|T(N ) |

∑
T ∈T(N )

PDT (S);

9: return PD∗T(N )(S) with ∗ ∈ {min,max,
∑
,∅};

LSA associated phylogenetic diversity In order to calculate the LSA associated
phylogenetic diversity for a subset S ⊆ X of taxa of a phylogenetic network N on X,
we construct the LSA tree TLSA(N ) associated with N and calculate the phylogenetic
diversity based on this tree (cf. Algorithm 13).

Algorithm 13 LSA associated phylogenetic diversity
Input: rooted phylogenetic network N on some taxon set X, subset S ⊆ X of taxa
Output: LSA associated phylogenetic diversity PDLSA(S)

1: Use Algorithm 3 to construct the LSA tree TLSA(N ) associated with N ;
2: Use Algorithm 4 to calculate the phylogenetic diversity of S for TLSA(N ) and set

PDLSA(S) := PDTLSA(N )(S);

3: return PDLSA(S);
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6.2.3. Generalized biodiversity indices

Embedded biodiversity indices For the calculation of the embedded Fair Proportion
Index or the different versions of the embedded Shapley Value for the taxa of a phylo-
genetic network N , we consider the (multi)set T(N ) of phylogenetic X-trees displayed
by N . We then calculate the biodiversity index under consideration for all embedded
X-trees and derive the embedded biodiversity index as the minimum, maximum, sum
or average thereof. As the procedure is the same for the embedded Fair Proportion
Index and all versions of the embedded Shapley Value, we only consider the embedded
original Shapley Value here (cf. Algorithm 14).

Algorithm 14 Embedded original Shapley Value
Input: rooted phylogenetic network N on some taxon set X
Output: embedded original Shapley SV ∗T(N )(a) with ∗ ∈ {min,max,

∑
,∅} for all taxa

a ∈ X
1: Use Algorithm 2 to retrieve the (multi)set T(N ) of phylogenetic X-trees displayed

by N ;
2: for all taxa a ∈ X do
3: for all trees T in T(N ) do
4: Use Algorithm 6 to calculate the original Shapley Value SV (a);
5: end for
6: SV min

T(N )(a) := min
T ∈T(N )

SVT (a);

7: SV max
T(N )(a) := max

T ∈T(N )
SVT (a);

8: PD
∑
T(N )(a) :=

∑
T ∈T(N )

SVT (a);

9: PD∅
T(N )(a) :=

1
|T(N ) |

∑
T ∈T(N )

SVT (a);

10: end for
11: return SV ∗T(N )(a) with ∗ ∈ {min,max,

∑
,∅} for all a ∈ X;

LSA associated biodiversity indices In order to calculate the LSA associated Fair
Proportion Index or the different versions of the LSA associated Shapley Value for
the taxa of a phylogenetic network N , we construct the LSA tree TLSA(N ) associated
with N and calculate the indices based on this tree. Again, we only consider the LSA
associated original Shapley Value here, but the procedure is the same for all other LSA
associated biodiversity indices (cf. Algorithm 15).
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Algorithm 15 LSA associated original Shapley Value
Input: rooted phylogenetic network N on some taxon set X
Output: LSA associated original Shapley Value SV LSA(a) for all taxa a ∈ X
1: Use Algorithm 3 to construct the LSA tree TLSA(N ) associated with N ;
2: for all taxa a ∈ X do
3: Use Algorithm 6 to calculate the original Shapley Value of a for TLSA(N ) and

set
SV LSA(a) := SVTLSA(a);

4: end for
5: return SV LSA(a) for all a ∈ X;

Generalized Shapley Value For the generalized original Shapley Value SVPD and the
generalized modified Shapley Value S̃V PD, the method of computation depends on the
measure PD ∈ {PND,PDmin

T(N ), PD
max
T(N ), PD

∑
T(N ), PD

∅
T(N ), PD

LSA(S)} of generalized
phylogenetic diversity used (cf. Algorithm 16). Again, we only consider the generalized
original Shapley Value, but the same holds for the generalized modified Shapley Value.

• If PD ∈ {PND,PDmin
T(N ), PD

max
T(N )} we calculate the generalized original Shapley

Value according to its definition, i.e. we use Algorithm 8.

• If PD ∈ {PD
∑
T(N ), PD

∅
T(N )} we consider the (multi)set of embedded trees and

use the following relationships

SV
PD

∑
T(N )

(a) = SV
∑
T(N )(a),

SVPD∅
T(N )

(a) = SV ∅
T(N )(a)

from Proposition 6.

• If PD = PDLSA we calculate the LSA associated original Shapley Value.
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Algorithm 16 Generalized Shapley Value
Input: rooted phylogenetic network N on some taxon set X
Output: generalized original Shapley Value SVPD(a) with PD ∈
{PND,PDmin

T(N ), PD
max
T(N ), PD

∑
T(N ), PD

∅
T(N ), PD

LSA} for all taxa a ∈ X
1: Case 1: PD ∈ {PND,PDmin

T(N ), PD
max
T(N )}

2: Use Algorithm 11 to calculate the phylogenetic net diversity PND(S) for all subsets
S ⊆ X of taxa;

3: Use Algorithm 12 to calculate the embedded phylogenetic diversity PDmin
T(N )(S) and

PDmax
T(N ) for all subsets S ⊆ X of taxa;

4: Use Algorithm 8 to calculate the generalized original Shapley Values
SVPND(a), SVPDmin

T(N )
(a) and SVPDmax

T(N )
(a) for all taxa a ∈ X;

5:
6: Case 2: PD ∈ {PD

∑
T(N ), PD

∅
T(N )}

7: Use Algorithm 14 to calculate the embedded original Shapley Values SV
∑
T(N )(a)

and SV ∅
T(N )(a) for all taxa a ∈ X;

8: Set SV
PD

∑
T(N )

(a) := SV
∑
T(N )(a) and SVPD∅

T(N )
(a) := SV ∅

T(N )(a);
9:
10: Case 3: PD = PDLSA

11: Use Algorithm 15 to calculate the LSA associated original Shapley Value SV LSA(a)
and set SVPDLSA(a) := SV LSA(a) for all taxa a ∈ X;

12:
13: return SVPD(a) with PD ∈ {PND,PDmin

T(N ), PD
max
T(N ), PD

∑
T(N ), PD

∅
T(N ), PD

LSA}
for all a ∈ X;
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6.3. Implementation

For the calculation of the various measures of generalized phylogenetic diversity and
generalized biodiversity indices we now introduce the software tool net_diversity.pl,
written in the programming language Perl (v5.18.2), including modules from BioPerl
(1.6.923-1) (Vos et al. [34]). The script was tested under the Linux Distribution Linux
Mint 17.2 Rafaela on a 64-bit computer with an Intel® CoreTM i5-430M processor.

We shortly mention some of the modules used for the script, before describing the
script itself and analyzing its performance.

Modules
In order to run the script, the following modules are needed:

• strict (a Perl pragma to restrict unsafe constructions),

• warnings (a Perl pragma to control optional warnings),

• Try::Tiny (a module for error handling),

• Getopt::Long (a module for the processing of command line options),

• List::MoreUtils (a module for functionality on lists),

• List::Compare (a module for the comparison of lists),

• Bio::PhyloNetwork (a module for phylogenetic networks; Cardona et al. [7]).

The last module is part of the BioPerl package and provides some helpful tools when
dealing with phylogenetic networks. Methods used in this project are:

• $net = Bio::PhyloNetwork->new(-eNewick => $newick_string) to create a
new Bio::PhyloNetwork object from its extended Newick representation given
in the string $newick_string,

• $net->nodes() to retrieve the set of all nodes of the network,

• $net->leaves() to retrieve the set of all leaves of the network,

• $net->hybrid_nodes() to retrieve the set of all reticulation nodes of the network,

• $net->graph() to retrieve the underlying graph of the network,

• $net->explode() to retrieve the set of all trees (not necessarily phylogenetic
X-trees) displayed by the network,

118



6. Software

• $net->eNewick_full() to retrieve the extended Newick representation of the
network as a string.

The module Bio::PhyloNetwork relies on the module Graph::Directed, because the
underlying structure of a phylogenetic network is a directed graph. Irrespective of
the methods used by the Bio::PhyloNetwork module itself, we additionally use the
following methods in this project:

• $graph->transpose_graph to reverse the direction of all edges of the graph,

• $graph->add_edge($u,$v)$ to add the edge (u, v) to the graph,

• $graph->delete_edge($u,$v) to delete the edge (u, v) from the graph,

• $graph->delete_vertex($u) to delete the node u,

• $graph->predecessors($u) to retrieve the parent nodes of a node u,

• $graph->successors($u) to retrieve the immediate successors (i.e. the children)
of the node u,

• $graph->topological_sort to retrieve a linear ordering of the nodes.

Additionally, several methods for dealing with phylogenetic trees are used, which ori-
ginate in the modules Bio::TreeIO, Bio::Tree::Tree, Bio::Tree::TreeFunctionsI
and Bio::Tree::NodeI:

• Bio::TreeIO is a parser for tree files and creates Bio::Tree::TreeI objects (i.e.
objects representing phylogenetic trees).

• Bio::Tree::Tree allows to access several characteristics of a phylogenetic tree.
Methods used in this project are:

– $tree->get_nodes() to retrieve the set of all nodes of the tree,

– $tree->get_root_node() to access the root of the tree,

– $tree->get_leaf_nodes() to retrieve the set of all leaves of the tree,

– $tree->as_text(’newick’) to retrieve the Newick representation of the
tree as a string.

• Bio::Tree::TreeFunctionsI provides additional methods for phylogenetic
trees, in particular:
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– $tree->get_lineage_nodes($node) to retrieve all ancestors of a node
(from the root to the most recent ancestor),

– $tree->contract_linear_paths to remove all nodes with in- and outde-
gree 1 from the tree. Note that this method only works accurately for un-
weighted phylogenetic trees, i.e. trees without branch lengths. In order to
use this functionality for weighted trees, we redefine the method.

• Bio::Tree::NodeI provides tools to get information about the nodes of a phylo-
genetic tree. Methods used in this project are:

– $node->get_all_Descendents() to retrieve all descendants (not just the
direct descendants) of a node,

– $node->is_Leaf() to check whether a node is a leaf,

– $node->depth() to retrieve the distance from the root to this node,

– $node->branch_length() to retrieve the edge length between a node and its
direct ancestor and $node->branch_length(value) to set this edge length
to a new value,

– $node->id(), which returns the human readable identifier of a node, e.g.
the species name of a leaf.

120



6. Software

net_diversity.pl Depending on the options set by the user, net_diversity.pl

computes one of the several measures of generalized phylogenetic diversity for all
subsets of taxa of a phylogenetic hybridization network or one of the generalized
biodiversity indices for all taxa.

The command

~$ ./net_diversity.pl --help

yields an overview of the possible options to be chosen when running the script:

net_d ive r s i ty . p l

Takes a rooted binary phy logene t i c hyb r i d i z a t i on network as input and
computes s e v e r a l measures o f g en e r a l i z e d phy logene t i c d i v e r s i t y f o r a l l
subse t s o f taxa and s e v e r a l g en e r a l i z e d b i o d i v e r s i t y i n d i c e s f o r a l l
taxa . The network must be r epre s en ted in the extended Newick format
( http :// dmi . uib . es /∼gcardona/BioIn fo / enewick . html ) .

P lease make sure that BioPer l i s i n s t a l l e d on your machine !

SYNOPSIS :
ne t_d ive r s i ty . p l −−in=f i l ename −−measure=value

OPTIONS:

−−in=f i l ename
Path to the input f i l e conta in ing the network ( s )
in the extended Newick format .

−−measure=value
Choose the measure o f g en e r a l i z e d phy logene t i c d i v e r s i t y or
g en e r a l i z e d b i o d i v e r s i t y index to c a l c u l a t e .

Options f o r measure :
0 phy logene t i c net d i v e r s i t y
1 embedded phy logene t i c d i v e r s i t y (min )
2 embedded phy logene t i c d i v e r s i t y (max)
3 embedded phy logene t i c d i v e r s i t y (sum)
4 embedded phy logene t i c d i v e r s i t y (mean)
5 LSA as s o c i a t ed phy logene t i c d i v e r s i t y

6 embedded Fair Proport ion Index (min )
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7 embedded Fair Proport ion Index (max)
8 embedded Fair Proport ion Index (sum)
9 embedded Fair Proport ion Index (mean)

10 LSA as s o c i a t ed Fair Proport ion Index

11 embedded o r i g i n a l Shapley Value (min )
12 embedded o r i g i n a l Shapley Value (max)
13 embedded o r i g i n a l Shapley Value (sum)
14 embedded o r i g i n a l Shapley Value (mean)
15 LSA as s o c i a t ed Shapley Value

16 embedded modi f i ed Shapley Value (min )
17 embedded modi f i ed Shapley Value (max)
18 embedded modi f i ed Shapley Value (sum)
19 embedded modi f i ed Shapley Value (mean)
20 LSA as s o c i a t ed modi f i ed Shapley Value

21 embedded unrooted rooted Shapley Value (min )
22 embedded unrooted rooted Shapley Value (max)
23 embedded unrooted rooted Shapley Value (sum)
24 embedded unrooted rooted Shapley Value (mean)
25 LSA as s o c i a t ed unrooted rooted Shapley Value

26 g en e r a l i z e d o r i g i n a l Shapley Value (PND)
27 g en e r a l i z e d o r i g i n a l Shapley Value (PD_TN̂ min )
28 g en e r a l i z e d o r i g i n a l Shapley Value (PD_TN̂ max)
29 g en e r a l i z e d o r i g i n a l Shapley Value (PD_TN̂ sum)
30 g en e r a l i z e d o r i g i n a l Shapley Value (PD_TN̂ mean)
31 g en e r a l i z e d o r i g i n a l Shapely Value (PD^LSA)

32 g en e r a l i z e d modi f i ed Shapley Value (PND)
33 g en e r a l i z e d modi f i ed Shapley Value (PD_TN̂ min )
34 g en e r a l i z e d modi f i ed Shapley Value (PD_TN̂ max)
35 g en e r a l i z e d modi f i ed Shapley Value (PD_TN̂ sum)
36 g en e r a l i z e d modi f i ed Shapley Value (PD_TN̂ mean)
37 g en e r a l i z e d modi f i ed Shapely Value (PD^LSA)

DESCRIPTION:

Example : ne t_d ive r s i ty . p l −−in=myNetwork −−measure=0
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Performance In order to test the performance of net_diversity.pl we randomly
generated phylogenetic hybridization networks for different numbers of taxa and re-
ticulation nodes, using the Perl module Bio::PhyloNetwork::RandomFactory. This
module generates unweighted, binary, tree-child networks. In a second step, we there-
fore modified the extended Newick representation of the networks and set all branch
lengths to 1, respectively. Additionally we used Bio::PhyloNetwork::TreeFactory to
generate random phylogenetic networks without reticulation nodes, i.e. random phylo-
genetic trees.

We then analyzed the performance of net_diversity.pl for the random net-
works using the Perl module Memory::Usage. However, we did not test all options
of net_diversity.pl, but chose some representative examples. Additionally, we also
analyzed the construction of the (multi)set T(N ) of trees displayed by a network and
the construction of the LSA tree associated with the network, as these are fundamental
underlying methods of the script.

However, the aim of this analysis is not to provide absolute numbers for the compu-
tation time and memory usage, but to indicate an overall tendency. Table 9 and Table
10 contain the results of the analysis. The computation time is given in seconds, the
memory usage in kilobytes, respectively. Some of the analyses were skipped, indicated
by a minus symbol (-) in the corresponding table cells.

Table 9: Performance of net_diversity.pl for 10 Taxa

10 Taxa

0 reticulation nodes 5 reticulation nodes 9 reticulation nodes

Method Time (sec) Memory (kb) Time (sec) Memory (kb) Time (sec) Memory (kb)

PND < 1 800 4 4024 65 53 986

PDLSA < 1 2592 < 1 2992 1 3393

FP∅
T(N ) < 1 528 < 1 1200 10 13 052

FPLSA < 1 2600 < 1 2998 < 1 3256

ŜV
∅
T(N ) < 1 528 1 1200 10 13 052

ŜV
LSA

1 1 2600 < 1 2998 < 1 3256

SVPND < 1 800 4 4024 65 54 000

T(N ) < 1 524 1 1192 9 12 400

TLSA(N ) < 1 2592 < 1 2992 < 1 3256
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Table 10: Performance of net_diversity.pl for 20 Taxa

20 Taxa

0 reticulation nodes 5 reticulation nodes 10 reticulation nodes 15 reticulation nodes

Time Memory Time Memory Time Memory Time Memory

Method (sec) (kb) (sec) (kb) (sec) (kb) (sec) (kb)

PND 393 335 524 - - - - - -

PDLSA 391 156 700 178 186 932 144 186 976 117 186 944

FP∅
T(N ) < 1 660 1 2116 32 49 748 1169 1 598 216

FPLSA < 1 856 < 1 3252 < 1 3784 < 1 5232

ŜV
∅
T(N ) < 1 664 1 2116 33 49 760 1238 1 601 660

ŜV
LSA

< 1 2856 < 1 3252 < 1 3780 < 1 5232

SVPND 477 402 056 - - - - - -

T(N ) < 1 660 1 1980 28 47 632 1063 1 533 940

TLSA(N ) < 1 2856 < 1 3256 < 1 3780 < 1 4700

Remarks.

• Comparing the computation of the (multi)set T(N ) of trees displayed by a net-
work N and the construction of the LSA tree TLSA(N ), we see that the latter
requires more memory for networks with up to five reticulation nodes. However,
when the number of reticulation nodes grows, the memory usage for the computa-
tion of the (multi)set T(N ) rises exponentially, while it only marginally increases
for the LSA tree TLSA(N ).
The same holds for the computation time: While the computation time for the
(multi)set T(N ) increases exponentially, the computation time for the LSA tree
TLSA(N ) remains low.
As the random networks used in this analysis were binary, tree-child networks,
the results for the (multi)set T(N ) come up to our expectations, because there
are 2r(N ) trees displayed by a tree-child networks with r(N ) reticulation nodes.
For the construction of the LSA tree TLSA(N ) additional analyses for a hybridiza-
tion network with 50 taxa and 49 reticulation nodes, as well as for a hybridization
network with 75 taxa and 74 reticulation nodes and a hybridization network with
100 leaves and 50 reticulation nodes were conducted, resulting in computation
times of 3, 9 and 4 seconds, respectively. We suspect the computation times for
the construction of the LSA tree to stay low for even bigger networks with more
taxa and more reticulation nodes. However, due to a high computation time of the
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random network generation for greater numbers of taxa and reticulation nodes,
this could not be tested.
Additionally, the Perl module Bio::PhyloNetwork::RandomFactory only allows
for the generation of tree-child network. Thus, it remains to analyze the compu-
tation times for the LSA tree for more general, non tree-child, networks.

• If we compare the computation times for the phylogenetic net diversity PND and
the generalized Shapley Value SVPND, we see that they are almost identical or
at least of the same dimension. This suggests that the complexity in calculating
the Shapley Value according to its definition primarily arises from the need of
computing the phylogenetic diversity for all subsets of taxa.

• Similar results hold for the computation times of generalized biodiversity indices
based on the (multi)set T(N ) of embedded trees and the computation time for
T(N ) itself. Comparing FP∅

T(N ), ŜV
∅
T(N ) and T(N ) for a fixed number of taxa

and a fixed number of reticulation nodes, we see that their computation times are
of the same dimension. As the number of embedded trees grows exponentially, so
do the computation times for FP∅

T(N ) and ŜV
∅
T(N ).

• Comparing the computation times for the calculation of PND for a phylogenetic
tree with 10 taxa and a phylogenetic tree with 20 taxa (i.e. for the two networks
without reticulation nodes), we see an increase from < 1 to 393 seconds. An
additional analysis of a tree with 21 taxa resulted in a computation time of 867
seconds. Thus, we see an exponential growth in the computation times. This is
due to the fact that net_diversity.pl calculates the PND of all subsets S ⊆ X,
which are 2|X| many.
Thus, the computation of PND may already be time-consuming for a single
phylogenetic X-tree. In case of phylogenetic networks with at least one reticula-
tion node, it has to be repeated |T(N )| times. This is illustrated by the rise in
computation times for PND for the network with 10 taxa and 0, 5 and 9 retic-
ulation nodes from < 1, over 4 to 65 seconds, respectively. The same is expected
for the network with 20 taxa, but the analysis is skipped.
In contrast to the computation of PND, the computation of PDLSA has to be
conducted only once, namely for the LSA tree. If the network under consideration
has no reticulation nodes, i.e. it is already a tree, the computation times for PND
and PDLSA should be almost identical, which is the case for both networks.
Surprisingly at first glance, the computation time for PDLSA decreases with an
increasing number of reticulation nodes for the second network, even though the
number of taxa equals 20 in all cases. This can, however, be explained by the
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structure of the LSA tree. With an increasing number of reticulation nodes, the
LSA tree tends to become more and more unresolved (cf. Figure 30). This seems
to facilitate the computation of PD for all subsets of taxa according to Algorithm
4.

Summarizing the above, we see that there are two major causes for high computation
times of net_diversity.pl. On the one hand, an increasing number of taxa causes
an increase in the number of subsets of taxa to be considered when calculating any
measure of generalized phylogenetic diversity. For a set X, there are 2|X| subsets S ⊆ X

and thus, the number of subsets grows exponentially with an increasing size |X| of the
taxon set. This makes the calculation of phylogenetic diversity and biodiversity indices
explicitly based on the phylogenetic diversity of subsets of taxa infeasible even for
large phylogenetic X-trees (cf. Wicke [36]). For phylogenetic networks, however, the
calculations become even ‘more infeasible’, if the phylogenetic diversity of all subsets
of taxa has to be computed for all trees in T(N ) (in case of the embedded phylogenetic
diversity and biodiversity indices based on this measure) or in T(N ) (in case of the
phylogenetic net diversity and biodiversity indices based on this measure).
Additionally, computation times for all measures of embedded phylogenetic diversity

or embedded biodiversity indices are strongly influenced by the number of reticulation
nodes of a network. In order to retrieve the (multi)set T(N ) of phylogenetic X-trees
displayed by a network, the (multi)set T(N ) of all trees embedded in N has to be
computed, before all trees that are not phylogenetic X-trees can be discarded. How-
ever, for a binary phylogenetic network N on X with r(N ) reticulation nodes, there
are 2r(N ) embedded trees, i.e. |T(N )| = 2r(N ). Thus, the size of the (multi)set T(N )

grows exponentially with an increasing number of reticulation nodes. This makes all
calculations based on T(N ) or T(N ) infeasible for phylogenetic networks with a high
number of reticulation nodes.

The only methods that seem to be feasible for large phylogenetic networks and
high numbers of reticulation nodes are biodiversity indices based on the LSA tree.
However, the LSA tree associated with a network reduces the network to its most
basic treelike content and disregards much of the structure of the network. In this
case, fast computation times come at the expense of loss of structure of the network
and thus, of loss of evolutionary information.

However, in the following we use net_diversity.pl to calculate different generalized
biodiversity indices for the taxa of a hybridization network for oceanic dolphins.
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Fig. 30: LSA trees for random binary hybridization networks with 20 taxa and 5 (top),
10 (middle), 15 (bottom) reticulation nodes (created with Dendroscope: Huson
and Scornavacca [19]).
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7. Example – a dolphin data set

Hybridization has been mainly linked to plant biology in the past. However, in more
recent times hybridization has been documented or hypothesized not only to occur
in plants, but also in animals, e.g. in insects (Fontaine et al. [14], Wen et al. [35]),
gastropods (Haase et al. [17], Zielske and Haase [38]) and sharks (Marino et al. [26],
Morgan et al. [28]).

In the following we consider hybrid speciation in dolphins, i.e. in marine mammals,
based on a study by Amaral et al. [5]. We will shortly outline the contents of this study
and describe our own approach of inferring a hybridization network for the taxa of this
study. We will then use this hybridization network as an example for the calculation of
generalized biodiversity indices. However, as we could not directly construct a hybridiz-
ation network from the data of this study, but inferred it manually, we emphasize that
this example only serves as a vivid illustration for the concepts of generalized phylogen-
etic diversity and generalized biodiversity indices, while, biologically, it requires further
and more thorough examination.

7.1. Hybrid speciation in dolphins

In their study, Amaral et al. [5] consider a group of marine mammals, namely the
family Delphinidae. Delphinidae belong to the order of Cetaceans, whose evolution has
been characterized by ‘some rapid radiation events, which in some groups has led to
confusing taxonomy and a difficulty in clarifying phylogenetic relationships due to the
confounding effects of incomplete lineage sorting and possibly hybridization’ (Amaral
et al. [5]). The authors turn their attention to the latter and assume a hybrid origin
for the Clymene Dolphin (Stenella clymene (Gray, 1850)14).
Stenella clymene is endemic to the Atlantic Ocean and while its ‘cranial features

closely resemble those of Stenella coeruleoalba, [. . .] its external appearance and beha-
vior are more similar to those of Stenella longirostris ’ (Amaral et al. [5]). Moreover,
Amaral et al. [5] observe a strong discordance between mitochondrial and nuclear
markers, the former suggesting that S. clymene is more closely related to S. coer-
uleoalba (Meyen, 1833), while the latter suggests a closer relationship of S. clymene to
S. longirostris (Gray, 1828). The authors admit that this discordance between different
markers could also be due to processes such as incomplete lineage sorting, but accord-
ing to Amaral et al. [5] it does not explain it entirely. They come to the conclusion
that the ‘discrepancy between mitochondrial markers and nuclear markers suggests a

14Taxonomic information derived from the Integrated Taxonomic Information System (https://www.
itis.gov/).
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hybrid origin of S. clymene, as a result of an ancient hybridization between a female
S. coeruleoalba and a male S. longirostris ’ (Amaral et al. [5]).

7.2. Inference of a phylogenetic network

For the mitochondrial DNA Amaral et al. [5] present a Bayesian phylogenetic tree based
on the cytochrome b gene (cf. Figure 31). The tree contains several individuals of the
species S. clymene, S. longirostris and S. coerluleoalba. Moreover, it contains samples
for Delphinus delphis (Linneaus, 1758), Delphinus capensis (Gray, 1828), Delphinus
capensis tropicalis (van Bree, 1971), Stenella attenuata (Gray, 1846), Stenella frontalis
(Cuvier, 1829), Tursiops truncatus (Montagu, 1821), Tursiops aduncus (Ehrenberg,
1833), Lagenodelphis hosei (Fraser, 1956), Sousa chinensis (Osbeck, 1756), Sotalia
fluviatilis (Gervais and Deville, 1853), Globicephala melas (Trail, 1809) and Phocoena
phocoena (Linneaus, 1758)15.
Additionally, a Bayesian species tree based on nine nuclear loci (Del_04, Del_05,

Del_10, Del_11, Del_12, Del_16, BTN, PLP, CHRNA1; cf. Amaral et al. [4]) is
presented (cf. Figure 32).
While the tree based on nuclear DNA places S. clymene and S. longirostris

closer together, the tree based on mitochondrial DNA shows that most of the S.
clymene samples are closely related to S. coeruleoalba. There are, however, some S.
clymene samples placed near S. longirostris. Note that the species tree in Figure
32 is an ultrametric tree16 with branch lengths representing time (Amaral et al.
[5] have enforced a strict molecular clock), while branch lengths in the mitochon-
drial tree represent substitutions per site and the tree is not ultrametric (cf. Figure 31).

We therefore inferred another ultrametric species tree, solely based on the cytochrome
b gene, i.e. on mitochondrial DNA. In order to do so, we used data deposited in the
Dryad Repository (http://dx.doi.org/10.5061/dryad.6dr0475t) by Amaral et al.
[4]. Amongst others, this data set contained sequences of the cytochrome b gene for all
species listed above, except for Stenella clymene. In some cases there were two samples
for one species (e.g. Delphinus capensis I and Delphinus capensis II), so we first reduced
the data set to one sample per species. We then retrieved a sequence of the cytochrome
b gene for Stenella clymene from GenBank (GenBank Accession Number AF084083.1)
and added it to the data set, which now comprised 15 sequences. The sequence for

15Phocoena phocoena does not belong to the family Delphinidae, but to the family Phocoenidae and
is used as an outgroup here.

16A rooted phylogenetic tree is called ultrametric if the path lengths from the root to each leaf are
identical.
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Stenella Clymene was 21 nucleotides longer than that of the other species in the data
set, so we produced a ClustalW alignment in BioEdit v.7.2.5 with the default settings.
As a result 21 gaps had to be introduced at the beginning of all sequences (except for
the S. clymene sequence), while the rest of the sequences was aligned without gaps.
The data set was then used to estimate a Bayesian phylogenetic tree using the program
MrBayes v.3.2 (Ronquist et al. [29]). 1 million MCMC generations, sampling every 100
generations were run. Following Amaral et al. [5], the data set was partitioned by codon
positions and the Tamura-Nei model was chosen as nucleotide substitution model.17

The sequence from Phocoena phocoena was used as outgroup and a strict molecular
clock was enforced.

The resulting tree is depicted in Figure 33. As suggested by Amaral et al. [5], the
mitochondrial DNA of S. clymene is more closely related to S. coeruleoalba than to
S. longirostris. Our tree resembles the tree for the mitochondrial DNA from Amaral
et al. [5] (cf. Figure 31), even though there are small differences, which may deserve
further revision.

However, we then used Dendroscope v.3.5.7 (Huson and Scornavacca [19]) to calculate a
minimum hybridization network from the species tree based on nuclear data (Figure 32)
and the species tree based on mitochondrial data (Figure 33). This calculation resulted
in a total of 25 phylogenetic networks with a reticulation number of 6, respectively. 22
out of 25 networks suggested a hybrid origin for Stenella clymene, but S. longirostris
was never among its putative parents, while S. coeruleoalba was in most cases. On the
contrary, in 20 times the networks suggested a hybrid origin for S. longirostris as well,
in 18 times thereof simultaneously to a hybrid origin for S. clymene.

These results, in particular the high number of reticulations in the networks, can be
explained by the fact that the species tree based on nuclear DNA and the species tree
based on mitochondrial DNA show more discordance than the placement of Stenella
clymene (cf. Figures 32 and 33). We suppose that this is not only due to possible
hybridization events, but also to processes such as incomplete lineage sorting. Thus, in
order to obtain realistic networks, both incomplete lineage sorting and hybridization
should be taken into account. Moreover, the species tree obtained from the cytochrome
b gene could not be fully resolved, which may be another confounding aspect. Last
but not least, Dendroscope sets all edge lengths to 1 in the process of calculating
the hybridization network, which makes it difficult to use the results for our aim of
calculating realistic measures of generalized phylogenetic diversity and generalized

17A analysis of our data set with jModeltest v.2.1.10 (Darriba et al. [10]) also suggested the Tamura-
Nei model.

132



7. Example – a dolphin data set

D
el

ph
in

us
_c

ap
en

si
s

D
el

ph
in

us
_d

el
ph

is
1

D
el

ph
in

us
_t

ro
pi

ca
lis

1

S
te

ne
lla

_c
oe

ru
le

oa
lb

a

S
te

ne
lla

_c
ly

m
en

e
0.

97

S
te

ne
lla

_f
ro

nt
al

is

T
ur

si
op

s_
ad

un
cu

s

0.
73

T
ur

si
op

s_
tr

un
ca

tu
s

1

La
ge

no
de

lp
hi

s_
ho

se
i

S
te

ne
lla

_a
tte

nu
at

a

S
ou

sa
_c

hi
ne

ns
is

0.
95

S
te

ne
lla

_l
on

gi
ro

st
ris

1

S
ot

al
ia

_f
lu

vi
at

ili
s

0.
54

G
lo

bi
ce

ph
al

a_
m

el
as

1

P
ho

co
en

a_
ph

oc
oe

na

1

0.
01

F
ig

.
33

:
Sp

ec
ie
s
tr
ee

(5
0
%

m
aj
or
it
y
ru
le

co
ns
en

su
s)

fo
r
th
e
cy
to
ch
ro
m
e
b
ge
ne

es
ti
m
at
ed

w
it
h
M
rB

ay
es
.P

os
te
ri
or

pr
ob

ab
ili
ti
es

ar
e
ne

xt
to

no
de
s.

133



7. Example – a dolphin data set

biodiversity indices.

We therefore decided to manually edit the Delphinidae species tree presented in Amaral
et al. [5] and replaced the edge directed into S. clymene by two new edges, i.e. reticu-
lation edges, between S. clymene and S. coeruleoalba and S. longirostris, respectively
(cf. Figure 34). We placed the hybridization event of S. coeruleoalba and S. longirostris
near to the tips of the tree, resulting in a short pending edge for S. clymene, as we
did not have any information about the time of the hypothesized hybridization event.
Amaral et al. [5], however, indicate that ‘S. clymene is currently distinct from its par-
ental species, although backcross may still occur’ (Amaral et al. [5]), so we supposed
that S. clymene was a relatively young species. However, these assumptions are very
speculative and we emphasize again that the following calculations of generalized biod-
iversity indices for the resulting network only serve as an example for the illustration
of the concepts introduced in previous chapters, but should not be considered as such
in future prioritization decisions concerning the family Delphinidae.

7.3. Calculation of the original Shapley Value

Recall that the different versions of the Shapley Value (original, modified, unrooted
rooted) and the Fair Proportion Index are closely related. In the following we will not
further dwell on their relationship, but focus on the impact of considering a phylogenetic
hybridization network as opposed to a phylogenetic tree. Thus, in the following we will
focus on the original Shapley Value and calculate this value for the family Delphinidae.
On the one hand, we will base the calculation on both the nucelar species tree (cf.
Figure 32) and the mitochondrial species tree (cf. Figure 33). On the other hand,
we will calculate it based on the hybridization network depicted in Figure 34. Note,
however, that the branch lengths in the mitochondrial species tree are significantly
larger than in the nuclear species tree or the hybridization network. Thus, the absolute
values for the original Shapley Value are not directly comparable. We can, however,
compare the ranking order of taxa induced by the original Shapley Value for both trees
and the network. In case of the phylogenetic network, we will also compare the ranking
order induced by the different generalized versions of the original Shapley Value.
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Original Shapley Value based on the nuclear and mitochondrial species trees

• Original Shapley Values (rounded) based on the nuclear species tree (Figure 32):
Phocoena phocoena 0.005 920

Globicephala melas 0.003 506

Sousa chinensis 0.002 435

Sotalia fluviatilis 0.001 995

Stenella coeruleoalba 0.001 233

Tursiops truncatus 0.001 173

Tursiops aduncus 0.001 173

Stenella frontalis 0.001 164

Stenella attenuata 0.001 164

Stenella longirostris 0.001 080

Stenella clymene 0.000 920

Lagenodelphis hosei 0.000 770

Delphinus tropicalis 0.000 743

Delphinus delphis 0.000 703

Delphinus capensis 0.000 703

• Original Shapley Values (rounded) based on the mitochondrial species tree (Fig-
ure 33):
Phocoena phocoena 0.137 287

Globicephala melas 0.061 916

Sotalia fluviatilis 0.056 716

Stenella longirostris 0.037 243

Stenella attenuata 0.033 628

Lagenodelphis hosei 0.033 628

Sousa chinensis 0.033 628

Tursiops truncatus 0.028 143

Stenella frontalis 0.021 811

Tursiops aduncus 0.021 811

Delphinus tropicalis 0.020 133

Stenella clymene 0.019 916

Stenella coeruleoalba 0.019 916

Delphinus capensis 0.018 585

Delphinus delphis 0.018 585

When comparing the rankings induced by the original Shapley Value for the species
tree based on nuclear DNA and the species tree based on mitochondrial DNA, we see
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that only the upper most two positions and the lowest two positions are occupied by
the same species (Phocoena phocoena and Globicephala melas and Delphinus capensis
and Delphinus delphis, respectively). All other taxa swap their positions, due to the
discrepancies between the topology of the nuclear species tree and the mitochondrial
species tree.

Original Shapley Value based on the hybridization network We will now consider
the original Shapley Value based on the hybridization network depicted in Figure 34.
As indicated above, this network was derived from the nuclear species tree by manually
introducing hybridization edges. Note however, that neither the nuclear species tree nor
the mitochondrial species tree are displayed by the network. The set of embedded trees
for the dolphin network can be found in Figure 36, while the LSA tree associated with
it, is depicted in Figure 35.
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7. Example – a dolphin data set

Results (cf. Table 11):

• The ranking obtained for the network by SV max
T(N ) equals the ranking obtained

from SV for the nuclear tree, even though the nuclear tree is not displayed by
the network. Thus, this might be a coincidence.

• In accordance with the nuclear species tree, the species Phocoena phocoena, Globi-
cephala melas, Sousa chinensis and Sotalia fluviatilis occupy the first four posi-
tions in all rankings induced by the original Shapley Value for the hybridization
network. Moreover, they receive the same absolute value for each version of the
Shapley Value (except for SV

∑
T(N ), which is two times this value). This can be

explained by the fact that these species are only distantly related to the hybrid
species Stenella clymene and are not affected by rearrangement of the tree topo-
logy (i.e. they are placed at the same position in both embedded trees and the
LSA tree associated with the network).
Surprisingly, the two species Stenella attenuata and Stenella frontalis receive
different ranking positions by the different versions of the Shapley Value, even
though, the absolute values are identical for each version (except for SV

∑
T(N ))

and the two species do not change their position in the set of embedded trees
or the LSA tree. However, their pending edges are relatively short and they are
a sister group to the taxa in the subtree rooted at the lowest common ancestor
of Delphinus capensis and Tursiops truncatus, a group of species that undergoes
rearrangement in the set of embedded trees and the LSA tree. Thus, the ranking
position of Stenella frontalis and Stenella attenuata is affected by the ranking
positions of the taxa in this subtree.

• Again, in accordance with the nuclear species tree, the species Lagenodelphis
hosei, Delphinus tropicalis, Delphinus delphis and Delphinus capensis are ranked
the lowest in most cases, probably due to their short pending edges and their
general position in the network, which suggests that this group of species only
contributes marginally to overall phylogenetic diversity. Except for Lagenodelphis
hosei this general tendency is also reflected by the ranking induced by the original
Shapley Value on the mitochondrial species tree.
Lagenodelphis hosei, however, receives a ranking position further to the front in
the ranking obtained from the mitochondrial tree.

• When considering the hybrid species Stenella clymene and its parents Stenella
longirostris and Stenella coeruleoalba, we see that almost all versions of the ori-
ginal Shapley Value for networks induce a ranking, where these three species
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7. Example – a dolphin data set

take a position in the middle field. However, for Stenella clymene there are two
exceptions: SV LSA places it on position five, while SVPDmin

T(N )
ranks it the lowest

(position fifteen). For comparison, in the nuclear species tree Stenella clymene is
ranked as number eleven, in the mitochondrial species tree as number twelve.
For Stenella coeruleoalba there are also two indices which rank it higher than
on average (position five in case of SV max

T(N ) and position six in case of SV LSA),
but in contrast to Stenella clymene these two exceptions have the same direction
(i.e. they both rank Stenella coeruleoalba higher than the other versions of the
original Shapley Value do on average). Stenella longirostris, however, receives po-
sition ten or eleven by all versions of the original Shapley Value for this network,
which reflects the situation in the nuclear species tree, but not the one in the
mitochondrial species tree, where it is placed on position four.

• Comparing the rankings induced by the different versions of the original Shapley
Value for the dolphin network, we see that they roughly induce the same rank-
ing order. There are, however, small differences and especially the hybrid species
Stenella clymene is assessed differently by SV LSA and SVPDmin

T(N )
compared to the

other indices.
These results, however, suggest further analysis of the different generalized biod-
iversity indices and evaluation of their correlation or further examination of the
relationship of the rankings they induce.

Even though this example cannot be used in real taxon prioritization decisions (due
to the nonscientific way the hybridization network was inferred), it illustrates some of
the concepts of generalized biodiversity indices introduced in previous chapters. At the
same time it demonstrates the difficulties biodiversity conservation has to face. The
results do not only depend on the biodiversity index used, but also on the phylogenetic
tree or network the analysis is based on. Even in this small example, results differ
between the species tree based on nuclear DNA, the species tree based on mitochondrial
DNA and the network manually constructed. Thus, not only the biodiversity index to
be used in a prioritization decision has to be chosen carefully, but also the phylogenetic
tree or phylogenetic network the analysis is based on, in particular if the evolutionary
history of a set of species is not fully understood.
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8. Discussion

Due to limited financial means, biodiversity conservation has to prioritize the species to
conserve. Existing approaches to prioritization are based on phylogenetic trees and use
the phylogenetic diversity of subsets of taxa as a quantitative measure of biodiversity.
Phylogenetic diversity serves as a basis for distinctiveness indices, in particular for the
Fair Proportion Index and the Shapley Value, which rank species according to their
contribution to overall biodiversity and thus, provide a simple prioritization criterion.

However, there are forms of non-treelike evolution, e.g. hybridization and horizontal
gene transfer, which cannot be represented by phylogenetic trees. Thus, phylogenetic
networks have come to the fore as a mathematical generalization of phylogenetic trees
and are now an important concept in evolutionary biology, as they allow for the rep-
resentation of reticulate (non-treelike) evolutionary events.

In this thesis, we provide a combination of both, i.e. we extend the concepts of
phylogenetic diversity and biodiversity indices from phylogenetic trees to phylogenetic
networks. For this purpose, we suggest a variety of approaches towards the use of
phylogenetic diversity, the Fair Proportion Index and the Shapley Value in the context
of hybridization networks.

In order to generalize the concept of phylogenetic diversity from trees to networks, we
use three main principles: the calculation of spanning arborescences, the consideration
of the (multi)set of phylogenetic trees displayed by a network and the construction
of the LSA tree associated with a network. Similarly, we suggest to derive the Fair
Proportion Index and the Shapley Value from the (multi)set of phylogenetic trees dis-
played by a network or the LSA tree associated with it. Additionally, we introduce a
new index, the Net Fair Proportion Index, related to the Fair Proportion Index for
phylogenetic trees, but defined on phylogenetic networks. Lastly, we suggest to derive
the Shapley Value from any generalized definition of phylogenetic diversity.

All approaches have their specific advantages and drawbacks, in particular in ways of
biological plausibility and computational feasibility. In theory, all approaches may face
computational problems when applied to phylogenetic networks with a high number
of reticulation nodes. In practice, this affects in particular the embedded phylogenetic
diversity and any embedded biodiversity index, while the LSA associated phylogenetic
diversity and LSA associated diversity indices seem to remain relatively unaffected
by a high number of reticulation nodes. Under biological aspects, however, the LSA
associated phylogenetic diversity and LSA associated diversity indices may be question-
able, because the LSA tree associated with a network reduces the network to its most
basic treelike content and thus, discards a lot of evolutionary information. The embed-
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ded phylogenetic diversity, in particular PD∅hyb
T(N ), and the embedded biodiversity indices

FP
∅hyb
T(N ), SV

∅hyb
T(N ), S̃V

∅hyb
T(N ) and ŜV

∅hyb
T(N ), on the other hand, use most of the structure

present in the network and seem biologically justified to use, in particular if we recall
that evolution on the nucleotide level rather than the genome level is still treelike.
However, we strongly suggest to analyze the biological justification of all approaches

in future research. In a second step, it might then be necessary to develop approxim-
ations for those definitions of generalized phylogenetic diversity and generalized biod-
iversity indices that seem particularly suitable for taxon prioritization in order to make
them computationally feasible and applicable in practice.
In general, we suggest to use as much of the information provided by a phylo-

genetic network as possible when calculating the phylogenetic diversity of subsets of
taxa or any biodiversity index. In particular, we suggest to incorporate hybridization
probabilities, if they are given for a phylogenetic network. So far, our software tool
net_diversity.pl only implements approaches independent of hybridization prob-
abilities. Thus, the extension to approaches incorporating hybridization probabilities
should be subject to further activities in this field.
Furthermore, we have solely focused on hybridization networks in this thesis and

have not considered horizontal gene transfer networks or networks containing both
hybridization and horizontal gene transfer events. Thus, the handling of horizontal gene
transfer events should also be subject to further research. In principle, our approaches
can be applied to horizontal gene transfer networks, but there might be a need for
slight modifications. Recall that we have considered all reticulation edges, i.e. all edges
directed into a reticulation node, to be unweighted (cf. Remarks on page 16). In case of
horizontal gene transfer events, however, it might be necessary to distinguish between
the actual reticulation edge, say ehgt, directed into a reticulation node (i.e. the edge
representing the horizontal gene transfer event) and the other edge, say et, directed
into this node. Formally, the latter is also a reticulation edge, because it is directed
into a reticulation node (cf. Definition 9), but we might want to treat it as a tree
edge (cf. Figure 37). Subsequently the question arises, how to define the (multi)set of
phylogenetic trees displayed by a horizontal gene transfer network. Following Definition
15, the (multi)set of phylogenetic trees of a network N can be obtained from N by all
combinations of deleting one of the reticulation edges for each reticulation node and
suppressing the resulting nodes of indegree 1 and outdegree 1. However, deleting the
edge et (i.e. the edge that we might rather regard as a tree edge than as a reticulation
edge) may result in trees, where the root has outdegree 1 (cf. Figure 37). This conflicts
with our definition of a rooted phylogenetic X-tree (cf. Definition 2). Thus, either the
definition of a rooted phylogenetic X-tree or the the definition of the (multi)set T(N )
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of trees displayed by a phylogenetic network might need to be modified when dealing
with horizontal gene transfer events. Once this has been clarified, however, both the
embedded phylogenetic diversity and the embedded biodiversity indices can be applied to
horizontal gene transfer networks. All other approaches, e.g. the calculation of spanning
arborescences or the construction of the LSA tree associated with a network should
directly be applicable to horizontal gene transfer networks.
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Fig. 37: Horizontal gene transfer network N ′10 on X = {A,B,C} and its embedded
trees. Formally, the edges (b, r) and (ρ, r) are reticulation edges, because they
are directed into the reticulation node r. However, we might want to treat the
edge (ρ, r) as a tree edge. If we delete the edge (b, r) and suppress nodes of
indegree 1 and outdegree 1, we retrieve the phylogenetic X-tree T ′1 . Deleting
the edge (ρ, r) results in the tree T ′2 . Note that the root ρ has outdegree 1 in
T ′2 and thus, T ′2 is not a rooted binary phylogenetic X-tree. Also note that the
sum of branch lengths in T ′2 is 6, while it is 8 in N ′10 and T ′1 . It is therefore
questionable whether T ′2 should be regarded as displayed by N ′10 or not.

In summary, our approaches provide an extension to existing prioritization tools
in conservation biology and allow for the consideration of phylogenetic networks in
prioritization decisions. This is of importance if the evolutionary history of a set of
species is known to be non-treelike, and thus, cannot be represented by a phylogenetic
tree. We remark, however, that further research concerning the biological plausibility
of our approaches, their computational feasibility and the incorporation of horizontal
gene transfer events is necessary before they can be put into practice.
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